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Abstract 
 

Investigations of Altered Proteome Dynamics 
 in Calorie Restriction, Insulin Resistance 

and Type 2 Diabetes 

by 

Cyrus Khambatta 

Doctor of Philosophy in Molecular & Biochemical Nutrition 

University of California, Berkeley 

Professor Marc Hellerstein, M.D., Ph.D, Chair 

 
Proteins are the ultimate laborers in biological systems.  The behavior of a cell is 
governed by the dynamic interactions between thousands of proteins; a tissue is 
governed by the interactions of thousands of cells; and an organism is governed by the 
interaction of multiple tissues.  The maintenance of protein homeostasis (proteostasis) 
is therefore a critical component of proper cellular function and the response to 
constantly changing environmental signals.    
The dynamic proteomic approach used in these rodent studies involves the 
administration of 2H2O in the drinking water to achieve a target body water enrichment 
of 5%.  During the labeling period, in vivo protein synthesis occurs, resulting in the 
creation of “heavy” proteins identical to their “light” counterparts in function, differing 
only in the incorporation of deuterium atoms at specific positions in the constituent 
amino acids from which they are comprised.  These peptides are then resolved by high-
affinity liquid chromatography mass spectrometry (LC-MS), resulting in the 
identification of hundreds to thousands of proteins from a single tissue sample.  Using 
this experimental approach, we investigated the effect of calorie restriction (CR), insulin 
resistance, and diabetes on dynamic protein synthesis.   

To date, CR has taken center stage as the most effective intervention in lifespan 
extension.  Despite this, the biological mechanisms underlying increased health and 
longevity have yet to be fully described.  While a growing body of evidence suggests that 
CR promotes significant gain-of-function attributes in mitochondria, a verdict on 
whether CR promotes mitochondrial biogenesis has not been established.  In order to 
elucidate the controversy in the field regarding the response of mitochondria to reduced 
energy intake, we designed an experiment to study the effect of long-term CR on hepatic 
protein turnover.  Our data provide conclusive evidence that mitochondrial protein 
turnover, concentration, and overall flux are reduced in response to CR, and may play 
central a role in mediating the health and longevity benefits of reduced energy intake. 

Insulin resistance and islet cell failure are the two fundamental processes underlying 
type 2 diabetes.  Alterations in mitochondrial protein turnover have been implicated in 
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the pathology of type 2 diabetes, however the specific effect of insulin resistance and 
diabetes on the intracellular dynamic islet proteome have yet to be described.  We 
investigated the effects of insulin resistance and diabetes on the synthesis of proteins 
from isolated rat islets for the first time, using both 2H2O (heavy water) labeling and 
SILAM quantitative proteomics.  Using this approach, we measured fractional and 
absolute synthesis rates of cytoskeletal, glycolytic, mitochondrial, ER, and ribosomal 
proteins, the principal pathways responsible for glucose stimulated insulin secretion 
(GSIS).  We found that insulin resistance increased the fractional synthesis rates (FSR) 
of 97% of all measured islet proteins, and the subsequent transition to diabetes resulted 
in the selective impairment of ribosomal protein synthesis.  Our findings suggest that 
the rapid rate of islet cell proliferation due to insulin resistance is accompanied by 
increased fractional and absolute synthesis of critical GSIS proteins, and that the failure 
of islets results mainly in impaired ribosomal pathway flux, independent of alterations 
in mitochondrial metabolism.  Our data suggest that the rapid rate of islet cell 
proliferation due to insulin resistance is accompanied by increased fractional and 
absolute synthesis of critical GSIS components, and that the failure of islet cells in 
diabetes results mainly in impaired ribosomal pathway flux, independent of alterations 
in mitochondrial protein metabolism.   
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To leave this page blank would be a sin.  To pretend as though I did all the work 
contained within this document is an outright lie.  To undermine the support given to 
me by friends and family during this time in my life would be selfish.   
Therefore, I have no choice but to acknowledge and thank those that significantly 
contributed to my life as a graduate student, and to offer my gratitude for having put up 
with me for the past five years.  I also decided to include pictures of those I am 
acknowledging, mainly for the humor it will provide in the future.   
 

Dr. Marc Hellerstein, M.D., Ph.D. 
The man, the myth, the legend.  If you’ve ever seen the movie 
Good Will Hunting, then you understand the mental gymnastics 
that this man can play with the rest of the people in his life.  Part 
genius, part athlete, part mystery – Marc Hellerstein is a true 
renaissance man.   
I’ll never forget the first time I met with Marc in his laboratory 
during my application process to graduate school.  We talked 
about my research interests, the types of questions that he has 
investigated in the past, and touched our personal interests as 
athletes.  Marc told me that he and his buddies in graduate 

school would run some god awful 17 miles a day, because they loved to run, but more 
importantly because they were bored.  Who has time to run 17 miles a day when enrolled 
in a M.D. Ph.D. program?  Marc Hellerstein does.  The conversation continued, I started 
telling him about my monkey-like high carbohydrate diet, and he responded by saying 
that he believes that high carbohydrate diets are essential for athletic performance.  I 
asked him what types of carbohydrates he consumes - whether they come mainly from 
pastas and grains, or from fruit.  “Hard candy,” he responded.  “I get my carbohydrates 
mainly from candy.”  I laughed, thinking that he was joking, after which he stood up, 
rifled through his jean pocket for 10 seconds, and emerged with a collection of 
peppermints and butterscotch candies.  He wasn’t joking.  The best part is that they 
appeared to be over a decade old, which didn’t surprise me for some reason. 
About a year later, I had joined his laboratory, and was developing a research plan for an 
upcoming fellowship application.  I scheduled a meeting with him that started 3 hours 
late, at which point I showed him my proposal and asked for his opinion.  He seemed 
quiet tired at the time, but shrugged off his lethargy and gave constructive feedback.  
About 10 minutes into our meeting, I looked down to read the requirements of the 
fellowship application, and then looked up at him no more than 10 seconds later.  
During that time, Marc had fallen into a deep sleep; his now sat slouched in his chair, 
his chin resting on his chest.  This was the first time I had witnessed true narcolepsy 
firsthand.  I didn’t know what to do, so in an effort to not embarrass him, I put my head 
down started talking with a loud voice, and he woke up instantly.  From that point 
onwards, I witnessed frequent narcoleptic episodes; in lab meeting, in seminar, in 
personal conversations.  Anyone in need of sleep is susceptible to such episodes, 
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however Marc’s true genius became evident after falling asleep for more than 30 
minutes in the middle of a weekly seminar, violently waking up to the sound of clapping.  
His hand was the first to go up.  “You mentioned in the beginning of your talk that bile 
acids are measured in the blood, however is the activity of their cognate receptors more 
affected by enterohepatic recycling within the gastrointestinal tract rather than from 
bile acids in circulation?”  Marc, how the hell did you just ask such an involved 
question?  You were asleep.   
In the ensuing years, as our dynamic proteomic technology improved, Marc helped 
design many intelligent studies, and provided excellent feedback on my personal 
projects.  How one man can accomplish so much in life baffles everyone that knows him.  
And how he can be an M.D. at UCSF, a professor at UC Berkeley, and the founder of 
Kinemed, Inc., a biotech startup company in Emeryville, while maintaining a suave, 
gracious and socially graceful demeanor is what makes Marc Hellerstein a man like no 
other.   
 
Dr. Wally Wang, Ph.D.  

When I first entered graduate school, I rotated in the laboratory 
of Wally Wang, and quickly realized that not only is he a scientific 
freight train, he is a kind and gentle man  whose personality is 
extremely refreshing in the world of academia.  Wally and I 
struck up an instant friendship, and often times I found myself in 
his office talking about NCAA basketball rather than anything 
even remotely science related.  
Wally experienced the pleasure of watching me squirm during my 
qualifying exam, but instead of torturing me like a particular 
individual (who shall remain nameless), Wally asked me 

questions that allowed me to demonstrate my knowledge and preparation, and didn’t 
attempt to flex his muscles of biochemical wisdom.  Once again, he proved to me that he 
is a truly exceptional individual.   
I know I can count on Wally to give me great feedback on my research, to guide me in 
the right direction, and to talk smack about wierdos in the department.  He has only 
been a member of the department for about 6 years, and is always regarded by the 
students in the department as a gem, a shoe-in for what is considered a “fair” member of 
a qualifying exam committee, and a pleasant person to be around.  If you’re lucky, you 
can catch him in his office pretending to write a grant, watching his true love – the San 
Francisco Giants.   
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Dr. George Brooks, Ph.D. 
If you’ve never heard of the godfather of exercise physiology, 
then allow me to introduce you to Dr. Brooks.  He has authored 
more papers than there are countries on this planet, is the 
mastermind behind the sports drink Cytomax, invented a 
branch of exercise physiology dedicated to disproving the myth 
that “lactic acid hampers athletic performance,” and is 
consistently rated by UC Berkeley students as one of their 
favorite professors of all time.  To say that Dr. Brooks is a genius 
is an understatement worthy of correction. 
When I first met Dr. Brooks, he had come to teach a seminar to a 
small group of confused first year graduate students about the 
basics of exercise physiology and metabolism.  He lectured 

about lactate metabolism, glycogen depletion, whole body fuel utilization, oxidative 
phosphorylation, mitochondrial structure and function, and a litany of other topics that 
rode the fine line between fascinating and totally confusing.  But of course, when Dr. 
Brooks lectures, you never admit that you don’t understand what he’s talking about.  
Instead, you go home, read like a madman, then return to class the next week as the 
resident expert in that topic.  I left his first seminar thinking to myself, “Man, that guy is 
cool, how can I download the contents of his brain into mine?”  Over the next few 
months I can safely say that Dr. Brooks didn’t think about me even once, however our 
fated encounter in the RSF one day changed our relationship completely.   
I saw him on the exercise bike, spinning his legs faster than I thought was humanly 
possible.  His shirt was dripping with sweat, his gaze was complete focus, and he was 
breathing as if he had just been chased by a wolf.  At that moment I realized that Dr. 
Brooks was not only a intellectual badass, but a physical specimen worthy of much 
respect for his ability to shame the roomful of “low intensity” undergraduate exercisers.   
Over the next four years, Dr. Brooks taught me a lot about the intricacies of oxygen 
utilization, cardiac output, muscle contractility, fatty acid oxidation, and mitochondrial 
biogenesis to name a few.  He served as the principal investigator on a study to measure 
the effect of high plasma lactate levels on VO2 max, although in reality I think he just 
enjoyed watching macho athletes collapse from hypoxia.  He allowed me to take part in 
the study, and found that as a type 1 diabetic my circulating lactate levels at rest and 
during exercise were freakishly high.  As if I needed a well respected academic to 
confirm that I was a freak of nature.   
The beauty of Dr. Brooks multidimensional - he knows more than most small nations, 
he is incredibly personable, he owned Floyd Landis’ bike (before it was stolen from his 
garage), he loves to travel, and he appreciates cracking silly jokes during intense 
academic debate.  I’ll never forget the way he rescued me during my qualifying exam, 
amidst a series of challenging questions regarding the Michelis-Menten kinetics of two 
hypothetical enzymes.  I was stumped.  I was exhausted.  I didn’t understand the 
questions.  I wanted to crawl into a hole in the ground to escape the intellectual 
punishment.  Worst of all, I didn’t care about the line of questioning, and thought that 
the exercise was futile.  Dr. Brooks saw my frustration, my confusion, and my lack of 
enthusiasm, and calmly continued the line of questioning by asking me a question in 
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which the answer was encoded.  I looked at him, said exactly what he wanted me to say, 
received a head nod from the entire committee, then slapped him a hypothetical high-
five.   
At that moment I knew that Dr. Brooks and I were on the same team.  Forever.   
And quite frankly, I wouldn’t want to be anywhere else.   
 
Larry Thompson 

If you ever wanted to know what a true badass 
looks and smells like, look no further.  Larry 
Thompson is your man.  I had the pleasure of 
working with this gentleman for the first 2 years 
of my graduate work, until UC Berkeley made the 
terrible decision, and I repeat terrible decision at 
moving him from the department of Nutrition to 
some dysfunctional centralized purchasing office.   
Practically every day I would go down to LT’s 
office and waste my lunch hour schmoozing with 
this ex-navy officer, listening to stories of his 
escapades in Guam, Japan, and practically every 
country with beautiful women.  He would tell me 
about his desire to become the lead bassist in a 
rock band in which I would play the role of not-
so-talented-drummer.  
You see, the thing that made LT the coolest man 
in America is a combination of many talents, 
which would take pages to explain.  Suffice it to 
say that he is a one-man wrecking crew when it 

comes to organizing the purchases and returns of many dysfunctional labs, and he does 
so with a giant goofy smile on his face at all times.  Unless, of course, someone is pissing 
him off, at which point he’ll come up to you with his coined expression, “Maaaaaaaan.”  
LT is the type of guy you could talk to for days before he came even close to running out 
of material.  I wouldn’t hesitate to sit in a space shuttle with this man and take a 2-
month trip to the moon.  That is, as long as I got more stories of what it’s like to be a 
gangsta pimp hustla. 
When Larry left the department, it got quiet.  Not so awesomely quiet.  Don’t get me 
wrong the department was still a fun place to go, but without the ability to schmooze 
with my man, going to the ground floor lost a serious amount of excitement.  It’s all 
good though, because I quickly promoted LT to the list of life-long friends, so even if he 
tries to get rid of me, he’ll have one hell of a difficult time.   
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Dr. Matthew Bruss, Ph.D. 
I’ll never forget the first few days of my rotation in the 
Hellerstein laboratory.  I knew just about nothing, started 
playing with fancy looking toys, and shot the shit with this guy 
named Matt who reminded me of a friend from college.  I 
could tell he was an athlete, had a lot of fun on the weekends, 
had a ton of friends, subscribed to the “work hard, play 
harder” mentality, took his work seriously but his social life 
more seriously, and was damn near a professional drinker.  
After working together for two days, I stood in front of him 
one day just as I was leaving to go home, and said the words, 
“Dude.  I feel like you and I are going to get along REAL well.  
I’m excited to be here and work with you, because it’s going to 
lead to some great things.”  He calmly smiled, nodded, and 

said, “I was thinking the same thing.” 
After spilling my feelings to this teenage heartthrob, the two of us continued to work 
together for four years, and made sure that the Hellerstein lab was always a place of 
comedic refuge.  Taking anything seriously became a significant challenge, aside from 
the fact that keeping up with Dr. Bruss’ idea factory required serious concentration.  I’m 
not sure that any human in history has come up with more ideas than did Dr. Bruss in 
that four year period.  Fortunately, we acted on only a few, and let the rest die a 
miserable death in the cemetery of lost opportunities. 
Between the Mitch Hedberg standup comedy and “old timey honkey tonk” as he so often 
calls it, our days in the graduate department were replete with constant ridiculing, 
watching sports highlights, a vertical jumping contest (which I won by the way), and an 
ongoing tally to count the number of times a human being could say the words, “right, 
right, right, right, right,” between words of real substance.  Soon Dr. Bruss’ vocabulary 
expanded to contain the words, “like” and “so,” a shining example of the effects of 
graduate education. 
The best part of working with Dr. Bruss, you ask?  The morning weight sessions at the 
RSF, where we act like Olympians and compete like overly aggressive elementary school 
kids.  What work day would be complete without a series of exhausting “burn out” 
sessions on the rowing machine, pushing the limits of terrible technique?  Perhaps the 
most consistent component of my graduate school experience, our morning exercise 
sessions constantly proved to me that (1) even when we’re butt naked in adjacent 
showers, we still talk about nerdy things, (2) that injuries are totally worth it if they were 
borne out of senseless competition, and (3) that training hard while your friend takes a 
three month break to father his newborn son is sometimes the only way to get ahead.   
So here’s to an awesome four year stint with you as my sidekick, Dr. Bruss.  And to an 
awesome 3,000 mile road trip from Berkeley to Madison in which we proved to 
ourselves that gossiping like middle school girls does not have to be reserved 
for…middle school girls.  Oh, and by the way, if by the time you’re 40 you’re still in 
science and not the high-school-drama-teacher-and-cross-country-coach you’ve always 
dreamed about, I will personally fly to Wisconsin to beat you to a pulp. 
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Marcy Dalidd 
I should really give Marcy my diploma.   
But instead, I’ll just buy her a few mangoes to thank her for doing 
everything for me.  It’s this simple: Marcy is a one-woman 
wrecking crew, with more hands-on experience than an entire 
army of graduate students, and a cheery demeanor that is sure to 
leave most men drooling.   
I met Marcy one day when she came into our laboratory to use a 
fancy piece of equipment.  She was working as an assistant for 
Roger Wong, a fellow graduate student at the time.  Roger 
managed a team of undergraduates, and Marcy was one of the 
many who thought that his style sucked.  So, I did what any 
respectable fellow graduate student would do: I stole her.  I 

offered her three things: (1) the ability to play (and kill) thousands of mice, (2) the 
ability to work in an environment where she would to most of the work (and I would 
take the credit), and (3) the ability to play DJ in the lab (as long as she played cheesy 
80’s music).  She accepted, not so much because of the research temptation, but because 
her best friend Lindsay Roberts (below) was also working in our lab.  Whatever, I’ll take 
what I can get.   
Marcy worked as my chief badass for 3+ years, and provided more help than I thought 
was humanly possible.  Simply stated, there isn’t anything that Marcy can’t do.  Her 
talents include cooking overly elaborate ethnic food items for lunch, drinking excessive 
beer at happy hour, gossiping with Lindsay for hours at a time, littering the lab with 
almost perfect crossword puzzles, and giggling at top volume for inhuman amounts of 
time.  And let’s not forget the step aerobics class that I attended with her and Lindsay on 
a few occasions.  Apparently it had been a while since I looked like a total moron, so this 
was the perfect opportunity for me to fail miserably in front of 50+ women.  I positioned 
my step behind Marcy’s, hoping that from this vantage point I could easily learn the 
choreography.  After all, how hard could it really be?   
Needless to say, after no more than 10 minutes in the class, I was completely lost, having 
no idea how to do any of the individual sequences, and certainly clueless as to how to 
string them together.  Marcy?  She looked like she belonged in a step aerobics video as 
one of Richard Simmons groupies.  Not only were her steps perfect, she coordinated her 
arm movements to match, and did it all with a cheerleader-like smile.   
My favorite part about Marcy is that if she wasn’t effectively married to her high school 
sweetheart Mac (who is a total stud by the way), she could have her pick of virtually any 
man.  I can’t even count the number of guy friends who have, at one point in our 
graduate student era, said something to the effect of, “Dude, that girl you work with is 
super hot.  Is she single?”  And my response was always the same, “Listen.  Marcy is a 
badass, and is absolutely not on the market.  She’s practically married to her boyfriend 
from back in the ‘90’s, and isn’t becoming a free agent anytime soon.  Oh, and by the 
way - she’s too good for you.”   
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Lindsay Roberts 
Lindsay, Lindsay, Lindsay.  Another hard hitting scientific 
workhorse with the potential to take over the world.  Our lab was 
fortunate enough to acquire this talented young lady before I had 
joined the lab, as she was the #1 assistant to Mark Fitch when 
working for Sharon Fleming.  Mark did the smart thing and 
brought her to the third floor so that she could also enjoy listening 
to crappy 80’s music.   
When I first met Lindsay, she was very short with me.  Question, 
answer.  Question, answer.  I knew that there was a silly woman 

underneath her formal demeanor – her smile said everything I needed to know.  It 
wasn’t until Marcy joined the lab that the two best friends began to show their incredibly 
talkative and goofy personalities.  That’s when things got fun.  Our conversations went 
from talking about school to describing our favorite bedroom practices.  Soon I was 
asking for advice with women, and despite her 7-year serial monogamy streak, was still 
able to provide insight into the dating world, and female insanity in general.   
Lindsay was quickly promoted from undergraduate assistant (slave) to hourly technician 
(indentured servant) to salaried technician (my personal bitch).  In this position, she 
made it very clear that (a) she was smarter than me, (b) her memory far exceeds mine, 
and (c) in conversation, her job was to finish my sentences.  Who needs to finish a 
thought?  When you have Lindsay around, it’s her job.   
After working with Lindsay for a few years, I began to realize that I had more confidence 
in her work as a technician than almost any graduate student in the department.  Couple 
that with a goofy personality, another step aerobics master, a woman who speaks a mile 
a minute, and the Nutritional Sciences department’s most qualified applicant to date, 
and you have yourself a hilarious and integral addition to my graduate experience. 
 
JC Price 

I remember meeting with JC one day at Kinemed so 
that we could strategize for a cool story about CR that 
we were both excited to embark upon.  In some 
corner office, tucked away from the rest of the world, 
we sat and talked about doing a study on long-term 
CR mice to see how being hungry your entire life 
affects protein turnover.  We had the same idea, we 
had the same vision.  Over the next two years, we 
worked hard at achieving just that, and after 
successfully running the project, we had cranked out 
one of the most in-depth explorations of CR studied 
to date. 

Because I worked with this guy so much, we got a chance to talk about life outside of 
science, in which JC shared with me his views on Mitt Romney, working for arrogant 
bosses at previous jobs, life with an army of children while working a full time job, and 
how he manages to grow more fruits and vegetables in his urban backyard than most 
small nations.  And what did I share with him, you ask?  My obsession for bananas and 
probably a whole host of untrue stories.   
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Some would call him a renaissance man.  Personally, I think that term belittles his 
creative and scientific genius.  Instead, I think of him as the little (6’40”) engine that 
could.  Everything that he sets his mind to, he will achieve.  Everything that he does, he 
does with full conviction.  And every time you have a silly comment to make, he’ll return 
it with a surprisingly sharp and witty comment.   
 
Airlia Thompson 

When Airlia first rotated in our lab, I played the hands-off role, 
because the soon-to-be Dr. Bruss was truly the man with the 
master plan.  But I couldn’t help eavesdrop on their super nerd 
discussions, and quickly realized that Airlia was smart.  There 
were no two ways about it.  She was just plain smart.   
Before I knew it, she was talking shit to me, as if someone had 
told her the way to my heart.  Soon I was the recipient of 
goofiness, attitude, and practical jokes.  Lucky for her, I’m not as 
stuck up as I look.  So over the years she played some practical 
jokes on me, like messing with my computer mouse so that I got 

continually frustrated, and I returned by pretending that my bike was stolen from the 
lab, giving her anxiety for a week.  I’ll admit, I never put my mind to pulling a long, 
drawn-out practical joke, but as far as I’m concerned, our friendship is only starting.  
Sleep with one eye open, Ms. Thompson.   
On the science side of things, Airlia is fantastic.  She is probably the most anal person 
I’ve ever met when it comes to performing science, which is awesome if you’re working 
together, or if you want to mess with her workspace.  I know that I can trust everything 
she reports because chances are, she has already kept herself up at night convincing 
herself that her work is legit.  And as long as I got restful sleep, that’s all that matters. 
With her powers of mental kung-fu, Airlia may one day become the first female 
president of our country, and because of that I’ll stay close to her.  I’ve always wanted to 
work in the white house, or at least tell people that I had dinner at the white house and 
played with the first family dog.  Maybe I’ll convince her that she should hire me, so that 
her staff will have at least one minority.  After all, it looks good for public relations.   
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Mark Fitch 
How one man can pack so much valuable information into a 
regular sized human head befuddles me.  How one man can 
have so much experience both at science and in life, and have a 
story for practically every conceivable situation is the magic of 
Mark Fitch.  A.k.a Fitchipedia.  If you ever engage him on the 
scientific front, you’ll quickly realize that no matter how much 
you’ve read, no matter how much you think you know, no matter 
how much experience you have, Fitch knows more.  It’s that 
simple.   
Radiator busted?  Call Fitch.  Stuck in traffic and want some 
comedic relief?  Call Fitch.  Can’t remember the last 17 super 
bowl winners, in reverse alphabetical order?  Call Fitch.  What 

happens at every stage in the beer brewing process, from start to finish, and how has 
this process changed over the course of the last 2000 years?  Call Fitch.   
Beyond Fitch’s omnipotence, there lies a true fun loving character who loves to travel, 
spend time with his family backpacking through the Sierra Nevadas, recount stories of 
his drug-induced college days, and a man who could practically manage the Oakland A’s 
in his spare time.  For years I’ve been thinking of a way to shrink Mark Fitch into a 3 
inch tall buddy that I could carry around on my shoulder, named Pocket Fitch.  That 
way, whenever I needed help in life, I could consult the mini-master himself.   
Working with Fitch over the past 3 years has been a pleasure, and if anything, when my 
turn to be a contestant on Who Wants to be a Millionaire? arrives, when asked an 
esoteric question about world history, politics, geography, pop culture, physics, 
meteorology, or global climate change, I know exactly who I’m calling.  Keep that phone 
handy, my man, you are my ticket to financial freedom.   
 
Candice Allister 

Without doubt, the funniest thing that ever occurred in a 
lab meeting happened when Candice was presenting one 
day during the period in Marc’s life that he likes to refer 
to as his “tired years.”  Who knew narcolepsy could be so 
funny? 
Picture the scene: Candice is presenting her story, Marc 
is sitting at a table with his head in his hand as he 
quickly enters the world of sweet dreams.  Candice 
explains to 7 other members of our lab that she is having 
a difficult time understanding the phenotype of her 
animals, and that body weight is not a great measure of 
the effect of her intervention.  We all realize very quickly 
that Marc is no longer listening given that fact that he’s 
completely asleep, head resting heavily in the palm of his 
propped up hand.  Violently, Marc wakes up, amidst a 

series of lucid images, and asks, “Did you measure their mothers?”  We each look at each 
other, trying as hard as possible to refrain from laughing, turning red in the face, as 
Candice eloquently retorts in a thick southern accent, “Wha?”  Realizing his blunder, 



Page xii 

Marc then backtracks, explaining that he needed some clarification about her previous 
slides, when all he really had to say was, “I’m sorry, I was deep asleep.  Go back.”   
It wasn’t until years later that Marc confessed that he had no idea what Candice was 
talking about, and that his constant sleep deprivation was really getting in the way of 
work.  It’s OK, we’re all human.  Candice, without knowing it, demonstrated that when 
you piss her off, out comes the southern accent.  From that point on, I did my best to 
avoid hearing that southern belle, unless there was a pitcher of beer in front of her.   
 
Chelsea Bidlow 

Since the day Chelsea entered our lab, I can honestly say that I 
have never seen a more smiley individual.  If Chelsea is ever not 
smiling, chances are she’s asleep.  And even then, I wouldn’t be 
surprised if she was cracking a subtle grin.  On the outside she 
is inquisitive, hard-working, diligent, always willing to help out, 
and cheerful (to say the least).  It wasn’t until I started hanging 
out with her outside of the science world that I realized how 
many talents this young woman actually has.   
For one, she is one of those athletes that doesn’t need to 
practice because she has “better” things to do.  How many 5’4” 
women weighing 115 pounds would even dare join the ranks of 
5 overly-aggressive weight room junkies?  Not only that, what 
young woman would participate in high-intensity weight 

training with a smile on her face, next to partners on the verge of vomiting?  In the time 
that we worked out together on a regular basis, I was constantly approached by men in 
the weight room asking questions like, “Who is that girl you guys always work out with?  
Can I get her number?”  At a certain point I stopped counting the number of admirers 
she had in the gym, it was making my head spin.  Next, we ventured into salsa dancing 
territory, and had a blast pretending that we knew what we were doing.  In reality, I’m 
sure we just looked like fools, but doing so is extremely fun when accompanied by 
someone who doesn’t take themselves seriously even for a second.   
Chelsea is the type that gets herself involved with everything under the sun – teaching 
class to UC Berkeley students, volunteering at San Quentin prison, and working at a lab 
at UCSF.  You would think that all that knowledge would displace monster ballad lyrics, 
but after she pulled out the lyrics to “I’m All Out of Love” by Air Supply one day when 
searching for 80’s cheese, I knew at that moment that she was worth keeping around.   
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Scott Turner 
I have to admit, when I first met Scott I had a difficult time 
reading his personality.  And I pride myself on the ability to 
understand people, even after short interactions.  Equipped with 
a frank demeanor, it is difficult to tell what impact your words 
have on this individual, if any.  It wasn’t until Scott offered me a 
collaboration that I started to recognize his subtle humor and 
goofy personality that I had only heard stories about up to that 
point.  And then when he told me that two of his passions in life 
are soccer and snow sports, I knew we were going to get along 
just fine.   
Scott and I worked together on a project to determine the effect of 

insulin resistance and diabetes on the expression of islet cells genes, and realized that 
the experiment we were analyzing was very interesting, yet imperfectly designed.  But 
that’s science – no experiment is ever perfect.  He taught me that putting together the 
pieces of a somewhat confusing story is part of the art of being a scientist.  Apparently 
having your paper rejected three times is also an art.  We worked together for the last 
two years of my work at UC Berkeley, and now that I’m at Kinemed, he’s one of my 
bosses.  I better not say anything here that will piss him off.   
 
Daniel Benjamin 

DBen.  What a guy.  I’ve known him for only about 
two years at this point, but man has this guy been 
one of my favorites.   I love this guy for a thousand 
reasons, but the main reason is because he’s as 
much of a gym rat as I am, and is constantly trying 
to get in better shape.  It’s like he can talk to my 
soul.   
My favorite memory of DBen is the first time we 
went to the gym together.  We had been talking 
about if for months.  “Yeah, you like going to the 
gym?  I like to deadlift, do pullups, pushups, 

mainly bodyweight exercises, I hate doing ab work, what about you?”  Finally one day, 
we decided to turn out words into actions, and make the weight room our bitch.  For 
whatever reason, I designed the workout that day, mainly because DBen was interested 
in learning how I liked to lift, using a faster high-intensity approach that minimized rest.  
So we constructed some workout that didn’t provide much of anything sedentary, and 
45 minutes later, we were both super tired.  We returned to the weight room, slowly, 
then proceeded to strip down for shower time.  Just as I was removing my shorts, I 
heard noises from the adjacent row of lockers, as if someone was puking violently.  I 
thought to myself, “Whoa, that guy is struggling.”  I turned in that direction, and saw the 
naked backside of some guy who was bending over the trash can, returning last night’s 
dinner to the outside world.  It was DBen.  “Dude, I think I got food poisoned from some 
fish I ate last night,” he said.  “I don’t feel well.”  Sure you did.  Food poisoning, the 
ultimate scapegoat.  Way to pull that one out, tough guy. 
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It wasn’t until many months later that he admitted to me that the workout was too 
intense for him at the time, and the pukage was his body’s way of showing that off to his 
friends.  At that point we admitted that we had mutual man crushes on each other, and 
became workout partners.   
It wasn’t until we played basketball one day that DBen returned the “I’ll make you look 
like a fool” favor.  He had always talked about it, and made is sound like he was pretty 
good, but being the skeptic that I am about white boys playing a not-white-boy game, I 
wasn’t sure if he was all talk or not.  In a pickup game one Friday morning, we decided 
to guard each other on both sides of the floor.  Imagine a guy with the size of a boxer, the 
speed of a soccer player, and the moves of a ballerina.  Now imagine that you’re wearing 
the wrong shoes, that you really don’t have any basketball skills to begin with, and that 
you’re scared out of your mind.  Finally, imagine that you’re trying to stop him from 
making you look like a fool.  Mission: unsuccessful.  It’s hard to describe what guarding 
DBen on the basketball court is like, but it made me realize that after playing soccer for 
over 25 years, I was only 1/10 the man he was on the basketball court.  Perhaps I should 
stick to grass.  To end the humiliation, I did what any real man would do.  I faked an 
injury, and left the court to never return.   
From that point onwards, DBen and I did practically everything together – talk shit 
about the department, leave work early to drink, watch European soccer, watch Seinfeld 
reruns, and theorize on why women love to give men a hard time.  We didn’t really come 
up with much, but having a right hand man makes life very fun indeed.  Being friends 
with him has motivated me to learn every Seinfeld episode by heart, so that I can laugh 
at more things than I already do.  In return, maybe he’ll learn how to play fantasy soccer 
one day and provide some real competition.   
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Family Members 
 
My mom and dad 
 

 
Natasha Hazel, Sabrina Hazel, Isabella Hazel, Rohan Sharma, Laila Sharma 
 

 
Persis and Kap Sharma  Shanaz and Alex Hazel 
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I know it sounds cheezy, but I certainly could not have accomplished any of this without 
the loving support of all the jokers pictured above.  My mom has always been my biggest 
fan, and has supported me in everything that I’ve set my mind to.  My dad was the first 
to plant the Ph.D. seed in my head, and damnit, why did I listen to you?  Thanks for 
that.  Shanaz and Alex, you are both shining examples of success, and have set the bar 
very high for educational success.  You’ve also raised some incredibly hilarious kids, so 
thanks for that.  Persis and Kap, you guys also set the bar very high, and constantly offer 
me loving support despite the fact that you live across the country.  To Natasha, Sabrina, 
Isabella, Rohan, and Laila – you guys are the most incredible nieces and nephews a 
weirdo uncle could ask for, and please be aware that your silliness has kept me sane 
throughout this process.  I owe you guys a lot for keeping me young.   

 

You guys are all incredible in your own way,  
and for that I thank you from the bottom of my heart. 
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In biological systems, proteins execute an 
extremely wide range of cellular activities, 
including (but not limited to) acting as 
reaction catalysts, transcription factors, 
chaperones, cell surface receptors, 
hormones, nuclear receptors, ion 
channels, nuclear pores, and integral 
components of organelle membranes.  
Proteins are the endpoint of biological 
information flow; information encoded in 
DNA is temporarily translated to RNA in 
response to environmental stimuli, 
resulting in the synthesis of proteins with 
highly specific intracellular and 
extracellular functions.  Ultimately, the 
behavior of a cell is governed by the 
dynamic interactions between thousands 
of proteins; a tissue is governed by the 
interactions of thousands of cells; and an 
organism is governed by the interaction of 
multiple tissues.  Proteins therefore are 
the ultimate laborers in biological 
systems. 
Proteins play both structural and catalytic 
roles in cells, providing both the 
scaffolding and machinery necessary to 
regulate biological activity.  They direct 
three fundamental cellular processes, 
including (a) the maintenance of DNA 
stability via the formation of chromatin 
(protein-DNA complexes), (b) the 
regulation of gene transcription and RNA 
stability, and (b) the regulation of protein 

translation, including initiation, 
elongation, and termination.   
The function of a protein is regulated by a 
number of complex and incompletely 
understood processes, and is regulated by 
synthesis, degradation, and instantaneous 
interactions with enzymatic substrates, 
products, and neighboring proteins.  
These immediate regulatory controls are a 
result of post translational modifications, 
which include phosphorylation, 
ubiquination, glycosylation, 
hydroxylation, acetylation, and 
methylation.  In addition, enzyme 
function is modified by direct inhibition at 
the active site by competitors, or by 
allosteric regulation at non-active sites.  
Proteins are also subject to folding via 
chaperones, and are transported to target 
organelles in cytoplasmic vesicles that are 
themselves directed by a complex 
orchestra of protein-protein interactions 
in the endoplasmic reticulum and golgi 
apparatus networks.  Proteins that are 
bound for integration into the plasma 
membrane or into extracellular space 
interact with other proteins docked to the 
interior of the plasma membrane whose 
specific functions regulate constitutive 
and regulated exocytosis.   
Overall, the process of protein synthesis, 
modification, and transport requires an 
incredibly complex series of events that 
are executed by preexisting cellular 



Page 2 

 

Overview of Dynamic Proteomics Using 2H2O Labeling 

 

proteins.  Unlike DNA and RNA, proteins 
govern their own synthesis and 
breakdown.  Therefore, the maintenance 
of protein homeostasis (proteostasis) is an 
absolutely critical component of proper 
cellular function and the response to 
constantly changing environmental 
signals.    

Proteostasis: Protein Homeostasis 
Given the importance of maintaining 
proper protein function within the cellular 
environment, the term proteostasis is 
defined as follows: 

Proteostasis: The regulation of cellular 
protein homeostasis that controls the 
turnover of cellular protein, determined 
by the dynamic equilibrium between 
protein synthesis and protein 
breakdown. 

Characterizing biological systems at a 
global level has become increasingly 
informative in understanding 
fundamental cellular biology and the 
development of therapeutics, and is the 
logical progression in the development of 
the next generation of biomedicine.  
Current “-omics” techniques include 
genomics (DNA), transcriptomics (RNA), 
proteomics (protein), and metabolomics 
(intracellular non-protein metabolites).   
In the past twenty years, a large emphasis 
has been placed on the simultaneous 
measurement of large numbers of cellular 
components (DNA, RNA, protein), rather 
than basing conclusions on a small 
number of traditional markers of cellular 
function.  Advances in sophisticated “-
omic” technologies have demonstrated the 
utility of establishing large-scale RNA and 
protein networks that describe cellular 
phenotypes in a comprehensive and 
definitive manner.  In a comprehensive 

review of biological networks, Gygi et al 
state: 

“The reductionist approach has 
successfully identified most of the 
components and many interactions but, 
unfortunately, offers no convincing 
concepts and methods to comprehend 
how system properties emerge. To 
understand how and why cells function 
the way they do, comprehensive and 
quantitative data on component 
concentrations are required to quantify 
component interactions… the pluralism 
of causes and effects in biological 
networks is better addressed by 
observing, through quantitative 
measures, multiple components 
simultaneously and by rigorous data 
integration with mathematical models.” 1  

While “-omics” technologies are widely 
available to the research community, they 
possess an inherent limited 
interpretability given the measurement of 
static pools rather than time-dependent 
kinetics from which flux measurements 
can be made.  In support of this, Anderson 
and Seilhamer write: 

“More knowledge about the turnover 
rates of the most important proteins, 
such as transcription factors, ribosomes 
and proteins of the signaling pathways 
would surely increase our understanding 
of the mechanisms of control.  Moreover, 
in molecular biology the proteins and 
other macromolecules are usually and 
inevitably studied in an artificial milieu 
in vitro, whereas in reality, as is 
emphasized more and more, they are 
parts of a highly organized system.” 2 

The term proteomics refers to any study 
which characterizes large sets of proteins, 
including composition, expression, 



Page 3 

 

Overview of Dynamic Proteomics Using 2H2O Labeling 

 

modification, quantification, localization, 
and functional interaction 3–8.  Proteomics 
and trascriptomics are conceptually 
identical yet experimentally different; 
proteomics measures the expression of 
cellular proteins via mass spectrometry 
whereas transcriptomics measures gene 
expression via chip-based mRNA 
hybridization assays.   
Our laboratory has pioneered the field of 
dynamic proteomics, a stable isotope 
mass spectrometric technique that 
combines 2H2O labeling with the 
measurement of hundreds to thousands of 
tissue proteins in vivo.  Dynamic 
proteomics is useful because it combines 
the non-hypothesis driven approach with 
the interpretability of known biochemical 
pathways.  The union of these two allow 
for a very accurate inference of the activity 
of a metabolic pathway given direct 
measurements of the rate of turnover 
many of the integral enzymes that 
regulate pathway flux.  Unlike 
quantitative proteomics which measures 
static expression of hundreds of proteins 
simultaneously, dynamic proteomics 
measures the synthesis rate of hundreds 
of proteins simultaneously, which can 
then be used to directly measure flux 
through pathways of biological 
importance.   
Dynamic proteomics can be used in two 
primary ways: to identify biomarkers of a 
disease process and to identify 
undiscovered protein targets involved in 
the pathogenesis of disease.  By 
interrogating the dynamic behavior of the 
proteome, detailed information about 
proteome system architecture can be 
gathered in order to understand the 
underlying molecular basis of disease 
states.  For more information, see the 

section entitled “Dynamic Proteomics” 
below. 

Limitations of Transcriptomics 

“The emphasis during the last 50 years 
has been reductionist, explaining 
biological phenomena at the atomic and 
molecular level.  The challenge for the 
next 50 years is to integrate these 
insights into an understanding of higher 
levels of temporal and spatial 
organization…” 9 

It is important to keep in mind that most 
microarray studies are performed in order 
to predict the expression levels of their 
corresponding protein counterparts, 
however in many physiological settings 
this type of cause-and-effect response is 
nonexistent.  While transcriptomics 
measures the relative level of gene 
expression by quantifying transcript 
abundance, the expression of the same 
gene product at the protein level does not 
always follow a predictable pattern 10.  If 
the protein and gene expression are 
related by in direction and magnitude, the 
relationship is considered concordant; 
inverse relationships are referred to as 
discordant.   
In complex biological systems, mRNA 
degradation can occur on the order of 
minutes as compared with proteins whose 
stability is generally regulated on the 
order of hours, days, weeks, and 
sometimes months.  Transcript stability is 
affected by binding proteins such as heat 
shock proteins to protect against 
transcript degradation, or association with 
ribosomes to allow for protein translation 
11. 
Given that proteins represent the ultimate 
effectors of gene function, and that mRNA 
and protein expression are often 
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discordant 12, measuring protein 
expression reveals more valuable 
phenotypic information than does 
transcriptomics by itself 13.  While 
microarrays were a significant 
advancement in the field of network 
biology, subsequent advancements in 
proteomics have rendered the 
measurement of transcript abundance a 
complementary rather than definitive 
assessment of cellular phenotype.  The 
importance of studying biological systems 
at the protein level is further emphasized 
by recent studies that clearly indicate that 
mRNA levels do not necessarily correlate 
with protein abundances 14–16.   

Protein Synthesis 
The dynamic proteomic approach used in 
these studies involves the administration 
of 2H2O in the drinking water of mice or 
rats to achieve a target body water 
enrichment of 5%.  During the labeling 
period, in vivo protein synthesis occurs, 
resulting in the creation of “heavy” 
proteins identical to their “light” 
counterparts in function, differing only in 
the incorporation of deuterium atoms at 
specific positions in the constituent amino 
acids from which they are comprised.  
Commerford et al. were the first to 
publish the distribution of tritium in 
tissue amino acids in labeled mice 17, and 
this quantity is integral to the calculation 
of fractional synthesis rate. 
At the conclusion of the desired labeling 
period, the animal is euthanized and 
tissue is harvested, followed by the 
isolation of total cellular protein.  Proteins 
are then alkylated under reducing 
conditions in order to break and cap 
disulfide bonds, separated by mass via 
SDS-PAGE, and trypsinized to resultant 
peptides.  This peptide population 

contains both light and heavy species, the 
two of which are then resolved by high-
affinity liquid chromatography mass 
spectrometry (LC-MS), resulting in the 
identification of hundreds to thousands of 
proteins from a single tissue sample.  
Using mass isotopomer distribution 
analysis (MIDA), the synthetic rate of 
each peptide identified by LC-MS is 
calculated by comparing the labeled mass 
isotopomer envelope (MIE) against the 
unlabeled MIE, in order to quantify the 
extent of 2H label incorporation that 
occurred in the presence of 2H2O enriched 
body water.  Proteins identified by this 
method are then queried against an online 
proteomic bioinformatic database 
containing gene ontology annotations for 
all known mammalian gene products, 
resulting in the creation of a dynamic 
network map that provides clues 
regarding proteomic alterations that 
result from either (a) a disease process, 
(b) nutritional intervention, or (c) 
therapeutic administration.   
It is important to note that the dynamic 
range in protein abundance is estimated 
to be over five orders of magnitude within 
a cell 13.  Therefore, prior to LC-MS/MS 
analysis of peptides, proteins are 
separated by molecular weight via SDS-
PAGE, and each lane is then separated 
into ten separate molecular weight 
regions.  In this way, the overall 
complexity of proteins increases, resulting 
in the identification of hundreds to 
thousands of cellular proteins from a 
single tissue sample.  More importantly, 
fractionation of proteins via SDS-PAGE 
increases the probability of detecting 
proteins expressed at low abundance, 
including nuclear transcription factors 
and secreted proteins13.  Other acceptable 
fractionation techniques include 
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differential centrifugation to separate 
proteins by subcellular location 18,19. 

Protein Breakdown 
The process of protein breakdown is 
significantly more complex than that of 
ribosomal protein synthesis, given the 
presence of multiple degradation 
pathways.  Protein breakdown occurs in 
order to remove “unwanted” cellular 
material that may compromise normal 
functionality, acting on oxidized, 
aggregated, misfolded, and miscoded 
proteins.  Degradation of unwanted 
proteins refills the intracellular free amino 
acid and amino acyl-tRNA pools, 
providing a reservoir of amino acids as 
substrates for subsequent rounds of 
protein synthesis.  It is important to note 
that protein breakdown must also balance 
protein synthesis; without coordinated 
mechanisms, the accumulation of protein 
would continue infinitely 2.  The two main 
pathways of protein degradation include 
ubiquination and autophagy.   

Ubiquination 
Ubiquination is the principal mechanism 
of controlled protein breakdown in 
eukaryotes, and is reliant on the “tagging” 
(or activation) of proteins marked for 
degradation by a small heat-stable 
ubiquitin protein.  As the name implies, 
this protein is ubiquitously present in all 
cell types, and regulates the breakdown of 
proteins involved in cell cycle, growth, 
transcription, DNA repair, oncogenesis, 
and antigen processing 20. 
Ubuiquitin is first activated by a high-
energy thioester linkage, then transferred 
to a carrier protein via the action of an E3 
ubiquitin-protein ligase.  Proteins marked 
for degradation are typically tagged at a 
lysine residue at a site known as the 

degron, and specificity in this process is 
governed by the specific interaction 
between the E3 ubiquitin ligase and the 
target protein.  In a typical mammalian 
cell there exists hundreds of E3 protein 
ligases, each recognizing specific degron 
motifs on target proteins21.  It is 
appropriate to think of protein 
ubiquination as a type of post-
translational modification. 
A ubiquinated protein is then transported 
to the 26S proteasome, a self-contained 
proteolytic factory.  Chaperone proteins 
present the tagged protein to the 
proteasome, which contain a collection of 
chymotryptic, tryptic, and caspase-like 
proteases, resulting in a collection of 
peptide fragments between 4-25 amino 
acids in length.  In this respect, the 26S 
proteasome has six distinct functions, 
including (a) recognition of tagged 
proteins, (b) de-ubiquitination of 
presented proteins, (c) unfolding of target 
proteins, (d) transloation of target 
proteins, (e) enzymatic protein 
degradation, and (f) protein processing 21.   
The ubiquitin protease system (UPS) is 
active on a wide variety of protein 
substrates including myofibrillar proteins, 
cyclins, receptors, and ion channels 2.  
Moreover, the UPS occurs in all tissues, 
and is particularly active in muscle tissue 
undergoing atrophy 22–24.  Interestingly, 
impaired UPS function is implicated in a 
number of age-related neurodegenerative 
conditions, including parkinsons and 
alzheimers disease 25–28. 

Autophagy  
Autophagy (self-eating) was first 
discovered in 1963 as a lysosome-
dependent process for the removal of 
damaged cellular contents and entire 
organelles 29,30.  Autophagic digestion of 
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unwanted cellular material maintains 
cellular homeostasis by balancing the 
processes of organelle and protein 
biosynthesis 31.  Autophagic activity is 
high in cell types with low antioxidant 
activity, replicative capacity, and energy 
metabolism.  The synthesis of reactive 
oxygen species (ROS) in the mitochondria 
of metabolically active cells presents a 
severe danger to neighboring proteins, 
lipids and nucleic acids, resulting in the 
formation of oxidized species which are 
direct targets for autophagy.  The exact 
mechanisms underlying autophagy and 
mitochondrial dysfunction remain 
unclear, however is has been well 
characterized that oxidative stress 
influences autophagic activity 32–34.  
Moreover, this process is thought to 
predominate due to sudden perturbations 
in cellular homeostasis, including cellular 
oxidative stress, mechanical damage, or 
nutrient starvation 2. 
Macroautophagy is an orchestra that is 
conducted by over thirty participating 
proteins that are highly conserved 
between yeast and mammals 31.  In this 
process, a region of the cytosol is engulfed 
in an ER-derived vesicle devoid of 
ribosomes, known as an autophagic 
vacuole or autophagosome.  The 
autophagosome fuses with the lysosome, 
and the contents are exposed to an acidic 
pH and a collection of proteolytic enzymes 
that facilitate the breakdown of a large 
number of proteins simultaneously.  
Autophagosome cargo is digested in bulk, 
the contents of which may contain 
mitochondria, ER fragments, glycogen, 
golgi apparatus, or structural components 
including actin, myosin, and tubulin.  
Autophagic protein breakdown is very 
rapid, occurring at about 9% per minute 2.  

Microautophagy is a process by which 
lysosomes directly engulf cytosolic cargo, 
ingesting constituents by membrane 
involution 35–38.  Cytoplasmic proteins are 
therefore engulfed directly by lysosomal 
endocytosis, as opposed to 
macroautophagy which requires transport 
to the lysosomal compartment by double 
membrane autophagosomes.  This process 
is thought to account for basal protein 
breakdown in comparison with the 
digestion of entire organelles via 
macroautophagy.  Flux through these two 
distinct pathways is dependent on the 
tissue.  In liver the lysosomal autophagy 
system predominates whereas in muscle 
tissue lysosomes are less abundant, 
therefore increasing the activity of protein 
ubiquination2. 
Protein breakdown is not directly 
measured using the dynamic proteomics 
method, however it is possible to calculate 
protein breakdown rates using the 
following equation: 

 

 
where the superscript “dot” represents the 
protein synthetic and breakdown rates. 
Therefore, by measuring protein synthetic 
rates via 2H2O labeling combined with 
pool size via SILAM, we can calculate 
protein degradation rates for all proteins 
with an identifiable SILAM pair.  It is 
worthy to note that in physiological 
conditions at steady state, when the pool 
size of total proteins within a tissue is not 
changing over time, the rate of synthesis is 
equal to the rate of breakdown.  In vivo, 
this is a fundamental assumption that can 
be made in steady state systems if body 
composition is unchanging over time in 
both the experimental and control groups.  



Page 7 

 

Overview of Dynamic Proteomics Using 2H2O Labeling 

 

In tissues undergoing net anabolic 
processes (proliferation, hyperplasia, 
normal adolescent growth), the rate of 
cellular proliferation must be measured 
directly, and the rate of protein synthesis 
can then be corrected by this factor.  In 
tissues undergoing net catabolic processes 
(apoptosis, necrosis), the rate of cell death 
must be quantified directly, and the rate 
of protein synthesis can then be corrected 
by this factor as well.   

The Coordination of Protein 
Synthesis and Breakdown 
In order to understand the interplay 
between protein synthesis and protein 
breakdown, it is important to 
conceptualize the intracellular protein 
pool.  Conceptually, a pool represents a 
relatively homogenous physical entity 
within which mixing occurs rapidly 39.  
Regardless of the physical shape of the 
pool (tissue fluid, circulatory system, 
cerebrospinal fluid), the pool can be 
modeled as a system with metabolite 
entries and exits.   
When modeling the relationship between 
protein synthesis and breakdown, the 
single pool model with a single entry and 
exit is a safe assumption.  The entry to the 
single pool model is the rate at which 
proteins are being synthesized, and the 
exit to the pool represents the rate at 
which proteins are being degraded by any 
of the aforementioned mechanisms, 
including ubiquination and autophagy.  
By definition, in an animal that is 
considered at “steady state,” protein 
synthesis and protein breakdown are 
coordinated and equal, resulting in 
unchanging pool sizes over time.  On a 
global level, steady state protein 
homeostasis results in stable body weight 
and unchanging body composition over 

time.  In contrast, at non-steady state, the 
size of the functional protein pool changes 
over time, as does the size of the 
intracellular free amino acid pool and the 
amino acid tRNA pool.  In the case of 
positive energy balance, the size of these 
pools increases over time, whereas in 
negative energy balance pool size 
decreases over time.   
Clearly, if protein synthesis and 
breakdown are coordinated systems, then 
there must exist some molecular link 
between the two pathways.  Free amino 
acids may serve as this link, given that 
they are substrates for protein synthesis 
and are the products of protein 
breakdown.  Little is known about the way 
in which these two pathways are linked, 
however many studies support this 
concept 40–42.   
Pool size is not a complete determinant of 
protein behavior because it does not 
measure the rate of turnover of the 
protein pool, and instead reveals a static 
metric that may untimately not reflect 
important underlying metabolic 
processes.  As an example, the synthesis 
rate and breakdown rate of a protein can 
both increase 4-fold in response to 
treatment without affecting the protein 
pool size.  Therefore, without direct 
measurement of either the synthesis or 
breakdown rates, it is difficult if not 
impossible to determine whether the 
synthesis and degradation rates were 
affected by treatment or a disease process. 
However, by determining both pool size 
and fractional synthetic rate via direct 
measurement, one can mathematically 
determine the absolute rate of protein 
synthesis using the formula: 
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Where rabs represents the absolute rate of 
protein synthesis (pg per day), k 
represents the fractional turnover rate 
constant (% synthesis per day), and Q 
represents the pool size (pg).  When 
comparing an experimental intervention 
against a control state, the ratio of 
absolute rates can be expressed as: 

 
Where (rabs)Exp and (rabs)Ctl represent the 
absolute rates of protein synthesis in 
experimental and control animals, 
respectively; kExp and kCtl represent the 
fractional turnover rate constants in 
experimental and control animals (% per 
day), respectively; and QExp and QExp 
represent the pool size in experimental 
and control animals, respectively. 
Turnover is determined by the rate of 
both synthesis and breakdown, and 
measuring these kinetic metrics 
ultimately reveals information about the 
flow of proteins into and out of the protein 
population.  Figure 1 shows the three 
pool model for describing dynamic 
proteostasis.   

Dynamic Proteomics 
2H2O labeling shifts peptide mass 
isotopomers to heavier masses, resulting 
in a mass isotopomer envelope (MIE) that 
is perturbed from the isotope pattern 
observed at natural abundance.  MIDA 
quantifies changes in the MIE by 
comparison against an unlabeled MIE and 
a fully turned over MIE, in order to derive 
a metric for the fractional synthetic rate of 
a 
peptide (f, %*time-1).  Once f has been 
determined at a particular time point, a 
graph of f vs. time reveals the fractional 

peptide synthesis rate.  Empirically, we 
have found that the graph of f vs. time 
reveals a one-phase exponential 
association, supporting our initial one-
pool dynamic equilibrium assumption.  By 
modeling this curve over multiple labeling 
time points, a best-fit curve can be drawn 
that describes the rate of protein synthesis 
according to k, the protein synthesis rate 
constant.  Proteins can then be directly 
compared using k values in order to 
determine the difference in protein 
synthesis rates.  As shown in Figure 2, the 
sharper the peptide synthesis curve, the 
higher the value of k.  Proteins that are 
rapidly synthesized follow the upper 
curves whereas proteins with slow 
synthetic rates follow the lower curves.  
Proteins can be directly compared using 
this strategy by comparing the rate 
constant k between the experimental and 
control groups.   
The fundamental concept behind the 
calculation of protein synthesis rates 
using MIDA is that a protein synthesized 
in the presence of a “heavy” tracer in vivo 
will be reflected by increases in 
isotopomeric relative abundance for all 
isotopomers M1 trough Minfinity detectable 
by LC-MS/MS.  The relative abundance of 
the unlabeled isotopomer M0 decreases as 
a function of protein label incorporation, 
resulting in a rightward shift in the 
isotopomer envelope.  In more simplistic 
terms, as the peptide mass increases over 
time due to the incorporation of 
deuterium, the relative abundance of 
mass isotopomers M1 through Minfinity 
increases, and the relative abundance of 
mass isotopomer M0 decreases.  The shift 
towards heavier mass isotopomers 
therefore decreases the proportion of M0 
present in the labeled protein.   
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Mathematically, a decrease in the relative 
abundance of the M0 isotopomer is equal 
to the sum of the increase in relative 
abundance of the M1 trough Minfinity 
isotopomers.  Therefore, measuring a 
decrease in the relative abundance of M0 
is equivalent to summing the increase in 
daughter isotopomers.  For this reason, 
we quantify negative changes in M0 to 
determine the fractional synthetic rate of 
a labeled peptide given that it simplifies 
the calculation, and is more accurate than 
summing a finite number of daughter 
isotopomers.  When modeled using a non-

linear one-phase exponential association 
regression equation, the fractional rate 
constant (k) can then be determined 
(Figure 2).   

Methods for Quantitative 
Proteomics: SILAC and SILAM 
Stable Isotope Labeling with Amino Acids 
in Cell Culture (SILAC) is a stable isotope 
technique used for quantitative MS-based 
proteomics.  SILAC was originally 
developed at the University of Southern 
Denmark in 2002 as a procedure to 
accurately quantify the difference in 

Figure 1.  Three Pool Kinetic 
Model Results in a Mass 
Isotopomer Envelope Shift.  (A) 
Three pool kinetic model showing the 
incorporation of both labeled and 
unlabeled amino acids into cellular 
proteins.  Amino acids in the global 
pool rapidly equilibrate between local 
tissue amino acid pools.  (B) Sample 
chromatographic representation of the 
shift in mass isotopomer envelope 
(MIE) over time due to the 
incorporation of 99.9% 15N-labeled 
AAs into cellular proteins.  Label 
persistence results in an increase in 
the relative ratio of labeled to 
unlabeled peptides.  Empirical data 
agrees well with the three pool model 
assumption.  Mass isotopomer 
distribution analysis (MIDA) is used to 
quantify the proportion of labeled 
isotopomers at a given time point, and 
the fractional synthetic rate of the 
peptide can then be determined by 
comparison against a fully labeled 
peptide.  Image adapted from original 
publication by Price et al43.   
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protein expression between cell cultures, 
and has become a popular and 
inexpensive MS-based proteomic method 
43.   
In SILAC, labeling cells in the presence of 
growth media enriched with a single 
heavy amino acid results in the 
incorporation of this heavy amino acid 
into newly synthesized proteins.  The 
addition of an extra neutron to a single 
atom of the heavy amino acid does not 
affect its chemical or biological properties, 
therefore normal metabolic processes 
should not be influenced by the addition 
of the label.  Over time, labeling with a 
heavy amino acid results in a mass shift of 
newly synthesized proteins, whose 
monoisotopic mass can be easily resolved 
from its unlabeled counterpart by mass 
spectrometry.  Importantly, the 
monoisotopic mass of a labeled peptide 
must be rightward shifted enough that the 
unlabeled and labeled peptides can be 
individually identifiable by mass 
spectrometry, forming a “SILAC pair.”   
For this reason, heavy amino acids 
commonly used for SILAC experiments 
often flank the trypsin cleavage site at the 
C-terminal side of both lysine and 
arginine except when either is covalently 
bound to proline.  Therefore, 13C6-Lysine 
and 13C6-Arginine are commonly used in 
SILAC experiments.  It is well classified 
that arginine can be converted into 
proline in certain cell types, therefore the 
use of either 13C6-Arginine and 13C615N4-
Arginine can result in the generation of 
13C5-Proline and 13C515N1-Proline, 
respectively.  This introduces an 
unwanted bias that can be corrected for 
mathematically in all proline-containing 
peptides, however this is laborious and 
reduces quantitation accuracy.  A simple 

solution to this problem is to label with 
another ubiquitous amino acid that does 
not interconvert in the cell type of 
interest, such as 13C6-Leucine 44,45. 
Using this labeling strategy, the 
incorporation of even a single heavy 
amino acid into a short peptide can shift 
the monoisotopic mass-to-charge ratio 
(m/z) significantly enough that the 
labeled peptide is now distinguishable 
from its unlabeled counterpart.  Labeling 
with heavy amino acids results in a 
distinct mass difference between resultant 
peptides, allowing for easy detection of 
SILAC pairs.  Peptides are then analyzed 
by high resolution LC-MS/MS, resulting 
in the identification of multiple peptides 
per parent protein.  The median heavy-
light ratio of identified peptides is then 
calculated, resulting in the calculation of 
the relative heavy:light expression ratio 
(Figure 4).   
n a typical SILAC experiment, a cell 
culture is grown in the presence of either 
single or multiple heavy amino acids 
(LIST AA CHOICES HERE).  The cell 
culture is allowed to survive for multiple 
generations (5+) such that the heavy 
amino acids are completely incorporated 
into the host proteome, resulting in a near 
complete substitution of the labeled 
amino acid across all cellular proteins.  
Generally, lysine (13C6-lysine) and 
arginine (13C6-arginine) are chosen as the 
labeled amino acids, which results in the 
labeling of nearly every peptide following 
trypsin digestion due to the presence of 
these two amino acids in virtually all 
tryptic peptides.   
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While SILAC is restricted to cell culture 
experiments, the Stable Isotope Labeling 
of Amino Acids in Mammals (SILAM) 
method was developed in order to label 
proteins in whole organisms in vivo.  In 
this type of experiment, an animal is fed a 
diet containing the natural abundance of 
amino acids excepting the label, which is 
enriched at 99.99%.  Similar to cell 
culture experiments, the choices for the 
metabolic label are numerous, including a 
single or double amino acid (13C6-lysine 
and/or 13C6-arginine), or all amino acids 
(15N-AAs) 46,47.   
The labeled organism is allowed to 
replicate for multiple generations until 
near complete substitution of the heavy 
amino acid for its light counterpart has 
taken place (>97% AA substitution).  In 
mice, complete proteome labeling occurs 
within two generations 48–50, The result of 
raising an organism in this manner is 
near-complete amino acid incorporation 

in many fully turned over tissues within 
the same organism, including 
extracellular proteins and those in body 
fluids.  Protein is then isolated from the 
tissue of interest, and the heavy protein 
lysate is then mixed with the experimental 
light protein lysate in a known ratio 
(typically 1:1) prior to LC-MS/MS 
analysis.  In this manner, labeled tissue is 
used as a “spike-in” standard, which 
allows for direct comparison between 
experimental samples assuming that the 
amount of heavy protein lysate that was 
added to all samples is constant.   
Since the development of SILAM labeled 
animals is expensive and time consuming, 
labeled mouse tissue can be purchased 
directly from various retailers in the 
bioscience community.  Often times, 
however, the tissue of interest is 
unavailable, often because specific 
homogenous cell populations within a 
tissue are laborious to isolate.  Therefore, 

Figure 2.  (A) Fractional replacement curves for each protein were fit using non-linear regression to 
calculate the replacement rate (k) within the population of mice labeled for various durations according to 
the experimental design.  Shown are curves for two proteins in long-term calorie restricted (CR) and ad 
libitum (AL) mice.  (B) Protein curve fits are further filtered using criteria specific to each protein, 
including (i) the r2 value used to determine the “goodness of fit,” (ii) SE(k) the standard error of the curve 
fit, and (iii) the coefficient of variation of the curve fit, calculated as %CV=SE(k)*k-1.  These criteria are 
subsequently used as criteria for further selection against low-confidence protein identifications.   
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it is possible to perform a quantitative 
proteomics experiment by combining the 
cell culture SILAC approach with the 
“spike in” SILAM approach.  In this 
context, a labeled proteome is generated 
using the SILAC strategy in vitro.  This 
cell culture is grown in the presence of 
heavy amino acid(s) for a minimum of 6 
cell doublings, such that more than 95% 
of the proteome is fully labeled.   
It is important to note three crucial 
experimental design criteria at this point.  
The (a) species, (b) strain, and (c) tissue of 
the experimental animal model must be 
matched to that of the labeled organism in 
order to ensure overlapping proteomes 
between the experimental model and the 
“spike-in” standard 51.  Neglecting either 
of these three may result in the 
identification of a low number of 
interpretable peptides, and create a 
physiological artifact due to non-
overlapping proteomes between sample 
and standard.  Using the “spike-in” 
standard approach, one can utilize the 
protein lysate from a single labeled 
organism in multiple downstream 
experiments using strains of the same 
species with various genetic backgrounds.   

Figure 3 shows the experimental strategy 
for both SILAC and SILAM experiments.  
Some researchers have also utilized a 
hybrid strategy to quantify protein 
expression between experimental 
conditions using in vitro SILAC heavy 
cultures as “spike-in” standards for in 
vivo tissue protein lysates in order to 
accelerate the development of a labeled 
proteome52.   

In our experiments, we utilized two 
quantitative proteomics approaches.  In 
the first study, our objective was to 
determine the effect of calorie restriction 
(CR) on hepatic proteome dynamics.  
Given that labeled mouse tissue was 
available for purchase, we used this as a 
“spike-in” standard.  In a second 
experiment to determine the effect of 
insulin resistance (IR) and diabetes on 
islet cell proteome dynamics, we instead 
utilized a hybrid strategy in which we 
labeled INS-1E rat insulinoma cells in 
culture for six cell doublings, then used 
this heavy SILAC culture as a “spike-in” 
standard for protein lysates isolated from 
rats.  In both cases, the number of SILAM 
pairs is the ultimate determinant of 
accurate quantitation across the entire 
proteome, determined by the overlap of 
the “spike-in” standard and unlabeled 
animal tissue.    

SILAM Quantitative Proteomics 
Analysis Method 
Given the increasing use of LC-MS/MS 
across a wide variety of proteomics 
applications, the number of software 
applications covering all aspects of 
proteomics analysis has grown 
considerably in the last two decades.  
Often instrument vendors and individual 
laboratories develop customized software 
programs for specific applications, 
however a large number of publicly 
available open source applications have 
made the task of analyzing large 
proteomic datasets routine 53.   
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Figure 3.  SILAC and SILAM Experimental Strategies.  (A) SILAC experiments involve metabolic 
labeling of cells using heavy amino acids in vitro, followed by the mixing of this “standard” with unlabeled 
experimental samples.  The mixed populations of peptides are then fractionated and analyzed by LC-
MS/MS, resulting in the detection of heavy and light SILAC peptide pairs.  Figure adapted from Geiger et 
al51.  (B) SILAM experiments are performed in vivo by combining protein lysates from experimental 
models (light) and fully labeled organisms (heavy) in a known ratio.  Following fractionation, 
trypsinization and LC-MS/MS analysis, the mixed population of peptides is then resolved into heavy and 
light SILAM peptide pairs.  Figure adapted from Boettger50.  In both strategies, the ratio of protein 
expression between experimental conditions can then be calculated using the “ratio of ratios” assuming 
that the amount of standard added to each condition is constant.   
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The Trans-Proteomic Pipeline (TPP) is a 
suite of software tools available to the 
research community free of charge that 
allows for an in-depth analysis of many 
aspects of LC-MS/MS data.  The TPP 
supports all steps of data analysis, from 
vendor-specific file conversion to open 
formats, protein-level statistical 
validation, empirical and theoretical 
database searches, and peptide 
quantification of stable isotope labeled 
SILAC/SILAM experimental data 54.  As 
shown in Figure 4, the TPP encompasses a 
number of software tools, including: (a) 
file conversion from Agilent *.d 

directories to mzML, an open mass 
spectrometer format, (b) search with a 
spectrum interpretation algorithm that 
attempts to match experimental spectra 
with all possible theoretical peptide 
sequences (X!Tandem), (c) search against 
a secondary spectral library containing 
previously identified spectra (SpectraST 
55), (d) validation of search results to 
correctly identify peptide-spectrum 
matches (PSMs) to minimize the 
probability of false discovery 
(PeptideProphet 56), (e) combining the 
results of multiple database searches to 
further discriminate between correct and 

Figure 4.  Trans-Proteomic Pipeline Workflow Used for SILAM Quantitation.  For the 
analysis of SILAM experimental datasets, files are first converted to the mzML format, then searched 
against the X!Tandem database containing theoretical spectra predicted from peptide sequence and the 
Spectra ST database containing spectra from previously identified peptides in the species of interest.  The 
results of both searches are then validated using the PeptideProphet algorithm, then the results of both 
searches are combined into a single list of high-confidence PSMs using the iProphet software tool.  The 
quantitation of a large number of heavy:light SILAM pairs is performed using the XPRESS algorithm 
prior to the aggregation of peptides into parent proteins using the ProteinProphet algorithm.  The final 
result is a list of high-confidence protein identifications with calculated heavy:light SILAM ratios. 
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incorrect PSMs (iProphet 57), (f) analysis 
of stable isotope labeled SILAC/SILAM 
data for the identification of 
SILAC/SILAM pairs (as discussed above) 
(XPRESS 58), and (g) combining peptide 
observations into a final list of proteins by 
assignment of multiple peptides to a 
single parent protein, a complex 

algorithm given that related proteins 
share peptide sequences (ProteinProphet 
59,60).  Heavy protein lysate was obtained 
from a mouse fed a diet containing 99.9% 
13C6-Lysine for 2 generations.  Data in the 
top left of each panel indicate the charge 
state, the m/z ratio, and the peak area.   

Figure 5.  Identification and Quantitation of SILAM Pair Heavy:Light Ratio.  Shown here is a 
sample spectra of a single peptide (ITNKVFANPEDCAGFGK) belonging to microsomal glutathione S-
transferase 1 for the unlabeled (light) and labeled (heavy) SILAM peptide pair.  Heavy protein lysate was 
obtained from a mouse fed a diet containing 99.9% 13C6-Lysine for 2 generations.  Data in the top left of 
each panel indicate the charge state, the m/z ratio, and the peak area.  The peptide sequence 
demonstrates that the peptide contains 2 lysine (K) residues, shifting the mass of the peptide by 12 AMU.  
The charge state of these spectra is +3.  The m/z shift between this SILAM pair is determined by the 
formula: delta m/z = (mass shift)/(charge state) = 12/3 = 4.  The expected m/z shift is confirmed by 
subtracting the mass of the heavy peptide spectra (bottom panel) from the light peptide spectra (top 
panel).  The heavy:light ratio is then calculated using the ratio of the peak areas.   
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The peptide sequence demonstrates that 
the peptide contains 2 lysine (K) residues, 
shifting the mass of the peptide by 12 
AMU.  The charge state of these spectra is 
+3.  The m/z shift between this SILAM 
pair is determined by the formula: delta 
m/z = (mass shift)/(charge state) = 12/3 = 
4.  The expected m/z shift is confirmed by 
subtracting the mass of the heavy peptide 
spectra (bottom panel) from the light 
peptide spectra (top panel).  The 
heavy:light ratio is then calculated using 
the ratio of the peak areas.   

The ratio of the area under the curves 
(AUCs) represents the relative abundance 
ratio between light and heavy cultures 
(Figure 5).  The heavy:light ratio within a 
single sample is directly comparable 
between samples if the amount of “spike 
in” standard was held constant.  
Therefore, when comparing between 
experimental and control animal models, 
the “ratio of ratios” ultimately reveals the 
relative pool size ratio between samples.  
An example of such equations are shown 
below: 

 

 

 

 

By combining both dynamic and 
quantitative proteomic data together, we 
are able to calculate both the rate of 
protein synthesis as well as the resultant 
pool size of individual proteins on a 
proteome-wide scale for the first time.  
Our objective in these experiments is to 
determine the effect of disease states, 
aging, and nutritional interventions on 
fundamental cellular mechanisms at play 
in the cellular proteome.  A detailed 

understanding of subcellular protein 
kinetics is a significant biological 
undertaking, from the perspectives of 
instrumentation, experimentation, sample 
processing, data acquisition, and 
bioinformatic analysis.  This technology 
represents a significant advancement in 
the field of proteomics, and will help 
elucidate the cellular mechanisms 
underlying many disease processes. 
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Section 1 
Calorie Restriction, Mitochondrial Biogenesis, 

and Mitochondrial Protein Turnover 

Review of the Literature 

Calorie restriction (CR) is considered the 
most robust non-genetic method to 
increase lifespan in a number of model 
organisms, including yeast 1, worms 2, flies 
3, mice, rats 4, and nonhuman primates 5–

7, and functions to increase both mean 
and maximal life span in all organisms 
studied to date.  Calorie restriction 
functions to delay the onset of many age-
related diseases, including cardiovascular 
disease, type 2 diabetes, hypertension, 
and cancer 8,9.  Many physiological 
adaptations to CR have been observed in 
rodent models, including a decrease in 
global cell proliferation, increased insulin 
sensitivity, reduced body weight, reduced 
adiposity, alterations in fatty acid 
synthesis and oxidation, neuroprotection, 
and various improvements in 
mitochondrial metabolism.  However, 
despite more than 75 years of research, 
the underlying molecular mechanisms 
that confer increased resistance to disease 
risk remain to be fully described.   
In what is considered the seminal work on 
calorie restriction, McCay et al. 
demonstrated in 1935 that restricting 
calories in both male and female rats 
retarded growth yet prolonged both mean 
and maximal lifespan 10.  McCay and 
colleagues then published three additional 

studies that confirmed the results of their 
original paper, indicating that energy 
reduction was solely responsible for 
lifespan increase rather than the 
reduction in any single dietary nutrient 11–

13.  In the 1920s and 1930s, mean lifespan 
was only 53 years of age.  Infant mortality 
and childhood diseases killed millions of 
children, and bacterial infections were 
prevalent in the population at large.  For 
these reasons, understanding the effect of 
CR on growth and lifespan were very 
important public health issues14.  Within 
the next ten years, several investigations 
began to elucidate the connection between 
CR and carcinogenesis, establishing the 
effect of CR in mitigating the formation of 
spontaneous tumors 12,15. 

Calorie Restriction Reduces Cell 
Proliferation 
To date, no single biological mechanism 
has taken center stage as the most 
important criteria in lifespan extension.  
Given the complex nature of biological 
systems, in mammals there are a large 
number of physiological changes that 
occur in response to CR that may 
contribute to increased lifespan, including 
increased risk for the development of 
cancer 15–24, insulin resistance and 
diabetes 25–34, and cardiovascular disease 
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35–42.  If CR functions by prolonging tissue 
lifespan, then could it be that CR reduces 
the fundamental rate at which an 
organism ages?  In order to answer this 
question, we must first develop a 
biological definition of aging.   
Interestingly, there exists no formal 
biological definition of the term aging, 
however t is very likely that cell 
proliferation may be related to the 
mechanism of aging.  Evidence for this is 
based on the observation that increased 
cell proliferation rates are associated with 
premature aging.  Mice that overexpress 
bovine growth hormone (BGH) 
experience increased postnatal growth, 
and are about twice the size of their wild 
type counterparts.  These BGH transgenic 
mice experience a 50% reduction in 
lifespan, memory loss, and reduced 
fertility as compared with wild type 
controls 43.  The ATR knockout mouse is a 
second mouse model of premature aging 
in which DNA damage repair is 
compromised.  The deletion of ATR 
results in the loss of proliferating cells, 
which stimulates increased repopulation 
and therefore increased cell proliferation.  
ATR deletion leads to premature aging in 
several tissues including bone marrow, 
intestines, spleen, and thymus 44.  The 
hypothesis for premature aging in the 
ATR deletion mouse is increased cell 
proliferation in response to stem cell loss, 
ultimately leading to premature aging and 
reduced lifespan.   

Macronutrient Restriction, 
Lifespan, and Mitochondrial 
Metabolism 
In the 1940’s, Ross and Bras conducted a 
series of investigations to determine the 
effect of restricting protein intake on 
longevity and spontaneous tumor 

formation in rats45–50.  This collection of 
studies was the first to probe the 
connection between dietary restriction, 
protein metabolism, and longevity.   
These studies were not designed to 
investigate the effect of CR on in vivo 
protein metabolism, instead they directly 
compared the effect of either CR or 
protein restriction (PR) on lifespan-
extension, and concluded that the 
lifespan-extension effect of CR was far 
superior to that of PR, confirming 
McCay’s original statement.  The effect of 
both CR and PR on mitochondrial 
metabolism was an area of investigation 
that had yet to be explored, driven by 
increasing evidence that defects in 
mitochondrial metabolism may underlie 
many age-related diseases, including 
cardiovascular disease, type 2 diabetes, 
hypertension, and cancer8,9. 
CR has been shown to reduce 
mitochondrial oxygen radical (mtROS) 
production and oxidative damage to DNA 
in various rat tissues, two characteristics 
that are typical of long-lived species.  To 
investigate whether restriction of any 
particular macronutrient was responsible 
for this effect, the group of Barja et al. 
systematically reduced carbohydrate, 
protein, and lipid intake in isolation and 
measured the effect on these two 
indicators of mitochondrial function: (a) 
mtROS production and (b) oxidative 
damage to nuclear and mtDNA.  They 
found that reducing protein intake by 
40% in male rats without significant 
decreases in overall calorie intake 
decreased mtROS production and 
oxidative damage to both nuclear and 
mitochondrial DNA by 30-40%, resulting 
from a decrease in the percent free radical 
leak and not from changes in 
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mitochondrial oxygen consumption.  The 
decrease in mtROS production occurred 
mainly at complex I, the most significant 
free radical generator in the mammalian 
electron transport chain (REFS HERE).  
These results were strong evidence that 
PR itself may account for part of the 
improvements in mitochondrial 
metabolism, presenting a alternative to 
CR that may serve to increase patient 
compliance in CR studies conducted in 
humans51.   
Seven weeks of 40% Carbohydrate 
restriction (ChoR) without significant CR 
did not significantly affect mtROS 
production, mitochondrial oxygen 
consumption, percent free radical leak, or 
oxidative damage to nuclear or 
mitochondrial DNA, suggesting that 
carbohydrates are not the macronutrient 
responsible for the improvements in 
mitochondrial metabolism observed in 
CR52.  Finally, seven weeks of 40% Lipid 
restriction (LR) without significant CR 
increased oxygen consumption with 
complex I-linked substrates, without 
affecting mitochondrial hydrogen 
peroxide production or oxidative damage 
to nuclear or mitochondrial DNA.  This 
evidence suggests that LR does not 
account for the effect of CR on 
improvements in mitochondrial 
metabolism53.  Taken together, the studies 
on isolated macronutrients suggest that 
the restriction of 40% protein is sufficient 
to mimic the effect of CR on 
mitochondrial metabolic improvements, 
while the restriction of 40% carbohydrates 
or 40% lipids by themselves do not 
replicate this effect.    
To further investigate the connection 
between dietary PR, mtROS and oxidative 
damage to DNA, the same group of 

researchers then reduced only the intake 
of methionine (methionine restriction, 
MetR), and substituted 80% of dietary 
methionine with glutamate.  MetR had 
been previously shown to mimic the effect 
of CR by extending maximal lifespan 
(REFS HERE), however the effect of MetR 
on specific makers of mitochondrial 
metabolism had not been investigated.  
Restriction of methionine by 80% had 
many physiological effects, including: (a) 
decreased mitochondrial protein oxidative 
damage in rat liver as measured by five 
markers of protein oxidation, (b) a 
reduced rate of mtROS production, (c) 
lowered membrane unsaturation, (d) 
Specifically decreased complex I and III 
content and activity in rat brain, the two 
electron transport chain complexes 
responsible for the majority of mtROS 
production, (e) increased uncoupling 
protein 4 (UCP4) expression in rat brain, 
increasing the resistance of the brain to 
metabolic and oxidative stress, and (f) 
decreased heart mtROS production at 
complex I, and lowers the rate of oxidative 
damage to both mitochondrial DNA and 
protein54–59.   
Studies were also conducted on the effect 
of PR independent of MetR to determine 
if any other dietary amino acid may play a 
role in mediating CR-induced longevity.  
Following 6-7 weeks of 40% amino acid 
restriction (AAR) without MetR or CR did 
not change mtROS production, oxidative 
damage to nuclear or mitochondrial DNA, 
mitochondrial oxygen consumption, 
respiratory complex I-IV content, and the 
expression of mitochondrial biogenesis 
factors PGC-1a and NRF-2 in rat liver.  
However, AAR decreased mitochondrial 
protein oxidation, the degree of 
mitochondrial fatty acid unsaturation 
while increasing SIRT-1 protein 
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abundance.  These results strongly 
suggest that mtROS production and 
oxidative damage to DNA is controlled, in 
part, by a single amino acid: 
methionine60. 
These results suggest that MetR by itself 
can protect many tissues against damage 
to nuclear and mitochondrial DNA 
induced by mtROS production.  
Interestingly, MetR serves both a 
metabolic (liver) and neuroprotective 
(brain) effect, much in the same way that 
CR induces a multi-organ reprogramming 
resulting in improved cellular and tissue 
function that may contribute to a 
reduction in the global rate of aging at the 
whole-organism level. 

Calorie Restriction and Protein 
Synthesis 
Calorie restriction has been shown to 
delay the rate of aging in yeast, 
nematodes, flies, rodents, and primates 61–

63.  In addition, CR protects rodents 
against oxidative damage to proteins, and 
may acutely reduce steady state levels of 
oxidative stress by reducing the rate of 
protein oxidation 64,65.  In rats, CR 
decreases the fractional synthesis and 
fractional breakdown rates of muscle 
proteins 66.  Others have observed the 
exact opposite effect, namely increases in 
protein synthetic rates in response to CR 
62,67–70.   

Protein Degradation Pathways 
The primary pathways of protein 
degradation include ubiquination, 
autophagy, and calcium-activated 
proteinases.  While each of these 
pathways has shared characteristics, the 
regulatory mechanisms of each system are 
described below.  

Autophagy 

Autophagy is an intracellular catabolic 
process aimed at protecting the cell 
against the harmful effects of toxic 
products, including damaged 
macromolecules and aberrant 
proteins71,72.  In macroautophagy, a region 
of the cytosol is engulfed in an ER-derived 
vesicle devoid of ribosomes, called an 
autophagic vacuole or an autophagosome.  
The autophagosome fuses with the 
lysosome, and the contents are exposed to 
an acidic pH and a collection of 
proteolytic enzymes that facilitate the 
breakdown of a large number of proteins 
simultaneously.  Autophagosome cargo is 
digested in bulk, the contents of which 
may contain mitochondria, ER fragments, 
glycogen, golgi apparatus, or structural 
components including actin, myosin, and 
tubulin.  This process is thought to 
predominate due to sudden perturbations 
in cellular homeostasis, including cellular 
oxidative stress, mechanical damage, or 
nutrient starvation.  Similarly, 
microautophagy accounts for most of 
basal protein breakdown at steady-state73. 

Ubiquination 
Ubiquination is the principal mechanism 
of controlled protein breakdown in 
eukaryotes, and is reliant on the “tagging” 
(or activation) of proteins marked for 
degradation by a small heat-stable 
ubiquitin protein.  As the name implies, 
this protein is ubiquitously present in all 
cell types, and regulates the breakdown of 
proteins involved in cell cycle, growth, 
transcription, DNA repair, oncogenesis, 
and antigen processing 74. 
Ubuiquitin is first activated by a high-
energy thioester linkage, then transferred 
to a carrier protein via the action of an E3 
ubiquitin-protein ligase.  Proteins marked 
for degradation are typically tagged at a 
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lysine residue at a site known as the 
degron, and specificity in this process is 
governed by the specific interaction 
between the E3 ubiquitin ligase and the 
target protein.  In a typical mammalian 
cell there exists hundreds of E3 protein 
ligases, each recognizing specific degron 
motifs on target proteins75.  It is 
appropriate to think of protein 
ubiquination as a type of post-
translational modification. 
A ubiquinated protein is then transported 
to the 26S proteasome, a self-contained 
proteolytic factory.  Chaperone proteins 
present the tagged protein to the 
proteasome, which contain a collection of 
chymotryptic, tryptic, and caspase-like 
proteases, resulting in a collection of 
peptide fragments between 4-25 amino 
acids in length.  In this respect, the 26S 
proteasome has six distinct functions, 
including (a) recognition of tagged 
proteins, (b) de-ubiquitination of 
presented proteins, (c) unfolding of target 
proteins, (d) transloation of target 
proteins, (e) enzymatic protein 
degradation, and (f) protein processing 75.   
The ubiquitin protease system (UPS) is 
active on a wide variety of protein 
substrates including myofibrillar proteins, 
cyclins, receptors, and ion channels 73.  
Moreover, the UPS occurs in all tissues, 
and is particularly active in muscle tissue 
undergoing atrophy 76–78.  Interestingly, 
impaired UPS function is implicated in a 
number of age-related neurodegenerative 
conditions, including parkinsons and 
alzheimers disease 79–82. 

Aging and Protein Degradation 
It has been well documented that aging 
reduces the expression, transcription, and 
translation of genes across the genome in 
many species, however the absolute 

amount (pool size) of most proteins 
remain relatively constant over time 83.  
Since protein synthesis and degradation 
are linked processes, these observations 
would predict a decline in protein 
degradation with age, which is indeed the 
case 84–86.  In the brain of aged mice, the 
amount of ubiquitin-protein conjugates is 
increased in comparison with young 
controls, suggesting that the efficiency of 
protein degradation decreases with age 87.  
The decline in proteasomal activity results 
in increased protein half-life, allowing for 
the persistence of oxidized proteins 88.   
In addition, molecular chaperone activity 
is reduced with increased age.  These 
proteins are responsible for maintaining 
the native conformation of both proteins 
and RNA, and their protective role in the 
cell is vital to survival.  In long-lived 
nematode and fly mutants, increased 
levels of stress-induced chaperones are 
present, arguing that the ability to 
respond to acute stress is a key indicator 
of longevity 89–92.  

The Effect of Calorie Restriction on 
in vivo Mitochondrial Metabolism 
Dysfunctional mitochondrial function has 
been implicated in a number of age-
related diseases 93, and age-related 
diseases are associated with the 
accumulation of improperly folded 
proteins and cross-linked protein 
aggregates 83,94.  Mitochondrial 
metabolism in muscle and liver has 
become an increasingly important area of 
investigation in CR, given that 
mitochondria are implicated in a number 
of age-related metabolic and 
neurodegenerative diseases.  Therefore, 
the measurement of hepatic protein 
homeostasis may provide insight into the 
molecular mechanisms underlying 



Page 25 

 

Calorie Restriction, Mitochondrial Biogenesis and Mitochondrial Turnover 

 

prolonged lifespan and reduced disease 
risk. 

The Effect of CR on Mitochondrial 
Biogenesis: Controversy in the 
Literature 
Mitochondrial biogenesis may play a role 
in mediating the effects of CR, although 
this argument remains controversial.  
Given that full oxidation of fuel substrates 
takes place exclusively in the 
mitochondrial compartment, increased 
dependence on fatty acids for fuel may 
provide a metabolic signal for the 
biosynthesis of mitochondria in skeletal 
muscle95.  To this effect, several studies 
have shown mitochondrial biogenesis in 
response to CR.  In a recent study 
conducted in vitro and in vivo, CR 
induced proliferation of mitochondria 
with reduced membrane potential and 
rate of reactive oxygen species (ROS) 
production96, while in another 
investigation CR promoted increases in 
oxidative capacity concomitant with 
decreases in triglyceride content in rat 
skeletal muscle97.   
Another study reported that CR promoted 
mitochondrial biogenesis in mice through 
a signaling pathway activating endothelial 
nitric oxide synthase98.  CR has also been 
shown to induce increases in citrate 
synthase acvitity (CS, a marker for total 
mitochondrial mass), PGC-1a, COX-IV, 
and Mfn-2 expression, in conjunction 
with increased eNOS and Akt 
phosphorylation99.  In humans, it was 
observed that 6-months of CR and 6-
months of CR combined with exercise 
(CREX) demonstrated increased 
expression of genes involved in 
mitochondrial metabolism including 
PGC1a, TFAM, eNOS, SIRT1, and PARL.  
In addition, mtDNA content increased by 

35% in the CR group vs. 21% in the CREX 
group.  Interestingly, despite these 
changes, there were no observable 
differences in the activity of enzymes 
involved in the TCA cycle, beta oxidation 
pathway, and electron transport chain100.  
Taken together, these investigations 
support the hypothesis that CR promotes 
bioenergetic efficiency via increases in 
mitochondrial density.   

Fuel Selection May Influence 
Mitochondrial Metabolism 
In support of these findings, observations 
by our laboratory indicate that mice fed 
on a CR regimen experience a dramatic 
change in feeding pattern, resulting in 
prolonged periods of fatty acid 
availability101.  CR mice consume their 
entire daily allotment of food within the 
span of four hours, followed by a twenty 
hour daily fast.  Glucose oxidation 
predominates during the feeding period 
(RER > 0.9), followed by a rapid shift to 
fatty acid oxidation in the post-absorptive 
state (RER < 0.8).  We also found that CR 
mice oxidized four times as much fat per 
day as ad libitum (AL)-fed controls (367 ± 
19 vs. 97 ± 14 mg/day, P < O.001) despite 
reduced energy intake from fat, 
demonstrating that CR dramatically 
increases the total energy derived directly 
from FA oxidation compared with AL 
controls.  This increase in FA oxidation 
was balanced by a threefold increase in 
adipose tissue FA synthesis compared 
with AL.  In contrast, CR did not alter the 
accumulation of any endogenously 
synthesized FA in the liver.  When 
extrapolated to total fat mass, CR mice 
synthesized and retained in adipose tissue 
and liver a total of 212 ± 13 mg FA/day 
compared with 91 ± 9 mg/day for AL 
controls.  These data suggest that CR 
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induces a surprising metabolic pattern 
characterized by periods of elevated FA 
synthesis alternating with periods of FA 
oxidation disproportionate to dietary FA 
intake. 

Furthermore, given that fatty acid 
oxidation takes place in the mitochondrial 
compartment, increased availability of 
fatty acids as a fuel substrate may in itself 
provide a metabolic signal for the 
biosynthesis of mitochondria in skeletal 
muscle.  In support of our observations, 
recent studies in rodents demonstrated 
that increased reliance on fatty acids for 
energy production results in 
mitochondrial biogenesis and increases in 
lipid oxidative enzymes.  In the first study, 
mice fed a high fat diet experienced 
increases in the activity of enzymes 
involved in fatty acid oxidation, the TCA 
cycle, and the respiratory chain, as well as 
increases in mtDNA copy number per 
diploid nuclear genome 102.  In the second 
study, mice fed a high fat diet 
demonstrated increases in lipid oxidative 
capacity without the induction of insulin 
resistance via ectopic lipid accumulation 
103.  Fuel selection therefore seems to play 
a significant role in mediating 
mitochondrial function, providing a link 
between daily feeding dynamics and 
mitochondrial biogenesis.   

Does Calorie Restriction Promote 
Mitochondrial Biogenesis? 

While a growing body of evidence 
suggests that CR promotes significant 
gain-of-function attributes in 
mitochondria, a verdict on whether CR 
promotes mitochondrial biogenesis has 
not been established.  In fact, the effect of 
CR on mitochondrial biogenesis is 
conflicting, and the research on this topic 
is not definitive.   

Interventions known to alter substrate 
metabolism and provide a signal for 
increased ATP production are expected to 
result in increased mitochondrial content.  
Exercise, as an example, increases the 
need for maximal ATP production and 
therefore promotes mitochondrial 
biogenesis in skeletal muscle 104–106.  
Unpublished data from our lab clearly 
indicates that forced treadmill running in 
mice subjected to a progressive resistance 
protocol for 3 weeks results in a profound 
perturbation in the heart, soleus (red 
muscle), and gastrocnemius (white 
muscle) mitochondrial proteome, 
resulting in increased synthesis rates of 
mitochondrial proteins involved in fatty 
acid metabolism, oxidative 
phosphorylation, and the TCA cycle.   

A second intervention that promotes 
increased mitochondrial substrate flux is 
cold exposure.  Animals subjected to cold 
adapt by increasing heat production, 
resulting in large increases in the 
expression of uncoupling protein 1 (UCP1) 
in brown adipose tissue (BAT), together 
with increased mitochondrial density 
107,108. 

By definition, CR is achieved via a 
reduction in energy intake.  Why then 
would CR lead to increases in 
mitochondrial biogenesis in the face of 
reduced macronutrient availability?  
While the findings of Nisoli et al. in 
particular seem to be very well accepted in 
the CR community, two findings in 
particular raise question.  The first of 
these concerns centers around the finding 
that mitochondrial biogenesis is increased 
in cardiac muscle in response to 30% CR.  
In a 2010 review, Hancock et al. state,  

“The heart has a very high content of 
mitochondria, and a further increase in 
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mitochondria resulting from 
overexpression of PGC-1α in transgenic 
mice is maladaptive, causing disruption 
of myofibrillar architecture and heart 
failure. Therefore, the finding of Nisoli et 
al. that CR resulted in large increases in 
mitochondria and respiration in heart 
muscle seemed particularly surprising, 
as it does not fit with the evidence that CR 
results in maintenance of good diastolic 
cardiac function into old age 109.” 110 

If experimental manipulation to increase 
heart mitochondrial content does in fact 
unfavorably disrupt normal cardiac 
function, then the finding that CR 
promotes cardiac mitochondrial 
biogenesis is either an exception to that 
rule, or presents a biologically 
counterintuitive argument.   

The second perplexing result is that CR 
increases oxygen consumption and ATP 
production at steady-state.  This suggests 
that an increase in mitochondrial content 
per se increases ATP production despite 
reduced nutrient flux.  It has been known 
for years that exercise-induced 
mitochondrial biogenesis does not alter 
the rate of oxygen consumption and ATP 
production at rest, rather permits for an 
increased rate of maximal ATP 
production during exercise.  Therefore, 
the metabolic demand of the tissue at any 
moment in time uniquely determines the 
rate of instantaneous ATP production.  
Increased mitochondrial content is 
therefore an insurance policy to protect 
against the exercise-induced demand for 
ATP production111.   

Therefore, the discovery that CR results in 
increased oxygen consumption and ATP 
production at steady-state is indeed 
controversial.  Hancock et al. further 
demonstrates that 30% CR in rats had no 

effect on (a) heart mitochondrial content 
or (b) brain mitochondrial content, as 
evidenced by no changes in the expression 
of key protein complexes in the 
respiratory chain required to induce 
mitochondrial biogenesis.  Moreover, 
Hancock et al. demonstrate that in 
skeletal muscle, CR did not change the 
expression levels of 6 key mitochondrial 
marker proteins or the coordinately 
regulated GLUT4 transporter.  Finally, CS 
activity was found to be unchanged in 
muscle, liver, and heart, suggesting that 
total mitochondrial content was 
unaffected by CR in multiple tissues 110, 
findings that are also supported by 
Sreekumar et al 112. 

In another well-accepted study conducted 
in humans, Civitaresse found that 6 
months of 25% CR resulted in a 35% 
increase in muscle mtDNA content 
despite no changes in CS content, or the 
activity levels of CS, COXII, or beta-HAD 
100.  Hancock et al. write,  

“In our opinion, it is not possible to have 
an increase in functional mitochondria 
without increases in these mitochondrial 
enzymes” 110. 

The discrepancy between these studies 
highlights not only conflicting data, but 
conflicting opinions about the physiology 
of mitochondrial metabolism as a whole.  
Given conflicting results between studies, 
it is difficult to determine whether 
artifacts in experimental analysis may be 
responsible for erroneous conclusions, or 
whether species or strain-specific 
differences can explain opposing 
conclusions.  Regardless, Hancock et al. 
provide a strong argument refuting the 
possibility of increased mitochondrial 
density in response to reduced calorie 
intake, citing that the basic physiological 



Page 28 

 

Calorie Restriction, Mitochondrial Biogenesis and Mitochondrial Turnover 

 

premise that ATP production at rest 
should remain constant in most states.  
Differences in the rate of maximal ATP 
production occur in response to exercise, 
and return to the steady state rate of ATP 
production at rest.  In addition, exercise 
most likely provides a significantly 
stronger stimulus for mitochondrial 
biogenesis than does CR, suggesting that 
alterations in steady state ATP production 
at rest in CR is not possible from a 
physiological point of view.   

Dynamic Proteomics To The Rescue 

In light of this controversy in the 
literature, is it possible for CR to induce 
mitochondrial biogenesis given a state of 
chronic nutrient scarcity?  If so, what is 
the mitochondrial biogenic impetus in 
response to reduced energy intake? 

In order to further elucidate the 
controversy in the field regarding the 
response of mitochondria to reduced 
energy intake, we designed an experiment 
to study the effect of long-term CR on 
hepatic protein turnover.  We 
hypothesized that using the dynamic 
proteomics approach, we could determine 
the steady-state kinetics of hundreds of 
mitochondrial and non-mitochondrial 
proteins proteins in the liver of C57BL6 
male mice, which would lend evidence 
regarding the difference in basal turnover 
rate of hepatic proteins in response to CR.   

The importance of our study design is 
highlighted by the investigation of 
eighteen-month old mice fed either ad 
libitum (AL) their entire life or CR for the 
last fourteen months of life.  This model 
allows us to measure steady-state hepatic 
protein turnover rates independent of 
transient perturbations that occur in the 
first few weeks of CR, as evidenced by a 

host of immediate physiological 
adaptations, including a reduction in body 
weight, adiposity, tissue weight, core 
temperature, and an increase in voluntary 
activity most likely associated with 
foraging behavior.   

Moreover, using this experimental design 
we are able to probe the entire cellular 
proteome, providing the freedom to 
measure the turnover rates of proteins 
both in the mitochondrial reticulum as 
well as in extra-mitochondrial 
compartments, cell membranes, and the 
nucleus.  Importantly, using this approach 
in combination with quantitative Stable 
Isotope Labeling of Animals (SILAM) 
quantitative proteomics, we are able to 
measure (a) the absolute turnover rates 
(protein flux), (b) the protein pool size 
(protein concentration), and (c) the 
replacement rates of individual proteins.  
To our knowledge, no studies have 
combined these proteomics techniques 
together, and therefore our study 
represents a significant advancement in 
the field of protein biology in that it 
merges both kinetic and quantitative data 
together.   

In support of Hancock’s previous 
statement, we are able to measure the 
effect of long-term CR on mitochondrial 
proteins considered essential for 
mitochondrial biogenesis, including those 
located in the electron transport chain 
and matrix.  Based on the literature, we 
hypothesized that long-term CR would 
increase mitochondrial protein turnover, 
giving rise to a newer, more biologically 
efficient mitochondrial reticulum that 
produced fewer mtROS, reducing the rate 
of macromolecular oxidative damage and 
protein aggregates.   
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Abstract 
Calorie restriction without malnutrition 
(CR) is considered the “gold standard” 
longevity-promoting intervention.  A 
frequently cited hypothesis is that CR 
increases protein degradation, including 
the autophagic digestion of mitochondria 
(mitophagy)and removal of damaged 
proteins while promoting mitochondrial 
biogenesis and protein replacement.  To 
test this hypothesis, we used stable 
isotope metabolic labeling and 
exogenously labeled SILAM standards to 
measure (a) the turnover kinetics and (b) 
the concentrations of hundreds of 
proteins in vivo in long-term CR mice and 

age matched ad libitum (AL)-fed controls.  
We found that CR causes a general 
reduction in the rate of hepatic cell 
proliferation and protein turnover. In 
particular, mitophagy and mitochondrial 
biogenesis were greatly reduced, as were 
ribosomal protein synthesis and 
breakdown.  We also observed that 
proteins with related functions 
experienced similar perturbations in both 
turnover rate and concentration, allowing 
identification of potential regulatory 
nodes.  We propose that the reduced 
global protein synthetic burden may 
contribute to improved cellular fitness 
and health benefits in CR.   
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CR, Calorie restriction; AL, Ad libitum; 
ROS, Reactive Oxygen Species; DNA, 
mtDNA, Mitochondrial DNA; f = 
fractional replacement, k=turnover rate 
constant, p=precursor pool enrichment, 
n=number of sites within peptide capable 
of incorporating label, nAA=number of 
sites within amino acid capable of 
incorporating label, RMS=root mean 
square error, MPE=molar percent excess,  
LC-MS/MS=liquid chromatography 
tandem mass spectrometry, BW=body 
water, m/z = mass to charge ratio, 
M0=monoisotopic mass, EM0=absolute 
value of change in M0 intensity, D0= time 
point at day 0, AAPP=amino acid 
precursor pool, MIDA=mass isotopomer 
distribution analysis, NIA=National 
Institute on Aging. 
 

Introduction 
Calorie restriction (CR) is a dietary 
intervention in which calorie intake is 
reduced without malnutrition 1.  CR is 
considered the most robust non-genetic 
method for increasing lifespan in yeast 2, 
worms 3, flies 4, mice, rats 5,6, and 
nonhuman primates 1,7–9, and has been 
shown to protect against the development 
of age-related diseases including cancer, 
diabetes, hypertension, and 
cardiovascular disease in mammalian 
models 1,9,10.  Beyond the prevention of 
disease, CR also reduces the age related 
decline in cognitive function and the 

development of sarcopenia 7.  The 
longevity extending effects of CR were 
first demonstrated in rats in 1934, yet 
despite more than 75 years of research the 
underlying cellular mechanisms are not 
understood 5,6. 
The mechanism of increased longevity 
induced by CR is unknown, however 
current hypotheses invoke the 
reprogramming of cellular metabolism 
through the activation of master genetic 
regulators 7.  CR induces a host of 
physiological changes, including reduced 
reactive oxygen species (ROS) production 
11,12, reduced core body temperature 13, 
and reduced global cell proliferation rates 
14,15.  In contrast, increased mitochondrial 
function 16,17, fatty acid synthesis, fatty 
acid oxidation 14, mitochondrial DNA 
(mtDNA) content, oxygen consumption, 
and ATP production have been reported 
in CR, suggesting that CR may promote 
mitochondrial efficiency and 
mitochondrial biogenesis 18.  Therefore CR 
may function to directly oppose age-
related mitochondrial dysfunction 19.   
Age-related diseases are often 
accompanied by the accumulation of 
misfolded or cross-linked protein 
aggregates 20,21.  Autophagy is an 
intracellular catabolic mechanism that 
attenuates this accumulation of toxins via 
the digestion of damaged 
macromolecules, including protein 
aggregates and entire organelles 22,23.  The 
combined observations of CR-dependent 
increases in mitochondrial biogenesis 
17,24,25, and increased protein catabolism 
22,23,26,27 should result in increased protein 
turnover and shorter protein half-life.  In 
this study, we directly tested this 
hypothesis by measuring hepatic 
proteome kinetics in response to long-
term CR, using a recently developed 
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technique for measuring proteome 
dynamics 28.  Combining proteome 
dynamics with the measurement of 
protein concentrations (Fig. 1), we are 
able to measure both absolute synthesis 
rates and fractional replacement rates 
(half-lives)in both CR and AL-fed controls 
29–31.   
In this paper, we report the effect of long-
term CR the turnover rates of hundreds of 
hepatic proteins in C57BL6 mice from the 
CR colony maintained by the National 
Institutes on Aging (NIA).  Similar to 
earlier reports, we found that the turnover 
of functionally related proteins are 
regulated coordinately 32.  In contrast to 
expectations, we found that CR (a) 
reduced global protein turnover as 
measured by heavy water labeling, and (b) 
reduced protein concentrations as 
measured by SILAM quantitative 
proteomics.  Together these two 
measurements show that CR significantly 
reduced global protein flux in comparison 
with AL-fed controls.  Interestingly, we 
found that mitochondrial proteins were 
most affected at the level of protein 
turnover with greatly increased half-lives, 
while the concentration of ribonuclear 
proteins was most affected.  Our findings 
suggest that individual protein 
groups/ontologies/complexes (categories 
sounds unscientific) are selectively 
regulated by multiple mechanisms in CR 
to reduce the absolute protein synthetic 
burden.  In light of this data, we propose 
that reduced protein synthesis coupled 
with increased proteostatic quality control 
may play important roles in mediating the 
beneficial effects of CR.  
 

Materials and Methods 

Animals 

Eighteen-month old CR male C57/BL6 
mice (n=12) and age-matched AL controls 
(n=12) were purchased from Charles 
River (Wilmington, MA) where the NIA 
Caloric Restricted Mouse Colony is 
maintained (Fig. 2).Following one week of 
acclimation, animals in each group were 
labeled with an intraperitoneal injection 
of 100% 2H2O saline (0.35mL/10 g body 
weight) and were subsequently provided 
8% 2H2O drinking water for the 
remainder of the study to maintain body 
2H2O enrichments of approximately 5%, 
as described previously 33.  Animals in the 
CR group were fed 3.0 grams of the NIH-
31/NIA fortified diet at 5pm daily, and 
animals in the AL group were provided 
unrestricted access to the NIH-31 diet 
(Fig. 2).  Animals were sacrificed 
following 0.5, 1, 4, 8, 15 or 32 days of 
heavy water labeling (Fig 2A).  Body 
weight and food intake were monitored on 
a weekly basis, and at the time of 
euthanasia (Fig. 2B).  Animals were 
anesthetized with isoflurane and 
euthanized by cardiac puncture.  All 
experiments were performed under the 
approval of the Institutional Animal Care 
and Use Committees of the University of 
California at Berkeley. 

Measurement of 2H Enrichment In 
Body Water 
Enrichment of 2H2O in body water (blood) 
was measured by chemical conversion to 
tetrabromoethane as described previously 
33,34.  Briefly, the hydrogen atoms in H2O 
were transferred to acetylene by addition 
of 2–5 μl water via syringe to a chip of 
calcium carbide in a sealed vial, equipped 
with a 3 ml syringe inserted into the 
septum. The resulting acetylene gas was 
drawn into the 3 ml syringe and expelled 
into another sealed vial containing 0.5 ml 
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Br2 (0.1 mM) dissolved in CCl4. After 2 h 
of incubation at room temperature, the 
remaining Br2 was reacted with 
cyclohexene dissolved in CCl4 (10% 
solution). This solution was injected into 
the GC/MS for analysis. GC/MS analysis 
was performed with a DB-225, 30 m 
column at 220 °C, using methane 
chemical ionization with selected ion 
monitoring. The C2H2Br3+ fragment (m/z 
265 and 266, representing the M0 and the 
M+1 ion of the 79Br79Br81Br isotopologue), 
was used for calculating 2H enrichment, 
by comparison to standard curves 
generated by mixing 100% 2H2O with 
natural abundance H2O in known 
proportions.  

In Vivo Cell Proliferation 
Measurement 
DNA was extracted from 30-50ug liver 
tissue using the DNeasy kit (Qiagen, 
Valencia, CA), and was enzymatically 
hydrolyzed to free deoxyribonucleosides 
by overnight incubation at 37oC with S1 
nuclease and potato acid phosphatase.  
Hydrolysates were reacted with 
pentafluorobenzyl hydroxylamine and 
acetic acid and then acetylated with acetic 
anhydride and 1-methylimidazole. 
Dichloromethane extracts were dried, 
resuspended in ethyl acetate, and 
analyzed by gas chromatography-mass 
spectrometry on a DB-17 column with 
negative chemical ionization, using He as 
carrier and CH4 as reagent gas. The 
fractional molar isotope abundances at 
m/z 435 (M0 mass isotopomer) and 436 
(M1) of the pentafluorobenzyl triacetyl 
derivative of purine dR were quantified 
using ChemStation software. Excess 
fractional M+1 enrichment (EM1) was 
calculated as 

 

 
where sample and standard refer to the 
analyzed sample and an unenriched 
pentafluorobenzyl triacetyl purine dR 
derivative standard, respectively. The 
fractional replacement rate (f) was 
calculated by a comparison of EM1 to the 
theoretical maximum EM1 of a fully 
turned over tissue at the measured body 
water enrichment according to the 
following equation: 

 

Protein Isolation and In-Gel Trypsin 
Digestion 
At each time-point for collection, 2 mice 
were anesthetized under isoflurane gas 
and were then euthanized cardiac 
puncture and cervical dislocation.  Tissues 
were harvested and snap-frozen in liquid 
nitrogen. For analysis liver samples were 
thawed and homogenized for 75 s in PBS 
containing 1 mM PMSF using a Mini-
BeadBeater 8 (BioSpec, Bartlesville, OK) 
placed on ice for 1 min. This procedure 
was repeated twice and the resulting 
homogenate was diluted to 10% (w/v) in 
PBS containing 1 mM PMSF.  Cultured 
cells were homogenized in 1ml of M-PER 
reagent (Pierce, Rockford, IL) containing 
protease inhibitors (When did we do 
cultured cells?). Protein from prepared 
homogenates was uniformly reduced by 
incubation in 10 mM DTT and SDS-PAGE 
sample loading buffer for 5 min at 95 °C. 
The reduced samples were then alkylated 
by incubating in 15 mM iodoacetamide for 
1 h at room temperature. Proteins were 
then fractionated by SDS-PAGE 
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(Invitrogen). Using in-gel molecular 
weight markers, each sample was divided 
into molecular weight regions and 
subjected to overnight trypsin digestion at 
37oC (Trypsin Gold, Promega, Madison, 
WI).  

LCMS Data Acquisition 
The isotopic distributions of peptides 
were measured using an Agilent 6520 
QToF with Chip Nano source (Agilent, 
Santa Clara CA).  Injection volumes of 
extracted peptides were normalized 
according to the staining density of the 
original regions of the gel.  Each sample 
was injected two times per analysis.  
During the first injection, data dependent 
MSMS fragmentation spectra were 
collected for peptide identification.  No 
MSMS fragmentations were performed 
during the second injection, and a longer 
dwell time (1 spectrum per second) was 
used in the full scan acquisition.  The 
longer dwell time increased the signal to 
noise ratio for the observed isotopomer 
patterns.    

Extraction of Kinetic Labeling 
Information 
MSMS fragmentation data was analyzed 
using the Agilent software package 
Spectrum Mill and protein identifications 
were based on the Uniprot/Swissprot 
database (08/2010) where 
species=mouse, trypsin digest, and 
carbamidomethylation of cysteine were 
used as restrictions on the search.  
Isotopomer patterns were extracted from 
the MS scan data using the MassHunter 
software package from Agilent.  The 
peptide list with calculated neutral mass, 
elemental formula, and retention time 
was used to filter the observed isotope 
clusters.  A visual basic application was 
used to calculate peptide elemental 

composition from lists of peptide 
sequences and calculate isotopomer 
patterns over a range of precursor body 
2H2O enrichments (p),  for the number 
(n) of C-H positions actively 
incorporating H/D from body water (see 
below).  Subsequent data handling was 
performed using Microsoft Excel. 

Measurement of Amino Acid 
Enrichments By GC/MS 
Protein components of tissue homogenate 
were precipitated from a 200 ul aliquot by 
dilution into cold acetone (800 ul) 
followed by incubation at -20 °C for 1 
hour.  Free amino acids were isolated 
from the organic supernatant after 
evaporation of the solvent under reduced 
pressure.  Dried amino acids were 
resuspended in 1 ml of 50% acetonitrile, 
50 mM K2HPO4, pH 11. Pentafluorobenzyl 
bromide (20 uL) was added, and the 
sample was sealed and incubated at 100 
°C for 1 hour.  After cooling to room 
temperature, ethyl acetate (600 ul) was 
added to each sample followed by mixing.  
The top layer was then transferred to a 
fresh tube containing Na2SO4.  The 
anhydrous organic solution was injected 
directly onto a DB-17MS (30m x 
0.25mmID x 0.25µm film thickness), 
J&W. Scientific, Santa Clara CA).  The 
data was acquired on an Agilent 6890N 
using CI source maintained at 280 °C.  
The oven temperature was cycled from 
140 °Cto 280 °C over a 7.5 minute run.  
Data was collected in SIM mode with a 15 
second dwell time using the ions listed in 
table S1. 

Calculation of Turnover Rate 
Fractional replacement (f) is the 
proportion of newly synthesized proteins 
in a population, expressed as a fraction of 
the total pool.  The kinetic interpretation 
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of the time-dependent replacement of pre-
existing protein molecules by newly 
synthesized molecules requires an 
knowledge of the mass isotope pattern of 
newly-synthesized species as compared to 
unlabeled species 28,35.  The mass 
isotopomer pattern of peptides 
synthesized in the presence of an stable-
isotope enriched precursor pool can be 
calculated based on the elemental 
composition of the peptide. Each protein 
(and by extension, each tryptic peptide) 
acquires isotopic enrichment from the 
precursor pool at the rate of protein 
turnover (k), the 2H-isotopic enrichment 
in the body water (p), and the number of 
sites in the peptide capable of 
incorporating H/D from water(n).  
Therefore,p and n must both be known to 
calculate k.In these experiments, we have 
measured pdirectly (Fig S1).  At the 2H 
enrichments used in this study the mass 
spectra of newly synthesized protein will 
occupy the same m/z range as the 
unlabeled species, but knowing p and n 
we can deconvolute the isotopomer 
patterns. 
In order to calculate peptide specific n 
values, literature-derived estimates of n 
were calculated for each amino acid (AA) 
36.  We confirmed these literature values 
of nAA for each AA in two ways, first by 
directly measuring the relative deuterium 
incorporation in soluble AA’s, then by 
comparison against the mass isotopomer 
pattern of peptides isolated from the 
labeled tissue to theoretical values for n 
and established the best fit value (Fig S2).  
Due to the rapid equilibration of water in 
the body (Fig S1A), p can be measured 
from any accessible bodily fluid. In this 
study we used blood plasma collected 
from each mouse at each time point. Since 
body water enrichment was slightly 

different for each animal (Fig. S1B), the 
amino acid precursor pool (AAPP)2H-
enrichment used to calculate fractional 
replacement was different in each animal.  
For a f between 0-100% (i.e. a mixed 
protein pool), deconvoluting the two 
subpopulations is carried out by treating 
each peptide as a biochemical polymer 
and calculating quantitative changes in 
the relative isotopic abundance pattern 
using the Mass Isotopomer Distribution 
Analysis (MIDA) 35.  As described 
previously 28, the mass isotopomer of each 
peptide was normalized to the total 
intensity of the isotopomer envelope, 
typically 4 masses (M0-M3).  Peptides 
with a mass greater than ~2,400 Da 
exhibit a larger isotopomer envelope, so 5 
masses (M0-M4) were used.  We have 
based our calculations of f on the change 
in intensity of the normalized 
monoisotopic peak (EM0).  We find that 
the signal to noise is most favorable for 
EM0, because of the larger change in 
fractional abundance for this isotopomer 
(EM0 decreases while labeled species 
distribute from EM1 to EM4). Peptides 
which met our criteria for inclusion had 
signal intensity >30,000 counts, an RMS 
error against the theoretical natural 
abundance spectra of less than 1.5% for 
the day 0 (D0) sample, and had a LC 
elution time within 30 seconds of the 
unlabeled control.  The f of each peptide 
was calculated using the n specific for that 
sequence and the p measured for the 
mouse.  Each peptide was considered as a 
replicate measurement of the fractional 
replacement for the protein of origin.  
Therefore the protein f in each mouse was 
calculated as the median f of the peptide 
population from that protein. A time-
depended fractional replacement curve 
was constructed for each protein, by 
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plotting the protein f for the each mouse 
in each feeding regime against the time of 
exposure to 2H2O (Fig. S3).  Proteins 
which were observed in fewer than 3 mice 
were removed from the data set.  The k 
for each protein was calculated using a 
regression fit for the single pool model 
(f=1-e(-kt)) in the Prism software package 
(Graph Pad, La Jolla CA).  A coefficient of 
variation (CV) was calculated for each 
protein as the ratio of standard deviation 
reported for the regression over the rate 
constant.  Proteins which had a %CV of 
more than 30 for either the CR or AL 
feeding regime were removed from the 
data set. 

Stable Isotope Labeling in Mammals 
(SILAM) Quantitation 
In order to validate the LC-MS/MS based 
quantitation method, to test the range of 
quantifiable concentration differences, 
and assess the variability within the 
measurement, a standard curve of labeled 
cell lysate was constructed.  Rat neural 
stem cells ((EMD Millipore, Billerica, MA) 
were grown as a mono-layer in flasks 
coated with poly-ornithine and laminin.  
Two different media containing 
DMEM/F-12 medium with B-27 serum-
free supplement and 20 ng/ml FGF (EMD 
Millipore, Billerica, MA) were used,  
either unlabeled lysine and arginine 
(light) or 13C6 lysine and 13C6 arginine 
(heavy), as previously described 37.  The 
total protein content of cell lysates from 
these cultures was measured using 
bicinchoninic acid (BCA, Pierce, Rockford, 
IL).  Light and heavy cell lysates were 
mixed to form a curve of protein isotopic 
ratios at1:1, 1:3, 1:6, and 1:10 light:heavy 
protein.  The mixtures of crude cell lysates 
were fractionated using SDS-page.  The 
37-50kD molecular weight range of the gel 

was digested using trypsin and analyzed 
by LCMS as described above.  The same 
peptide identification and isotopomer 
extraction methods described for the 
kinetic analysis were used in this 
experiment.  Relative protein 
concentrations were calculated as the 
average of ratios of light/heavy 
isotopomer intensity measured for all 
peptides belonging to the same protein.   
For application of the quantitation 
method in mammalian tissue or SILAM, 
(13C6) lysine labeled mouse liver 
(MouseExpress Liver, Cambridge Isotope, 
Andover MA) was used as the heavy 
standard for LC-MS/MS quantitation.  
The protein was quantified in D0 
experimental tissue from each feeding 
group. Total protein content of the 
experimental and SILAM tissue lysates 
were measured using BCA (Pierce, 
Rockford, IL). Sample and standard 
protein were mixed in a 1:1 ratio prior to 
SDS-PAGE and trypsinization.  Our 
protocol was modeled after literature 
reports 29–31.  Ratios of light to heavy 
peptides were calculated independently 
using two different software packages:  (a) 
MassHunter Qualitative Analysis (Agilent) 
and (b) the Trans-Proteomic Pipeline 38.  
Protein concentration was calculated as 
the weighted average of the 
measurements from both software 
packages, where the number of peptides 
measured for a given protein was used as 
the weighting factor.  

Calculation of Absolute Synthesis 
Rates 
In the kinetic labeling experiment we 
calculate the turnover rate constant(k) 
from the change in f over time using the 
relationship, f=1-e(-kt).  In order to directly 
compare the CR and AL experiments we 
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also calculated the absolute flux into and 
out of each specific protein pool.  Protein 
flux is calculated as the turnover rate (k) 
multiplied by the pool size (V), Flux=kV.  
For this calculation we assumed protein 
homeostasis, so although V may be 
different between the AL and CR 
experiments, it is constant over the 
duration of the experiment.  Therefore the 
flux into the system (synthesis) is equal to 
the flux out (degradation).  For the 
synthesis calculation, we normalized all 
concentration measurements to the AL 
pool size.  This results in a unitless mass 
per day synthesis rate, that is directly 
comparable between experimental groups. 

Gene Ontology and Pathway 
Analysis 
Gene annotation, and gene ontology 
information and biochemical pathway 
information were obtained from the 
Database for Annotation, Visualization 
and Integrated Discovery (DAVID) v6.7 
from the National Institute of Allergy and 
Infectious Diseases (NIAID), at the 
National Institutes of Health (NIH) 39,40.  
Mitochondrial proteins were cross 
referenced against the Mitocarta database 
41.  The network analysis testing 
expression control of protein dynamics 
was done using both the Ingenuity IPA 
(version 12402621) and the GeneGo 
Metacore database.  Parallel pathway 
analyses methods were used to assess for 
correlation between predicted 
transcriptional control of protein and 
measured changes in replacement rate 
and concentration.  For this analysis we 
considered a 5% difference in replacement 
rate and 10% in concentration necessary 
to be considered changed.  Special 
emphasis was placed on testing the 
recently proposed hypothesis that 

peroxisome proliferator-activated 
receptor gamma coactivator 1-alpha 
(PGC-1alpha)  is a central regulator of the 
mitochondrial adaptation to CR 42.   
 

Results 

CR Model and Cell Proliferation 
CR mice gained weight at a rate similar to 
the AL fed controls maintaining the ~30% 
difference throughout the course of our 
experiment (Fig. 2B).  AL mice consumed 
an average of 5 grams per day, and CR 
mice were therefore provided 3 grams per 
day to maintain 40% CR (Fig. 2C) as per 
the NIA protocol.   
In order to validate our experimental 
model, we measured hepatic cell 
proliferation rates following 15 and 32 
days of 2H2O labeling (Fig 2D). As 
expected, the percentage of new cells 
increased from day 15 to day 32, allowing 
the use of both time points to calculate 
hepatic cell proliferation rates..  New cell 
synthesis rates were reduced ~50% in the 
CR animals relative to the AL, resulting in 
proliferation rates of 0.002 and 0.004 
day-1 respectively, in agreement with 
previous observations 15,43,44.   

Body Water Labeling 
The bolus injection used to initiate 
isotopic labeling results in a rapid 
equilibration of the body water (BW) at 
the target isotopic enrichment of 5% (Fig 
S1).  In order to measure the rate of 
isotopic equilibration, in a separate 
experiment we serially sampled the BW 
enrichment in C57BL6 mice every 60 
minutes for a total of 240 minutes 
following a fixed volume bolus injection of 
H218O..  We confirmed that  in vivo 2H2O 
isotopic equilibrium was established 
within 60 minutes, and isotopic 
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enrichment was dependent on body 
weight (Fig S1A).  A common assumption 
for kinetic experiments is that it takes 5 
half-lives for a kinetic process to achieve 
equilibrium.  This would suggest that the 
body water equilibration has a half-life of 
at most 12 minutes in an animal the size 
of a mouse.  This means that BW 
equilibration has a rate constant of at least 
86 Day-1 in our experiment.  A similar 
bolus injection was used to initiate 
labeling of the CR and AL mice, and BW 
enrichments were measured at the time of 
tissue collection throughout the duration 
of the experiment (Fig. S1B).  The 
enrichments we observed were 
comparable between CR and AL mice.  We 
also observed that the enrichment was 
very stable within the CR group, while the 
AL group had a slight decline in 
enrichment as the experiment progressed. 
The general decline in the AL BW 
enrichments over time may be related to 
the catabolism of a proportion higher of 
dietary fatty acids resulting in the 
production of unlabeled metabolic water, 
or the lower lean body mass within these 
mice.   
Validation of literature n 
Each peptide n is the sum of its individual 
amino acid n’s (nAA).  As previously 
described 28,  using literature values for 
tritium incorporation into amino acids we 
calculated n values for each amino acid as 
a ratio of the validated n for alanine (4) 
45,46.  We tested the validity of these n 
values in two different ways.  First, we 
isolated free amino acids from tissue 
which had been labeled for 32 days to 
measure maximal deuterium 
incorporation (Table S1).  We observed a 
strong linear correlation between the 
measured isotopic enrichment and the 

theoretical value predicted by the 
literature n at the measured p (Fig S2A). 
Next, we compared experimental peptide 
spectra against theoretical predictions for 
isotopomer patterns from proteins 
expected to be fully labeled (Fig. S2B, C). 
We evaluated deviations between 
measured mass isotopomer patterns for 
these peptides and a family of theoretical 
spectra where n varied around the 
literature value (Fig. S2B).   We found that 
for most peptides the best fit n matched 
literature values closely.  Some random 
variation was observed, however a 
minimum Root Mean Square Error (RMS) 
was observed over a range of n values 
extending from 90% to 100% of the 
expected value for n. 

Rate of Precursor Pool Enrichment 
Rate of Precursor Intracellular amino 
acids are the link between the BW isotopic 
enrichment and peptide isotopic 
enrichment (Fig. 1).  In order to determine 
whether the maximal enrichment of the 
AAPP was changing over time, we 
measured the stability of peptide n over 
time.  To do this, we calculated the best fit 
n value for several different peptides at 
each time point of the experiment (Fig 
S2C).  We targeted peptides from multiple 
proteins with rate constants fast enough 
to result in measureable labeled peptide 
population at 9 hours (>30% Day-1), and 
which were observed in both AL and CR 
animals.  By comparing each peptide at 
each time point against a family of 
theoretical spectra (as per S1B), we found 
that the observed best fit n value was 
within 10% of the literature value 
throughout the time course.  Observing 
the stable n at 9 hours suggests that the 
precursor pool has achieved equilibrium.  
If, as suggested by this data, 9 Hrs is  
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Each peptide n is the sum of its individual  

Figure 1.  Dynamic proteomics workflow.  (A)  Two techniques for isotopic labeling were used to 
concurrently measure protein concentration and protein turnover.  Turnover was measured by utilizing 
AA metabolism to isotopically label (purple) the amino acid precursor pool (AAPP).  Protein 
concentration was measured through addition of exogenous labeled protein (green).  (B) Mice were 
labeled with 2H2O via bolus injection and labeled drinking water.  Tissues are harvested following 
euthanasia, and protein homogenates, with addition of SILAM protein standards to selected 
samples,are separated by SDS-PAGE, followed by in-gel trypsinization.  LC-MS/MS is performed on 
tryptic peptides, and peptide isotopomer distributions are thenanalyzed using mass isotopomer 
distribution analysis (MIDA) to quantify the fractional replacement rates(f) of hundreds or thousands of 
newly synthesized peptides and, thus, their parent proteins.(C) For each lysine containing peptide, 
ratios of SILAM-labeled peptides (green) to endogenous peptides (black) allow differences in protein 
concentrations to be measured.For clarity a curve joining the peak of each isotopomer is shown. (D)  
Fractional replacement causes distinct changes in the isotope pattern of each peptide,  these time 
dependent changes allowed f and k to be measured for each protein from multiple peptides.For clarity 
only curves joining the peak of each isotopomer is shown. 



Page 45 

 

Chapter 1: The Effect of Long-Term Calorie Restriction on  

In Vivo Hepatic Proteostasis in Mice 

longer than 5 half-lives for precursor pool 
turnover, the half-life of precursor pool is 
at most 1.8 hours.  This means that the 
rate constant for turnover of the amino 
acid precursor pool is at least 13.3 Day-1.  
These results are consistent with 
literature values for intracellular amino 
acid turnover 47.   

 
Liver Proteome Dynamics 
We used four selection criteria to remove 
low confidence protein information from 
the analysis: each peptide measurement 
signal intensity (>30,000 counts), RMS 
error for peptide mass isotopomer 
abundance measurements in an 
unlabeled sample of less than 1.5%, 2 or 
more peptides must be observed for each 
protein in each mouse, and a rate 
constant that could be defined with less 
than 30% coefficient of variation from the 
incorporation curve.  While the number 
and proportion of peptides that finally 
yielded kinetic information varied 
between groups, we identified 2769 AL 
peptides and 3939 CR peptides.  These 
peptides were heterogeneously 

distributed amongst proteins, with up to 
120 peptides identified for the same 
protein.  Measurements of protein f were 
assembled into a time dependent isotope 
incorporation curve for each protein (Fig 
S3).  A non-linear regression fit through 
the measured enrichments was used to 
calculate a unique turnover rate constant 

Figure 2.  Confirmation of physiologic 
response in the chronic CR modelA) 18 
month old CR (n=12) and AL (n=12)  mice were 
purchased from the NIA calorie restricted colony 
and labeled with 2H2O for 0.4 Days, 1 day, 4 days, 
8 days, 15 days and 32 days(n=2 animals per 
group per timepoint).  (B) Mouse body weight was 
monitored over the course of the experiment.  
Although there was modest weight gain in both CR 
and AL groups, CR mice were significantly smaller 
than the AL fed controls.(C) Food intake was 
monitored during labeling, AL mice consumed an 
average of 5 grams, while the CR mice were 
administered 3 grams per day as per NIA protocol. 
(D) The rate of liver cell proliferation was 
measured following 15 and 32 days of 2H2O 
labeling.  Values are means + SEM, and 
significance was calculated by a two-tailed 
student’s t-test vs. AL animals (****, p<0.001). 
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(k), and fit statistics for each protein in 
each experiment.  The difference in the 
number of unique peptides between the 
two  
groups, resulted in AL having fewer 
proteins overall (384) than CR (447).  
There were 288 shared proteins which 
could be compared between groups (Fig 
S4). 
The proteomic data demonstrates that CR 
induced a general reduction in total 
intracellular hepatic protein replacement 

(Fig.3A, 4). Comparison of the median 
protein replacement rate for the proteins 
which made the final filter, results in 
more than 80% of shared proteins with 
reduced rate in CR.  We calculated the 
rate ratio (CR/AL), and categorized 
proteins into three broad categories 
(Table 1): reduced (CR/AL<0.90), 
unchanged (0.90<CR/AL<1.10), and 
increased replacement rates 
(CR/AL>1.10).   

Figure 3.  CR results in broad scale reductions 
in hepatic protein metabolism (A) Direct 
comparison of fractional replacement rates (f) 
for all proteins observed in this study shows that 
CR (black) reduced the replacement rates 
relative to AL (open) for 85% of proteins 
observed. (B) Comparison of the half-life (t ½, 
calculated as ln(2)/k) for proteins associated 
with specific organelles.  Boxes show the inter 
quartile range for protein turnover in the 
organelle bars extend to 5 and 95% of the data.  
Only proteins which were solely and 
unambiguously assigned to the indicated 
organelle were used.  Although the median half-
life was systematically longer in CR, only the 
mitochondrial proteins were statistically 
significant (Students 2 tailed heteroscetatic 
ttest, ** p < 0.005) (C) Absolute synthesis rates 
for each protein were calculated from the 
replacement rate and the SILAM concentration 
measurement, differences between CR and AL 
mice were more distinct on this absolute scale, 
with CR mice producing substantially less of 
each protein daily.   
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Various regions of the cell were enriched 
for proteins from these broad rate 
categories (Fig. 4).  Proteins associated 
with the mitochondria where changed 
most significantly with 94% (80/85) 
proteins reduced more than 25% 
(p<0.0005).  We measured significantly 
lower replacement rates for proteins 
associated with TCA, fatty acid 

metabolism, and ATP synthesis.  Although 
the median replacement rates of proteins 
from the endoplasmic reticulum and the 
golgi apparatus were also slower in CR, 
neither shift was statistically significant 
(Fig 3B, Table S3).   Interestingly, 
although less than 15 percent of observed 
proteins had rates which were faster in CR 
(Table Sx), half of the observed 40S 

Figure 4.  Throughout the cell, protein turnover is slower in CR mice compared to AL.  Selected 
functional classes like the 40S ribosomal subunit and some classes of cytosolic proteins are less 
perturbed than the average, while the mitochondrial proteins are affected to a greater degree. 
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ribosomal proteins have either the same 
or faster turnover rate (Fig 4, 5, Table 
Sx). 

SILAM Quantitation 
The standard curve of heavy to light cell 
lysates validated the quantitation method.  
We measured the ratios for approximately 
50 peptides belonging to seven different 
proteins throughout a series of dilutions 
from 1:1 to 1:10 heavy to light ratio 
(Fig.S5, Table Sx).  Every protein and all 
associated peptides showed a highly linear 
correlation between the measured and the 
expected ratio.  The deviation from the 
mean was approximately 10% of the 
measured ratio, resulting in an increasing 
spread among the population of proteins 
as the expected ratio increased with 
dilution. 
Initial analysis of the experimental liver 
samples used the Agilent MassHunter 
software program which identified2832 
peptides with high confidence, of these 
only 36% contained lysine, the majority 
were arginine terminal peptides.  We 
measured SILAM ratios for 979 peptides 
in CR and 1117 peptides in AL 
corresponding to 223 and 203 proteins, 
respectively.  These data were then 
analyzed again using the Trans Proteomic 
Pipeline (TPP) software package which 
measured SILAM ratios for 2010 peptides 
yielding 163 proteins observed in both the 
AL and CR groups.  There were 123 
proteins which were common to both 
analysis methods, with 41 unique to the 
TPP analysis and 72 to the Agilent 
analysis.  For proteins common to both 
analyses there was good agreement in the 
measurement, with a median deviation of 
10 percent.  For these shared proteins, a 
heavy:light ratio weighted average was 

calculated, weighted by the number of 
peptides observed in each method. To 
facilitate data analysis all CR protein 
measurements were normalized to the AL 
pool.  This resulted in quantitation ratios 
(CR/AL) for 236 proteins in total. 
We observed a general shift towards lower 
protein concentration in the CR mice, 
with 82% (194/236) of the proteins 
exhibiting a >20% decrease in pool size.  
Based on the 10% deviation observed in 
the standard curve, any ratios between 0.9 
and 1.1 were to be designated as 
unchanged. Within this group of proteins 
there was a significant enrichment 
(p=0.008) for the proteins involved in 
carboxylic acid metabolism and valine 
metabolism (Table Sx).  There were a 
number of proteins (19% of total) with 
significantly reduced concentrations 
(<50% CR/AL), ribonuclear proteins were 
enriched (p=0.04) among this group. 

Calculation of Absolute Synthesis 
Rates 

Flux into the protein pool (synthesis) is an 
integrated measurement of both fractional 
replacement (measured by heavy water 
labeling) and concentration (measured by 
SILAM).  Therefore, synthesis calculations 
could only be performed for proteins 
which were observed in both the kinetic 
and SILAM proteomic experiments (Fig 
1C-D). Comparison of the protein specific 
synthesis exaggerated the changes 
between the AL and the CR groups (Fig. 
3C, Table Sx).  We normalized measured 
SILAM protein concentrations in the CR 
group to the AL group such that CR flux is 
corrected by the ratio of CR/AL, whereas 
AL protein flux is equal to the measured 
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 turnover rate (k).  We observed that the 
CR concentrations were 70% of the AL 
pool.  For the same subset of proteins the 
average turnover rate constant in CR was 
on 81% of the rate observed in the AL 
experiment, resulting in an average flux 
for the CR experiment which was 55% of 
the flux observed in the AL experiment.   

There was a general trend toward slower 
replacement and lower concentration 
(Fig5A).   When proteins belonging to 
specific gene ontologies  were considered, 
we observed that they tended to have 
similar changes in turnover and pool size 
(Fig 5C).  
 
 

Figure 5. (A) Distribution and comparison of change in half-lives to the change in concentration for 
each protein (open circles). The great majority of proteins detected exhibited lower concentrations in 
liver from CR compared to AL mice; and these were almost all associated with longer half-lives, not 
shorter half-lives. There was no correlation between t ½ and protein concentrations.(B) Distribution 
and comparison of change in total synthesis rates (calculated as the product of k and concentration), 
to the change in concentration for each protein (open circles). As noted in A, the great majority of 
proteins detected exhibited lower concentrations in liver for CR compared to AL mice; and almost all 
were associated with lower total synthesis rates. Thus, most proteins were in the lower left quadrant 
(lower concentration, lower total synthesis rate). (C)Proteins belonging to the selected Gene 
Ontology(GO) categories experienced similarchanges in both concentration and half-life.(D)As 
shown here, changes in total synthesis rates for CR/AL mice for proteins within functionally related 
selected GO categories. Proteins within a pathway tended to exhibit coordinated changes in total 
synthesis rates in response to CR.  
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Gene Ontology 
In order to identify protein networks with 
differentially regulated flux, we analyzed 
both functional and spatial 
interconnectivity between proteins in 
groups defined by the change in turnover 
and protein concentration.  As has been 
previously shown, we found evidence that 
protein turnover is regulated at three 
distinct levels: the organelle, the multi-
protein complex, and the protein itself 
(Fig 6).   

Expression Pathway Analysis 
Both IPA and Metacore databases 
suggested that four transcription factors 
(MYC, HNF4A, PPAR-gamma, and 
MYCN) were connected to approximately 
half of the proteins with measured 
replacement rates (Fig 6A). The predicted 
directionality of the expression profiles 
(Table Sxx) were negatively correlated for 
MYC (z=-2.3), HNF4A (z=-2.1), MYCN (-
3.0), and PPAR-gamma (z=-3.1).  MYC, 
MYCN and PPAR-gamma were also 
negatively correlated with the changes in 
protein concentration (z= -2.9, -2.2, and -
2.1 respectively). We tested whether PGC-
1alpha �control of transcription could 
account for the correlations observed with 
the 4 transcription factors, as recently 
proposed 42. HNF4A and PPAR-gamma 
are known targets of PGC-1alpha, while 
MYC, and MYCN are known to be under 
the control of HNF4A.  We also tested the 
hypothesis that PGC-1alpha �was 
involved in the transcriptional regulation 
of proteins involved in mitochondrial 
biogenesis, including ERR1, ERR3, NRF1, 
and NRF2.  We found that PGC-1alpha 
�may directly control the expression of 
these genes, and that reduced PGC-1alpha 
expression may explain reduced 
mitochondrial protein flux in CR (Fig 6B).   

Discussion 
Although the efficacy of increased 
longevity due to CR has been well 
established in animal models, human 
subjects are resistant to dietary 
restriction.  If the mechanism of action 
can be identified, the beneficial effects of 
CR may still be achieved in humans using 
less extreme lifestyle and/or 
pharmacological interventions 48.  A 
popular mechanistic hypothesis for CR 
focuses on mitochondrial fitness 49,50, 
suggesting that mitochondrial biogenesis 
(synthesis) 17,24 and autophagy 
(degradation) 22,23,26,51 are both increased 
in CR, resulting in increased protein 
turnover and increased mitochondrial 
efficiency (Fig 7).   
To investigate this turnover-dependent 
hypothesis, we have directly measured 
protein turnover in mice from the well 
validated NIA CR mouse colony and 
compared to age-matched AL-fed 
controls.  In measuring kinetic processes 
such as protein turnover, the 
measurement of the isotopic enrichment 
of the AAPP and the change in protein 
concentration are critical parameters for 
proper interpretation of the 
measurements.  In cell culture 
experiments the concentration of labeled 
amino acids in the media can be used as 
the precursor concentration 52,53.  In vivo, 
the AAPP is not easily sampled, and the 
enrichment between tissues is variable 54.  
We and others have recently shown in 
mice that if the AAPP enrichment 
approaches 100%, precursor enrichment 
can be measured independent of the 
protein turnover rate within the MS 
spectrum.  These experiments required a 
complete exchange of the protein 
component of the mouse feed for 
ubiquitously labeled protein 32,55.  Since 
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diet composition and calorie content are 
the main experimental variables in a CR 
experiment, introducing a uniquely 
formulated labeled diet presented an 
obstacle to maintaining the accepted CR 
model.  We have recently shown that 
using very low 2H2O enrichment we can 
measure protein turnover in humans 28.  
In the current study, we employed a 
similar2H2O labeling strategy to measure 
proteome dynamics in mice from the 
commonly accepted NIA CR colony (Fig. 
2). 
2H2O “heavy water” has been described as 
a universal label for the study in vivo 
metabolism 56 and has been successfully 
used for a variety of biological molecules 
57.  In our study, in vivo labeled amino 
acids were generated through normal 
cellular metabolism (Fig 1).  It is well 
established that each type of amino acid 
will incorporate different numbers of 
isotopic labels 28,36,56,58.  By isolating the 
most abundant individual free amino 
acids from the liver tissue of 32 day 
labeled AL and CR mice, we directly 
measured the isotopic enrichments.  We 
found that there was good agreement 
between the CR and AL free AA, and that 
there was a strong correlation (r=0.92) 
with the predicted deuterium enrichments 
(Fig S2A).  
The true precursor pool for protein 
synthesis is the charged intracellular 
tRNA pool.  Sampling this pool 
specifically to measure AAPP enrichments 
is very challenging.  We saw that at late 
time points free AA enrichments were 
consistent with literature; however it was 
important for us to establish how fast the 
enrichment of this precursor pool was 
achieved. A powerful component of the 
MIDA method is that if the isotopic 
enrichment p changes slowly relative the 

analyte turnover a unique n can be 
calculated from the measured isotopic 
pattern35.  By comparing the measured 
peptide isotopomer against a family of 
theoretical patterns to find the best fit for 
each peptide at each time point, we show 
that the best fit n is within 10% of the 
predicted value (Fig. S2B).  Importantly 
this n value is established by 9 hours, the 
earliest point within our experimental 
time course (Fig. S2C).  Therefore in the 
current experiment, the peptide n value is 
considered a constant. 
The experimental design places upper and 
lower boundaries on the protein turnover 
rates we were able to measure.  It is 
commonly estimated that 5 half-lives are 
required before equilibrium is established.  
By this measure we found that the rate of 
BW enrichment following a bolus 
injection is faster than 86 Day-1. By 
similar approximation the rate of amino 
acid pool enrichment, which will define 
the upper rate limit in this experiment, is 
faster than 13 Day-1.  This fast rate of 
precursor enrichment is a distinct 
advantage over the use of labeled algae 
protein where a distinct lag in the delivery 
of isotopic label was observed in the 
experiment 32,59.  The slowest rates of 
protein turnover will be dominated by the 
synthesis of new cells within the tissue.  A 
second advantage of the 2H2O labeling is 
that every newly synthesized molecule in 
the body will incorporate label.  Therefore 
in the same group of mice we measured 
the cell proliferation rate 33,60 at 0.002 
and 0.004 Day-1 for CR and AL 
respectively, giving us the lower limit for 
possible protein rates.  The protein 
turnover rates measured in this 
experiment are well within the range 
imposed by the experimental conditions, 
with a rates ranging from ~4 Day-1 for the 



Page 52 

 

Chapter 1: The Effect of Long-Term Calorie Restriction on  

In Vivo Hepatic Proteostasis in Mice 

major urinary proteins (P11588, P11580, 
P02762) and ~0.02 Day-1for hemoglobin 
subunits (P01942, P06467, P02088).   
We designed this study to ensure that 
both the CR and AL mice were at a 
condition of steady state proteostasis, 
indicated by stable body weight and 
unchanging body composition (Fig 
2).These mice were healthy adults of 
stable weight, and the CR mice had been 
maintained for 14 months on the NIH-31 
Fortified diet at the NIA (Fig. 2).   In spite 
of the observation that CR reduces cell 
proliferation 43,44, our expectation was 
that mitochondrial biogenesis and protein 
turnover would be increased in long term 
CR animals, in support of recent studies 
9,22–24,26,27 (Fig. 7).  Instead, we observed a 
general slowing of protein turnover (Fig 
4), and a reduction in general protein 
concentration, resulting in significantly 
lower protein flux in the CR mice as 
compared with AL-fed controls (Fig. 5, 6).   
The effect of CR on mitochondrial 
biogenesis remains controversial.  Several 
CR studies have demonstrated that CR 
induced mitochondrial biogenesis.  In a 
recent study conducted in vitro and in 
vivo, CR induced proliferation of 
mitochondria with reduced membrane 
potential and rate of reactive oxygen 
species (ROS) production 61, while in 
another investigation CR promoted 
increases in oxidative capacity 
concomitant with decreases in triglyceride 
content in rat skeletal muscle 62.  A third 
study reported that CR promoted 
mitochondrial biogenesis in mice through 
a signaling pathway activating endothelial 
nitric oxide synthase (eNOS) 17, while in 
humans CR has been implicated in 
increased mitochondrial DNA 24,25.  Taken 
together, these investigations support the 
hypothesis that CR promotes bioenergetic 

efficiency via increases in mitochondrial 
density.  In our study, mitochondrial 
proteins showed a significant decrease in 
absolute synthesis.  In support of this, 
others have challenged the idea that CR 
increases mitochondrial biogenesis 63, and 
our data provide strong evidence that 
mitochondrial biogenesis, turnover, and 
concentration are all reduced in response 
to CR.  Interestingly, many functionally 
related proteins experienced similar 
changes in turnover rate and pool size 
(Fig. 5, 6B) suggesting that a broader 
investigation of the proteome may 
elucidate mechanisms of CR fitness. 
Understanding the molecular mechanisms 
that maintain the CR homeostasis and 
differentiate it from the AL state may 
provide framework for the development of 
therapeutics to combat age-related 
diseases 48.  Our data suggest that 
HNF4A, MYC, PPAR-gamma, and MYCN, 
which are all associated with cellular 
proliferation, are inhibited by long term 
CR.  PGC-1alpha has been suggested as a 
master regulator of the CR effect 42.  PGC-
1a activation of HNF4A and PPAR-gamma 
is known, which in turn activate MYC and 
MYCN (Fig 6A).  PGC-1alpha also 
activates transcription factors responsible 
for mitochondrial biogenesis (Fig 6B), and 
these transcription factors are 
significantly downregulated lower during 
CR (Fig 5).  Expression patterns of some 
targets (PPAR-alpha etc) of this 
promiscuous co-activator were not 
strongly correlated with our data.  Other 
routes of control of protein metabolism, 
like modulation of catabolic rates, could 
be used to vary the effect of PGC-1alpha 
inhibition. 
Multiple observations show that the CR-
extended lifespan results from multiple 
interacting processes. CR has been shown 
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to protect from oxidative stress, but 
overexpression of antioxidant proteins is 
insufficient to extend lifespan 64.  We 
show that CR slows cell proliferation and 
protein turnover, and others have shown 
that CR lowers core body temp 13, all of 
which suggest that general cellular 
metabolism is slower.  Yet several studies 
have shown that CR improves the livers 
ability to recover from injury, showing 
significantly increased cell proliferation 
during tissue repair relative to AL controls 
65,66.  We have shown here that protein 
turnover is slower, yet in in vitro activity 
assays of proteasome activity show that 
CR increases the activity of the 
proteasome relative to age matched 
controls 67.  These factors suggest that 
although the global cellular metabolism is 
slower in CR, the dynamic modulation of 
cellular response to outside stimuli is 
more sensitive.   Our data suggest that the 
activity of “quality control” mechanisms 
increase the efficiency and maintain the 
function of proteins longer to allow for 
slower protein turnover and longer 
protein half-lives.  We also observe that 
although the concentration is lower the 
turnover of ribosomal subunits is not 
affected by CR.  The ribosome is a first 
response element in the production of 
new protein and the relatively unchanged 
rate of ribosomal turnover suggests that 
pool size is prepared to expand rapidly 

under the right conditions. This would 
then supply sufficient ribosomes to ensure 
a quick response to newly synthesized 
mRNA as an efficient biological switch.  
This suggests that there are key 
transcription factors or stored mRNA 
which sense the available caloric levels 
and actuate the production of new 
proteins based on caloric intake or other 
signals. A similar strategy has been shown 
to regulate the hypoxia response through 
the degradation of the HIF-1alpha 
transcription factor 68,69.   
Conclusion 
Here we lay out a strategy to investigate 
the in vivo metabolism of proteins across 
the entire proteome.  We investigated the 
effect of CR and show that the cell 
modulates protein flux by regulating both 
the rate of protein turnover and total 
protein concentration, at the level of the 
functional group and individual protein.  
These data also provide conclusive 
evidence that hepatic mitochondrial 
biogenesis is not increased due to caloric 
restriction; instead we propose that 
mitochondrial protein turnover, 
concentration, and overall flux are 
reduced in response to CR, and may play 
central a role in mediating the health and 
longevity benefits of reduced energy 
intake. 
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Figure 6.  Significant expression networks within our data set.  (A) Expression patterns for proteins 
regulated by MYC, HNF4A, PPAR�, and MYCN were significantly correlated for inhibition of these 
transcription factors.  Each transcription factor is linked (highlighted connection) and PGC-1a is 
known as an upstream regulator influencing these expression patterns.  (B) Transcription factors 
involved in mitochondrial biogenesis are also known targets of PGC-1a. 
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Supplemental Figures 

 

 

Figure S1:  Establishing isotopic 
enrichment stability in mice.(A) 
Change in body water following a bolus 
injection of isotopically enriched water 
(H218O), enrichment was measured 
repeatedly in mice over a 3 Hr timespan.  
Target body water enrichment was 
achieved 60 minutes after the bolus 
injection.  (B)  Isotopic enrichments were 
maintained over the 32 Day experiment, 
both AL and CR mice achieved similar 
enrichments, with slightly lower values in 
AL 
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Figure S2: Validation of sequence-
specific peptide number of active H-
atoms(n)during 2H2O labeling (A) 
After 32 days of 2H2O labeling, maximal 
deuterium enrichments for free hepatic 
amino acids were measured in 2 AL and 2 
CR mice.The measured values correlated 
strongly with theoretically expected values 
(R2=0.92). (B) Deviations between 
measured spectra and a family of 
theoretical spectra where measured (n) is 
varied from 80% to 120% of the literature 
value.  Two representative peptides from 
heat shock related protein 70 kDaprotein 2 
(P17156) are shown.  We observed a 
minimum for deviations (RMS error) at 
90%-100% of the literature n in both CR 
and AL mice. (C) Four peptides from 
different proteins were used to test for 
stability of n over time of 2H2O labeling.  
Best fit n values were typically within 10% 
of the literature n value even at the earliest 
time points. 
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Figure S3:  Fractional replacement curves 
for each protein were fit using non-linear 
regression to calculate the replacement rate 
(k) within the population of mice.  Shown 
are curves for two proteins in CR and AL 
groups.  For a majority of proteins, the CR 
animals had a reduced k relative to the AL 
animals. 
 

Figure S4:  Absolute synthesis rates were 
determined for 169 proteins due to 
incomplete overlap of protein 
measurements in CR and AL groups and 
protein quantitation by SILAM. 
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Figure S5:  Modeling the Effects of Calorie Restriction and Ad Libitum Feeding on 
Mitochondrial Metabolism.  Our proposed model for the effect of CR on mitochondrial 
metabolism in comparison with the effect of ad libitum feeding.  Our findings are contrasted against 
hypotheses proposed in the literature on protein synthesis, clearance, and half life. 
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Table S1: Amino acid ‘n’ values based on the Commerford et al. measurements. Also listed is the GCMS 
ion which is monitored from the penta-fluoro benzyl bromide (PFBr) derivative of the amino acid used 
in the analysis.  The number of exchangeable hydrogens on each AA are listed with the relative specific 
activity of tritium labeled AA as measured using long-term labeling of mice with 3H2O.  The nAA value 
was calculated from the specific activity in relation to the number of non-exchangable hydrogens. These 
n values were used to calculate theoretical enrichments at the measured pfor each mouse. 
Experimentally observed enrichment values in free AA in liver tissue from these mice are compared.   
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Accession %CV AL AL (k) %CV CR CR (k)
SILAM 

(CR/AL) 

Q921H8  9.39  0.34  8.56  0.25  0.27 

P13707  28.60  0.21  12.90  0.15  0.30 

P06801  6.15  0.18  17.99  0.18  0.31 

Q9ET01  18.65  0.24  9.13  0.17  0.34 

P62264  9.88  0.10  7.86  0.10  0.37 

P16015  6.85  0.18  6.44  0.16  0.38 

P16858  9.56  0.17  7.33  0.14  0.39 

Q05920  11.56  0.17  12.03  0.13  0.40 

P53657  10.07  0.18  10.56  0.17  0.40 

P35980  9.53  0.08  13.68  0.06  0.41 

Q8BWQ1  26.20  0.16  12.78  0.17  0.41 

P12710  4.86  0.17  8.06  0.15  0.42 

Q99LX0  9.83  0.24  29.35  0.19  0.43 

Q8VCU1  7.15  0.30  17.25  0.21  0.43 

Q63880  4.80  0.29  21.84  0.13  0.44 

P48962  20.02  0.07  10.81  0.11  0.45 

P16331  19.68  0.57  22.32  0.36  0.45 

Q9DB20  9.09  0.12  20.54  0.11  0.45 

P14131  6.04  0.13  9.12  0.11  0.46 

Q9QXX4  21.53  0.09  13.26  0.12  0.46 

P70694  5.57  0.22  6.10  0.18  0.46 

P62908  22.03  0.11  5.25  0.10  0.46 

P29758  8.89  0.61  16.69  0.51  0.46 

Q91VS7  5.52  0.20  10.35  0.16  0.46 

P60867  4.76  0.09  5.98  0.07  0.47 

Q80XN0  11.10  0.11  6.91  0.10  0.48 

Q9WUM5  20.19  0.18  10.18  0.10  0.48 

O55125  18.77  0.14  11.69  0.12  0.48 

Q64471  22.92  0.17  19.73  0.14  0.49 

P34914  4.41  0.24  12.51  0.20  0.50 

P62301  16.68  0.10  5.61  0.10  0.51 

Q8VC30  17.97  0.30  11.58  0.13  0.51 

P06151  5.11  0.21  6.44  0.17  0.51 

P06745  10.30  0.15  9.69  0.14  0.51 
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P55264  14.23  0.27  9.94  0.18  0.51 

O08709  6.04  0.18  11.64  0.16  0.51 

Q91YI0  6.37  0.25  8.66  0.18  0.52 

Q01853  6.57  0.32  9.21  0.30  0.52 

Q62425  3.11  0.38  17.11  0.29  0.53 

P32020  8.64  0.36  11.26  0.33  0.53 

P60710  7.31  0.17  10.03  0.13  0.53 

P28474  17.97  0.15  8.46  0.14  0.53 

P08113  25.25  0.41  19.01  0.28  0.54 

P97872  12.05  0.34  8.53  0.24  0.54 

P05064  9.36  0.42  28.97  0.33  0.54 

Q91VR2  19.44  0.15  7.33  0.09  0.55 

P42125  12.37  0.16  5.56  0.10  0.55 

Q9EQ20  7.74  0.15  5.82  0.11  0.55 

Q9DCW4  19.56  0.22  6.27  0.10  0.56 

Q64374  4.89  0.16  6.22  0.16  0.57 

P10126  7.45  0.17  11.06  0.14  0.57 

O55022  16.57  0.52  22.44  0.35  0.57 

P08228  8.81  0.13  7.70  0.12  0.58 

P14152  8.47  0.19  8.92  0.18  0.58 

P51881  4.88  0.14  7.11  0.13  0.58 

Q921I1  29.17  0.94  23.14  0.76  0.58 

Q06185  4.38  0.11  11.63  0.08  0.59 

P99029  5.46  0.17  8.68  0.14  0.60 

P00329  4.06  0.17  7.74  0.15  0.60 

Q8BWT1  15.14  0.10  4.08  0.08  0.60 

P15532  3.62  0.20  7.67  0.17  0.61 

P97328  11.33  0.21  7.69  0.12  0.61 

Q8QZT1  7.24  0.12  4.41  0.08  0.61 

Q9WVL0  5.07  0.16  11.88  0.14  0.62 

P02088  6.87  0.03  5.38  0.03  0.62 

O88844  4.33  0.18  6.20  0.15  0.62 

P35700  9.44  0.24  10.29  0.27  0.63 

Q91Y97  6.46  0.31  9.16  0.26  0.64 

P40142  4.30  0.12  8.11  0.10  0.64 

P63038  6.02  0.15  7.85  0.10  0.64 

Q8CHT0  5.06  0.12  8.08  0.09  0.64 
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Q8BVI4  21.75  0.19  23.27  0.16  0.65 

O35215  2.86  0.15  6.72  0.16  0.65 

P27773  6.32  0.25  8.13  0.18  0.65 

Q921G7  7.95  0.16  15.89  0.16  0.65 

P13745  4.82  0.16  8.67  0.16  0.65 

P63017  7.29  0.34  13.46  0.22  0.65 

Q9CZS1  6.59  0.47  7.10  0.08  0.66 

P62962  6.29  0.23  9.33  0.19  0.66 

Q9R092  29.04  0.52  10.74  0.32  0.66 

Q99LC5  10.33  0.14  4.45  0.09  0.66 

Q01768  5.26  0.21  12.56  0.17  0.66 

P20029  3.31  0.28  11.11  0.19  0.67 

P09411  3.03  0.16  8.46  0.14  0.67 

Q9QXD6  4.66  0.26  7.19  0.20  0.68 

O09173  8.09  0.25  12.55  0.19  0.68 

Q64105  22.93  0.17  11.18  0.20  0.69 

Q9DCG6  19.28  0.12  6.79  0.17  0.69 

Q91X83  15.60  0.46  9.97  0.38  0.69 

P52760  3.46  0.16  7.25  0.14  0.69 

Q8BH00  10.47  0.17  22.50  0.15  0.69 

Q99KI0  6.12  0.13  3.90  0.11  0.69 

P17182  3.69  0.17  15.35  0.13  0.70 

Q9JII6  6.96  0.18  6.45  0.15  0.70 

Q5FW57  27.94  0.17  7.52  0.10  0.71 

Q61176  7.18  0.20  7.84  0.16  0.71 

P30115  5.72  0.16  6.81  0.16  0.71 

Q91ZJ5  14.00  0.28  9.24  0.22  0.71 

Q91V76  14.09  0.18  8.41  0.17  0.72 

P35505  4.49  0.15  7.47  0.13  0.72 

Q8K009  13.31  0.32  7.75  0.26  0.72 

P17742  7.76  0.24  8.89  0.20  0.72 

P05202  4.62  0.13  6.73  0.09  0.72 

Q9R0H0  7.66  0.44  10.86  0.32  0.72 

Q64442  6.64  0.19  7.64  0.16  0.72 

Q8BMS1  19.24  0.24  19.09  0.12  0.73 

P31786  4.25  0.19  13.95  0.22  0.73 

P52196  9.77  0.15  6.66  0.10  0.73 
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Q63886  6.67  0.21  5.82  0.18  0.73 

Q91VA0  4.10  0.13  8.00  0.10  0.73 

Q9D0F9  5.86  0.16  8.26  0.14  0.73 

P38647  3.62  0.28  16.84  0.30  0.74 

P17751  9.41  0.17  6.11  0.14  0.75 

Q9DBJ1  25.06  0.17  9.42  0.13  0.75 

Q9CPQ8  3.46  0.09  8.44  0.07  0.75 

Q91Z53  7.23  0.14  20.03  0.17  0.75 

O35490  3.53  0.22  7.55  0.18  0.75 

Q9WTP7  8.96  0.21  15.98  0.15  0.75 

P16460  5.48  0.23  8.64  0.17  0.76 

Q8VCT4  8.37  0.23  6.19  0.18  0.76 

P26443  3.73  0.13  8.18  0.08  0.76 

P08249  9.60  0.13  5.51  0.09  0.76 

P50247  4.45  0.22  7.61  0.17  0.76 

P15105  5.55  0.27  9.51  0.20  0.76 

P41216  5.59  0.29  7.39  0.24  0.76 

P47738  7.25  0.38  8.03  0.24  0.77 

Q9CPY7  7.66  0.26  26.85  0.14  0.77 

P24270  7.99  0.53  9.25  0.40  0.78 

O35945  24.42  0.28  12.24  0.17  0.78 

P52825  7.67  0.18  9.65  0.12  0.78 

P01942  6.82  0.03  5.86  0.02  0.79 

P24549  10.12  0.23  7.11  0.17  0.79 

P14211  8.27  0.33  7.15  0.21  0.79 

Q8R0Y6  5.12  0.25  6.12  0.21  0.79 

P07724  6.59  0.26  13.65  0.29  0.79 

A2ASS6  17.87  0.13  25.94  0.14  0.79 

P11352  10.22  0.17  12.06  0.13  0.80 

Q64433  6.00  0.13  7.99  0.12  0.80 

Q99KB8  27.92  0.25  8.01  0.22  0.81 

P35979  8.13  0.07  4.21  0.08  0.81 

P10649  7.53  0.17  9.09  0.17  0.81 

P56480  2.86  0.12  5.67  0.09  0.82 

P17563  9.93  0.18  6.94  0.15  0.83 

Q99LB7  24.96  0.07  5.36  0.10  0.83 

P19157  6.46  0.15  9.17  0.13  0.83 
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Q61133  6.22  0.15  12.63  0.11  0.84 

P19783  9.83  0.14  7.99  0.10  0.87 

Q9CQ62  15.81  0.14  6.34  0.10  0.87 

Q9QXF8  6.88  0.23  6.39  0.17  0.87 

P09103  5.66  0.30  13.44  0.22  0.88 

Q9WTP6  5.14  0.10  15.30  0.11  0.90 

Q9DBM2  7.73  0.18  10.43  0.17  0.91 

Q9QXE0  5.98  0.24  12.65  0.19  0.96 

Q8VCC2  16.45  0.21  12.35  0.21  0.98 

Q99L13  29.76  0.12  6.89  0.08  0.98 

P49429  10.99  0.46  11.52  0.36  0.99 

Q03265  2.72  0.14  6.69  0.09  1.02 

P54869  5.20  0.25  7.69  0.15  1.02 

P05201  5.18  0.18  12.70  0.14  1.02 

Q99JY0  14.92  0.18  9.12  0.10  1.06 

P11725  10.64  0.16  4.98  0.09  1.09 

Q8C196  6.71  0.13  4.08  0.10  1.13 

Q91ZA3  25.10  0.14  10.46  0.08  1.18 

Q91XD4  4.34  0.23  7.89  0.16  1.18 

P51174  9.05  0.14  7.28  0.10  1.20 

Q8VCN5  5.90  0.20  8.17  0.15  1.35 

Q9DBF1  10.63  0.16  6.34  0.11  1.40 

Q8BH95  11.36  0.10  6.84  0.08  1.43 

P56395  5.90  0.31  7.60  0.23  1.54 

Q91X91  27.46  0.40  15.06  0.13 

P50544  7.17  0.46  6.17  0.21 

Q8R086  8.97  0.14  28.04  0.07 

Q99PG0  26.12  0.40  9.32  0.19 

Q922Q1  14.37  0.42  15.00  0.21 

Q8K1Z0  13.90  0.22  6.04  0.11 

O35129  19.71  0.14  4.32  0.08 

Q9D379  12.29  0.39  7.90  0.23 

Q4LDG0  10.35  0.50  14.49  0.29 

P54071  3.15  0.15  5.26  0.09 

P45952  9.25  0.22  7.99  0.13 

Q9CXW4  6.71  0.10  17.44  0.06 

P14824  8.89  0.25  8.05  0.15 
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Q8BW75  8.68  0.17  11.15  0.10 

Q80SW1  15.76  0.31  9.94  0.20 

P38060  10.19  0.19  3.95  0.12 

P52480  9.05  0.22  7.59  0.14 

P63101  13.60  0.26  21.01  0.17 

Q61425  11.44  0.14  7.47  0.09 

P62889  8.75  0.08  17.02  0.05 

P50580  12.01  0.13  17.33  0.09 

Q9CZU6  9.92  0.15  9.54  0.10 

Q8BH59  23.94  0.16  11.00  0.11 

P17156  5.67  0.39  7.09  0.26 

Q9CZ13  6.15  0.14  5.67  0.10 

Q60932  10.62  0.24  12.66  0.17 

Q8K2B3  3.81  0.20  5.99  0.14 

Q8CIM7  15.63  0.61  13.24  0.43 

P61358  4.55  0.11  13.81  0.08 

Q91W90  12.97  0.33  8.24  0.23 

Q9JLJ2  6.48  0.19  7.70  0.14 

P67778  15.50  0.13  8.19  0.09 

Q9D8N0  9.48  0.13  14.26  0.09 

Q91VD9  4.59  0.13  21.39  0.09 

P62737  9.11  0.16  8.55  0.12 

P50172  11.64  0.31  9.61  0.23 

Q9DBA8  6.74  0.13  6.42  0.10 

Q07417  7.60  0.11  7.61  0.08 

P25444  28.52  0.13  13.53  0.10 

Q9CZ30  19.07  0.18  10.37  0.14 

P05213  22.37  0.17  10.27  0.13 

Q6TXD4  13.52  0.12  11.28  0.09 

Q9DCT1  24.13  0.17  14.99  0.13 

Q6WKZ8  8.43  0.16  7.89  0.12 

P15626  22.14  0.21  17.05  0.16 

P68369  10.75  0.19  8.54  0.15 

P35492  8.94  0.30  10.19  0.23 

Q9JHI5  23.26  0.12  8.02  0.09 

Q8K023  15.91  0.18  15.66  0.14 

Q93092  19.80  0.28  11.89  0.22 
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P51660  12.85  0.27  9.90  0.21 

P37040  13.28  0.41  19.12  0.32 

Q8BFZ3  12.00  0.16  9.91  0.12 

P61922  6.36  0.16  8.43  0.13 

P11499  14.30  0.36  15.72  0.29 

Q91WR5  9.23  0.20  8.84  0.16 

Q9JM62  8.58  0.33  9.18  0.27 

Q9D6Y7  6.47  0.22  17.67  0.18 

P17717  6.71  0.29  9.75  0.24 

P09671  3.87  0.11  8.96  0.09 

Q61696  7.39  0.35  9.96  0.29 

P00405  6.45  0.11  9.98  0.09 

Q91WC3  11.27  0.21  13.49  0.17 

Q9DCU9  21.26  0.10  8.80  0.08 

Q6ZQ58  7.04  0.03  8.10  0.03 

P56654  22.39  0.72  10.76  0.61 

P68040  26.51  0.08  23.99  0.07 

Q8VCR7  7.90  0.18  15.79  0.16 

P02089  8.65  0.03  7.40  0.02 

Q60759  14.83  0.19  9.41  0.16 

Q99J08  7.39  0.25  8.29  0.22 

Q64331  21.24  0.05  8.52  0.05 

P62900  15.72  0.07  8.42  0.06 

Q8VCX1  18.38  0.15  6.91  0.13 

Q9JMD3  7.79  0.22  7.10  0.20 

Q9DCN2  5.91  0.23  9.64  0.20 

P67984  8.62  0.09  12.26  0.08 

Q9R0P3  3.68  0.16  6.12  0.14 

Q9D6Y9  21.99  0.13  11.36  0.12 

Q6PGC1  4.33  0.02  5.08  0.02 

P62270  15.58  0.07  6.09  0.06 

Q64467  6.53  0.16  8.69  0.15 

Q78JT3  9.37  0.19  7.05  0.18 

P40936  9.26  0.18  12.21  0.17 

Q9D826  10.50  0.24  9.01  0.23 

Q8K157  4.58  0.17  8.33  0.16 

P61982  26.08  0.11  15.62  0.11 
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P06467  11.40  0.03  9.75  0.03 

P14869  19.10  0.07  4.20  0.07 

Q9EQF5  15.84  0.25  23.26  0.24 

Q9DBG1  13.50  0.28  12.79  0.28 

Q9CZX8  8.28  0.11  15.49  0.11 

Q9CQC9  5.17  0.27  20.63  0.27 

Q80UF4  11.72  0.23  6.55  0.23 

Q9CQN1  23.57  0.27  8.22  0.27 

Q8JZV9  23.18  0.11  28.75  0.11 

Q9JHW2  11.09  0.13  5.81  0.14 

Q80W21  7.46  0.16  11.42  0.17 

P47740  10.95  0.17  20.08  0.18 

Q9DCX2  6.87  0.10  10.16  0.11 

Q8CAY6  10.07  0.17  22.57  0.18 

Q9D819  25.97  0.16  6.45  0.18 

P97820  28.84  0.17  19.16  0.19 

Q8VC12  5.09  0.19  15.93  0.22 

O08756  12.19  0.11  18.18  0.13 

Q8VC28  26.95  0.11  11.31  0.14 

Q922R8  21.80  0.23  16.59  0.30 

P62245  10.65  0.09  7.13  0.12 

Q8VCR2  7.53  0.21  26.02  0.29 

Q05421  21.23  0.86  18.21  1.35 

Q9QX47  15.02  0.15  15.55  0.25 

P52840  27.15  0.14  8.54  0.24 

P14206  14.93  0.05  24.73  0.09 

P02762  11.20  2.32  28.27  4.35 

P50285  9.63  0.10  12.51  0.22 

P58710  24.48  0.06  12.07  0.28 

P56657  10.53  0.12  12.48  0.65 
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Table S2: List of final filtered measurements for each protein with the uniprot/swissprot accession 
numbers (column b, c). The confidence value of the fit for each protein is listed in as %CV.  The turnover 
rates (k) obtained from the fit of the fractional synthesis curves as shown in Figure S3 (column d), SILAM 
Quantitation ratio for CR mice (AL = 1) is listed in column j.  Calculated flux in both CR and AL mice. 
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Table S4: The standard curve of quantitation ratios measured for peptides belonging to 7 proteins.  
Samples were formulated at the ratios indicated from unlabeled liver cell lysate or lysate from cells 
labeled with the heavy amino acid, U-13C6-L-arginine U-13C6-L-lysine.  The average measured ratio for 
the spectral intensities of the heavy to light peptide agreed well with the expected value.   
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Accession 
Genes in 
dataset 

Transcription 
Factor 

Literature 
Expectation (# of 

citations) 
Experimental 

Log Ratio Prediction

P17751  TPI1  MYCN Upregulates (1)  ‐0.071  Inhibited 

Q64442  SORD  MYCN Upregulates (1)  ‐0.075  Inhibited 

P62908  RPS3  MYCN Upregulates (1)  ‐0.053  Inhibited 

P25444  RPS2  MYCN Upregulates (1)  ‐0.132  Inhibited 

Q9CZX8  RPS19  MYCN Upregulates (1)  ‐0.004  Inhibited 

P14131  RPS16  MYCN Upregulates (1)  ‐0.069  Inhibited 

P14869  RPLP0  MYCN Upregulates (1)  ‐0.014  Inhibited 

P62900  RPL31  MYCN Upregulates (1)  ‐0.059  Inhibited 

P62889  RPL30  MYCN Upregulates (1)  ‐0.175  Inhibited 

P61358  RPL27  MYCN Upregulates (1)  ‐0.155  Inhibited 

P67984  RPL22  MYCN Upregulates (1)  ‐0.047  Inhibited 

P35980  RPL18  MYCN Upregulates (1)  ‐0.140  Inhibited 

Q9CXW4  RPL11  MYCN Upregulates (1)  ‐0.224  Inhibited 

Q01768  NME2  MYCN Upregulates (2)  ‐0.093  Inhibited 

P15532 
NME1 (includes 

EG:18102)  MYCN Upregulates (3)  ‐0.070  Inhibited 

P63038  HSPD1  MYCN Upregulates (2)  ‐0.168  Inhibited 

P11499  HSP90AB1  MYCN Upregulates (1)  ‐0.096  Inhibited 

Q9D8N0  EEF1G  MYCN Upregulates (1)  ‐0.143  Inhibited 

P05064  ALDOA  MYCN Upregulates (1)  ‐0.106  Inhibited 

P24549  ALDH1A1  MYCN Upregulates (1)  ‐0.124  Inhibited 

P05213  TUBA1B  MYCN Downregulates (1)  ‐0.128  Activated 

P60710  ACTB  MYCN Downregulates (1)  ‐0.106  Activated 

P67778  PHB  MYCN Regulates (1)  ‐0.150    

P08228  SOD1  PPAR gamma  Upregulates (3)  ‐0.024  Inhibited 

P14206  RPSA  PPAR gamma  Downregulates (1)  0.236  Inhibited 

Q05920  PC  PPAR gamma  Upregulates (24)  ‐0.113  Inhibited 

Q91VS7  MGST1  PPAR gamma  Upregulates (2)  ‐0.088  Inhibited 

P14152  MDH1  PPAR gamma  Upregulates (3)  ‐0.022  Inhibited 

Q9JHI5  IVD  PPAR gamma  Upregulates (2)  ‐0.113  Inhibited 

P54869  HMGCS2  PPAR gamma  Upregulates (3)  ‐0.224  Inhibited 

Q99JY0  HADHB  PPAR gamma  Upregulates (2)  ‐0.249  Inhibited 

Q8BMS1  HADHA  PPAR gamma  Upregulates (2)  ‐0.298  Inhibited 
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P13707  GPD1  PPAR gamma  Upregulates (7)  ‐0.138  Inhibited 

P12710  FABP1  PPAR gamma  Upregulates (8)  ‐0.048  Inhibited 

Q9DBM2  EHHADH  PPAR gamma  Upregulates (10)  ‐0.022  Inhibited 

Q9CZU6  CS  PPAR gamma  Upregulates (3)  ‐0.170  Inhibited 

P52825  CPT2  PPAR gamma  Upregulates (5)  ‐0.189  Inhibited 

Q8VCT4  CES1  PPAR gamma  Upregulates (1)  ‐0.092  Inhibited 

P24270  CAT  PPAR gamma  Upregulates (8)  ‐0.122  Inhibited 

P14211  CALR  PPAR gamma  Upregulates (1)  ‐0.198  Inhibited 

Q80XN0 
BDH1 (includes 
EG:100037356)  PPAR gamma  Upregulates (2)  ‐0.073  Inhibited 

Q9DB20  ATP5O  PPAR gamma  Upregulates (2)  ‐0.040  Inhibited 

P41216  ACSL1  PPAR gamma  Upregulates (5)  ‐0.076  Inhibited 

Q9R0H0  ACOX1  PPAR gamma  Upregulates (16)  ‐0.145  Inhibited 

Q07417  ACADS  PPAR gamma  Upregulates (3)  ‐0.135  Inhibited 

P45952  ACADM  PPAR gamma  Upregulates (3)  ‐0.224  Inhibited 

Q8BWT1  ACAA2  PPAR gamma  Upregulates (2)  ‐0.075  Inhibited 

Q921H8  ACAA1  PPAR gamma  Upregulates (3)  ‐0.132  Inhibited 

Q9D379  EPHX1  PPAR gamma  Downregulates (1)  ‐0.232  Activated 

P51174  ACADL  PPAR gamma  Regulates (3)  ‐0.134    

Q9JLJ2  ALDH9A1  PPAR gamma  Regulates (1)  ‐0.152    

P13745  GSTA5  PPAR gamma  Regulates (1)  0.001    

Q9ET01  PYGL  PPAR gamma  Regulates (4)  ‐0.140    

P32020  SCP2  PPAR gamma  Regulates (2)  ‐0.033    

P40142  TKT  PPAR gamma  Regulates (2)  ‐0.049    

P61982  YWHAG  PPAR gamma  Regulates (2)  ‐0.017    

P17751  TPI1  MYC Upregulates (4)  ‐0.071  Inhibited 

P51881  SLC25A6  MYC Upregulates (1)  ‐0.030  Inhibited 

P60867  Rps20  MYC Upregulates (1)  ‐0.069  Inhibited 

Q9CZX8  RPS19  MYC Upregulates (2)  ‐0.004  Inhibited 

P62270  RPS18  MYC Upregulates (1)  ‐0.032  Inhibited 

P14131  RPS16  MYC Upregulates (1)  ‐0.069  Inhibited 

P62889  RPL30  MYC Upregulates (1)  ‐0.175  Inhibited 

P61358  RPL27  MYC Upregulates (1)  ‐0.155  Inhibited 

P67984  RPL22  MYC Upregulates (1)  ‐0.047  Inhibited 

P17742  PPIA  MYC Upregulates (1)  ‐0.070  Inhibited 

P53657  PKLR  MYC Upregulates (2)  ‐0.032  Inhibited 

P67778  PHB  MYC Upregulates (3)  ‐0.150  Inhibited 
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P09411  PGK1  MYC Upregulates (4)  ‐0.046  Inhibited 

Q01768  NME2  MYC Upregulates (1)  ‐0.093  Inhibited 

P15532 
NME1 (includes 

EG:18102)  MYC Upregulates (2)  ‐0.070  Inhibited 

P06151  LDHA  MYC Upregulates (12)  ‐0.080  Inhibited 

Q64433  HSPE1  MYC Upregulates (6)  ‐0.029  Inhibited 

P63038  HSPD1  MYC Upregulates (11)  ‐0.168  Inhibited 

P06745  GPI  MYC Upregulates (4)  ‐0.047  Inhibited 

P16858 
Gapdh (includes 

others)  MYC Upregulates (1)  ‐0.067  Inhibited 

P17182  ENO1  MYC Upregulates (9)  ‐0.109  Inhibited 

P16460  ASS1  MYC Upregulates (2)  ‐0.118  Inhibited 

P07724  ALB  MYC Downregulates (1)  0.050  Inhibited 

P50247  AHCY  MYC Upregulates (1)  ‐0.096  Inhibited 

Q63886  UGT1A1  MYC Downregulates (1)  ‐0.078  Activated 

Q9CQN1  TRAP1  MYC Upregulates (1)  0.007  Activated 

P09671  SOD2  MYC Downregulates (1)  ‐0.081  Activated 

Q99LB7  SARDH  MYC Upregulates (1)  0.158  Activated 

P62245  RPS15A  MYC Upregulates (1)  0.135  Activated 

P38647  HSPA9  MYC Upregulates (1)  0.021  Activated 

P31786  DBI  MYC Upregulates (1)  0.056  Activated 

P52825  CPT2  MYC Downregulates (1)  ‐0.189  Activated 

Q9WTP6  AK2  MYC Upregulates (6)  0.034  Activated 

P60710  ACTB  MYC Downregulates (1)  ‐0.106  Activated 

Q8QZT1  ACAT1  MYC Regulates (5)  ‐0.152    

P55264  ADK  MYC Regulates (5)  ‐0.184    

P14824  ANXA6  MYC Regulates (5)  ‐0.207    

Q61176  ARG1  MYC Regulates (1)  ‐0.098    

Q61696  HSPA1A/HSPA1B  MYC Regulates (1)  ‐0.079    

P54071  IDH2  MYC Regulates (5)  ‐0.229    

O35129  PHB2  MYC Regulates (5)  ‐0.234    

P52480  PKM2  MYC Regulates (2)  ‐0.193    

P40142  TKT  MYC Regulates (5)  ‐0.049    

Q63886  UGT1A1  HNF4A Upregulates (1)  ‐0.078  Inhibited 

P32020  SCP2  HNF4A Upregulates (2)  ‐0.033  Inhibited 

Q9ET01  PYGL  HNF4A Upregulates (1)  ‐0.140  Inhibited 

P53657  PKLR  HNF4A Upregulates (10)  ‐0.032  Inhibited 
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P11725  OTC  HNF4A Upregulates (9)  ‐0.219  Inhibited 

P49429  HPD  HNF4A Upregulates (1)  ‐0.106  Inhibited 

P16858 
Gapdh (includes 

others)  HNF4A Upregulates (1)  ‐0.067  Inhibited 

P12710  FABP1  HNF4A Upregulates (7)  ‐0.048  Inhibited 

Q80XN0 
BDH1 (includes 
EG:100037356)  HNF4A Upregulates (1)  ‐0.073  Inhibited 

Q91Y97  ALDOB  HNF4A Upregulates (3)  ‐0.086  Inhibited 

P47738  ALDH2  HNF4A Upregulates (11)  ‐0.206  Inhibited 

P41216  ACSL1  HNF4A Upregulates (1)  ‐0.076  Inhibited 

Q8QZT1  ACAT1  HNF4A Upregulates (1)  ‐0.152  Inhibited 

Q8BWT1  ACAA2  HNF4A Regulates (1)  ‐0.075    

Q99KI0 
ACO2 (includes 
EG:11429)  HNF4A Regulates (1)  ‐0.086    

Q9R0H0  ACOX1  HNF4A Regulates (1)  ‐0.145    

Q9WTP6  AK2  HNF4A Regulates (1)  0.034    

Q91WR5  AKR1C1/AKR1C2  HNF4A Regulates (1)  ‐0.095    

Q8K023  AKR1C3  HNF4A Regulates (1)  ‐0.109    

P70694  AKR1C4  HNF4A Regulates (3)  ‐0.083    

P24549  ALDH1A1  HNF4A Regulates (1)  ‐0.124    

Q8R0Y6  ALDH1L1  HNF4A Regulates (1)  ‐0.074    

Q8BH00  ALDH8A1  HNF4A Regulates (1)  ‐0.075    

O35490  BHMT  HNF4A Regulates (1)  ‐0.098    

Q91V76  C11orf54  HNF4A Regulates (1)  ‐0.029    

P52825  CPT2  HNF4A Regulates (1)  ‐0.189    

Q9CZU6  CS  HNF4A Regulates (1)  ‐0.170    

Q9QXD6  FBP1  HNF4A Regulates (1)  ‐0.109    

Q9D6Y9  GBE1  HNF4A Regulates (1)  ‐0.046    

P05201  GOT1  HNF4A Regulates (1)  ‐0.110    

P11352 
GPX1 (includes 
EG:14775)  HNF4A Regulates (1)  ‐0.103    

Q91Z53  GRHPR  HNF4A Regulates (1)  0.081    

Q9WVL0  GSTZ1  HNF4A Regulates (1)  ‐0.040    

Q78JT3  HAAO  HNF4A Regulates (1)  ‐0.027    

Q8BMS1  HADHA  HNF4A Regulates (1)  ‐0.298    

Q99JY0  HADHB  HNF4A Regulates (1)  ‐0.249    

P35492  HAL  HNF4A Regulates (1)  ‐0.114    
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O09173  HGD  HNF4A Regulates (1)  ‐0.116    

P50172  HSD11B1  HNF4A Regulates (1)  ‐0.137    

P51660  HSD17B4  HNF4A Regulates (1)  ‐0.108    

P08113  HSP90B1  HNF4A Regulates (1)  ‐0.166    

P20029  HSPA5  HNF4A Regulates (1)  ‐0.175    

Q64433  HSPE1  HNF4A Regulates (1)  ‐0.029    

P08249 
MDH2 (includes 

EG:17448)  HNF4A Regulates (1)  ‐0.168    

Q91VS7  MGST1  HNF4A Regulates (1)  ‐0.088    

Q62425  NDUFA4  HNF4A Regulates (1)  ‐0.116    

Q91VD9  NDUFS1  HNF4A Regulates (1)  ‐0.141    

P15532 
NME1 (includes 

EG:18102)  HNF4A Regulates (1)  ‐0.070    

Q9D0F9  PGM1  HNF4A Regulates (1)  ‐0.049    

P67778  PHB  HNF4A Regulates (1)  ‐0.150    

O35129  PHB2  HNF4A Regulates (1)  ‐0.234    

P52480  PKM2  HNF4A Regulates (1)  ‐0.193    

P99029  PRDX5  HNF4A Regulates (1)  ‐0.099    

P35980  RPL18  HNF4A Regulates (1)  ‐0.140    

P62900  RPL31  HNF4A Regulates (1)  ‐0.059    

P62270  RPS18  HNF4A Regulates (1)  ‐0.032    

Q9QXX4  SLC25A13  HNF4A Regulates (1)  0.100    

Q9JMD3  STARD10  HNF4A Regulates (1)  ‐0.057    

Q9WUM5  SUCLG1  HNF4A Regulates (1)  ‐0.255    

P52840  SULT1A1  HNF4A Regulates (1)  0.233    

Q921I1  TF  HNF4A Regulates (1)  ‐0.091    

Q8BWQ1  UGT2A3  HNF4A Regulates (1)  0.027    

Q60932  VDAC1  HNF4A Regulates (1)  ‐0.158    
 

 

Table S5: Predicted expression profiles from the literature were compared against the measured kinetic 
perturbationsof proteins in the Liver.  Four transcription factors were significantly negatively correlated 
with the data found in the Ingenuity IPA data base. 
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Abstract 
Calorie restriction (CR) increases 
longevity and retards the development of 
many chronic diseases, but the underlying 
metabolic signals are poorly understood.  
Increased fatty acid (FA) oxidation and 
reduced FA synthesis have been 
hypothesized to be important metabolic 
adaptations to CR.  At metabolic steady 
state, however, FA oxidation must match 
FA intake plus synthesis; moreover, FA 
intake is low, not high, during CR.  It is 
therefore not clear how FA dynamics are 
altered during CR.  Accordingly, we 
measured food intake patterns, whole-
body fuel selection, endogenous FA 

synthesis and gene expression in mice on 
CR.  Within two days of starting CR, a 
shift occurred to a cyclic, diurnal pattern 
of whole-body FA metabolism, with an 
initial phase of elevated endogenous FA 
synthesis (respiratory exchange ratio 
[RER]>1.10, lasting 4-6 hours after food 
provision), followed by a prolonged phase 
of FA oxidation (RER=0.70, lasting 18-20 
hours).  CR mice oxidized four times as 
much fat per day as ad libitum fed (AL) 
controls (367 ± 19 vs 97 ± 14 mg/d, P< 
O.001) despite reduced energy intake 
from fat.  This increase in FA oxidation 
was balanced by a 3-fold increase in 
adipose tissue FA synthesis compared to 
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AL.  Expression of fatty acid synthase and 
acetyl-CoA carboxylase mRNA were 
increased in adipose and  liver in a time-
dependent manner. We conclude that CR 
induces a surprising metabolic pattern 
characterized by periods of elevated FA 
synthesis alternating with periods of FA 
oxidation disproportionate to dietary FA 
intake.  This pattern may have 
implications for oxidative damage and 
disease risk. 

Key words 
Fat oxidation, fat synthesis, lipogenesis, 
palmitoleate, heavy water 
 

Introduction 
Calorie restriction (CR) delays the 
development of chronic disease and 
prolongs lifespan in mice (1, 17, 27, 34).  
These effects correlate with a rapid 
induction in the expression of certain 
genes that persist as long as animals 
remain on CR (10, 36), even after energy 
balance is restored.  These observations 
suggest the presence of a chronic signal of 
reduced energy availability that persists 
after energy balance has been 
reestablished.  However, the underlying 
metabolic signals and adaptations 
responsible are not fully understood.  
Mice on CR regimens have been reported 
to exhibit increased expression of genes 
for fatty acid (FA) oxidation and 
decreased expression of genes for FA 
synthesis compared to ad libitum fed (AL) 
controls (6, 7, 30, 38).  Due to differential 
entry points into the electron transport 
chain, a metabolic shift from carbohydrate 
to FA oxidation may reduce the 
production of reactive oxygen species 
(ROS) (15).  A shift to FA oxidation 
thereby represents a potential mechanism 

for reduced oxidative damage, which has 
been proposed as a potential explanation 
for the health benefits of CR (14, 15, 29, 
35).  It has also been proposed that 
reduced rates of FA synthesis may inhibit 
tumor formation (30, 38).  Thus, changes 
in macronutrient metabolism – 
specifically, FA oxidation or synthesis - 
may be an important metabolic mediator 
of the health benefits of CR.   
A problem with the FA oxidation 
hypothesis, however, relates to a basic 
principle of energetics and macronutrient 
balance in whole organisms. At metabolic 
steady state, i.e., when body composition 
is stable, fuel selection must match dietary 
macronutrient composition (13, 44).  In 
other words, the respiratory quotient 
(RQ) over each 24-hour period is usually 
identical to the net daily “food quotient” 
(FQ).  Since the macronutrient 
composition of the diets fed to CR and AL 
mice are typically identical (FQ = 0.94) 
and total energy intake is lower on CR, 
neither relative nor absolute FA intake is 
elevated in CR animals. On the surface, 
these considerations argue against a role 
for increased FA oxidation rates as a 
signal mediating health benefits in CR 
mice. 
The goal of this study was to determine 
whole body FA oxidation and synthesis 
rates in CR and AL mice, using a 
combination of indirect calorimetry and 
stable isotope labeling, and to compare 
these metabolic changes to gene 
expression in white adipose tissue and 
liver.  We report here a rapidly induced 
diurnal pattern of FA synthesis and 
oxidation in mice on CR regimens.  We 
hypothesize that this pattern of 
macronutrient metabolism could provide 
signals linking CR to health benefits.   
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Methods 

Mice and diets 
Nine-week-old C57BL/6J male mice were 
obtained from Charles River Breeding 
Laboratories, housed individually, and 
maintained under temperature and light 
controlled conditions (12 hour light/dark 
cycle: lights on at 7 AM and off at 7 PM) 
for 1 week. During this acclimation period, 
mice were given free access to water and a 
semipurified AIN-93M diet (Bio-Serv), 
and the daily amount of food consumed 
by each mouse was recorded. 
At 10 weeks of age, mice were randomly 
assigned to either the CR or the AL 
control group.   Mice in the AL group were 
provided free access to food throughout 
the day, while mice in the CR group were 
provided 70% of the calories consumed by 
the AL group.  Food was provided to the 
CR group daily at 6 PM.  Mice were 
maintained on CR or AL for at least 5 
weeks before any experimental studies 
were carried out.  Upon completion of 
each experiment, mice were anesthetized 
under 3% isoflurane and blood was 
collected via cardiac puncture, followed by 
cervical dislocation. All procedures and 
protocols received approval from the 
University of California Berkeley Animal 
Use Committee. 

Food Consumption 
Food consumption was determined by 24-
hour automatic food monitoring system in 
Environment Controlled CLAMS 
metabolic cages (Columbus Scientific).  
Total food consumption was measured six 
times per hour and averaged to determine 
hourly food consumption. 

 

Respiratory Exhange Ratio (RER), 
Energy Expenditure (EE), FA 
Oxidation and Fuel Selection 
We determined RER, EE, FA oxidation 
and fuel selection in environment 
controlled CLAMS metabolic cages, 
equipped with an indirect open circuit 
calorimeter (Oxymax Equal Flow System). 
The system measures carbon dioxide 
produced and oxygen consumed over a 
one-minute period, six times per hour.  
These values were averaged to determine 
the rate of carbon dioxide produced 
(VCO2) and oxygen consumed (VO2) in 
milliliters per hour.  EE, RER and FA 
oxidation were calculated using the 
following equations (25):  

 

 

 
Daily FA oxidation was calculated from 
the 24-hour area under the curve (AUC) of 
hourly FA oxidation.  Daily carbohydrate 
plus protein oxidation was calculated 
from total daily EE, determined from the 
AUC of hourly EE, minus daily FA 
oxidation. 

FA Synthesis  
FA synthesis was measured by stable 
isotope incorporation, with analysis by gas 
chromatography-mass spectrometry (GC-
MS).  Mice were labeled with an 
intraperitoneal injection of 100% 2H2O 
(0.35ml/ 10g body weight) and then 
provided 8% 2H2O as drinking water for 
6–24 hours, as described previously (40).  
Upon completion of labeling, mice were 
euthanized and tissue or serum was 
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collected and homogenized in 2:1 
chloroform/methanol solution. 
Pentadecanoic acid (10mg/mL) was added 
to solutions as an internal control. Lipid 
was extracted in methanol/chloroform 
overnight and methylated with 5% 
methanolic acid with heating at 50°C for 1 
hour. The FA methyl esters were extracted 
via the Folch technique with hexane after 
the addition of water. 
Total FA concentrations were measured 
via gas chromatography-flame ionization 
detection using an Agilent 6890N GC 
(Agilent Technologies, Palo Alto, CA) and 
a DB-225MS column. Hydrogen was used 
as carrier gas at a constant flow rate of 
40mL/min. The temperature of the GC 
oven was set to 110°C for 2 minutes, 
increased to 220°C for 8min and held at 
240°C for 5 minutes. HP Chemstation 
software was used for data analysis.  
The fraction of newly synthesized non-
essential saturated FA formed during the 
2H2O labeling period was assessed using a 
combinatorial model of polymerization 
biosynthesis, as described previously (37, 
39).  Briefly, mass isotopomer distribution 
analysis (MIDA) was used to determine 
the number (n) of hydrogen atoms in FA 
C–H bonds that were derived from 
cellular water during endogenous 
synthesis of FA.  Enrichments, or excess 
fractional molar abundances (EMx) above 
baseline, were measured for the parent 
(EM0), single-labeled (EM1) and double-
labeled (EM2) mass isotopomers in the FA 
by GC-MS. Specifically, the fractional 
abundances of molecular anions m/z 270, 
271 and 272 (for 16:0, palmitate), and m/z 
298, 299 and 300 (for 18:0, stearate) were 
determined in natural abundance 
(baseline) samples and in 2H2O labeled 
samples. The measured body 2H2O 

enrichment was then used to represent 
the isotopic enrichment of hydrogen 
atoms entering C-H bonds in the FA 
synthetic pathway, i.e., the true precursor 
pool (p) (37, 39), and n was calculated 
from EM2/EM1 ratios, as described 
previously (22). The maximal or 
asymptotic 2H excess mass +1 
isotopomeric enrichment (A*1) possible in 
the FA at this p and n, representing the 
EM1 value if 100% of the FA were newly 
synthesized from this body water pool was 
then calculated (37, 39). The measured 
EM1 value was divided by the asymptotic 
value to calculate the fraction (f) of FA 
that was endogenously synthesized during 
the labeling period. 

  *11 AEMfFAdsynthesizelyendogenousFraction 

 
This approach was modified to determine 
the fractional synthesis of palmitoleate 
(16:1) and oleate (18:1).  The double bonds 
were saturated by reacting 10mg of FA 
methyl esters with 5mg of bromine in 
400uL of carbon tetrachloride for 30 
minutes.  The resultant dibromo methyl 
ester-FAs were analyzed by positive 
chemical ionization and, after loss of 
bromine, anions m/z 347 and 348 (for 
16:1) and m/z 377, 378 and 379 (for 18:1) 
were compared to determine EM1 and 
EM2 values. 
Whole-body fat mass, used to calculate 
total adipose FA synthesis, was estimated 
at 15% body weight for CR and 32% body 
weight for AL, based on literature values 
(3, 4, 9, 16, 18, 26). 

Gene Expression 
RNA was isolated from snap frozen 
inguinal and epididymal adipose tissue 
and liver tissue using RNeasy kit (Qiagen) 
and reverse transcribed with M-MulV 
reverse transcriptase (New England 
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Biolabs).  Next, 25ng of diluted cDNA was 
run on an ABI 7500 Fast Real-Time PCR 
System, using TaqMan gene expression 
master mix and probed with fatty acid 
synthase (FAS, Mm01253300_g1), acetyl-
coA carboxylase 1 (ACC1, 
Mm01304289_m1), beta-2 microglobulin 
(B2M, Mm00437762_m1), sterol 
regulatory element-binding protein 1 
(SREBP-1; Mm00550338_m1), 
peroxisome proliferator-activated 
receptor gamma (PPARγ; 
Mm00440945_m1) and glyceraldeyde-3-
phosphate dehydrogenase (GAPDH, Pre-
developed TaqMan assay reagent) 
according to manufacturers instructions 
(Applied Biosystems). To account for 
potential time dependent changes in any 
single reference gene,  the expression of 
FAS, ACC1, SREBP-1 and PPARγ mRNA 
were divided by the expression of two 
reference genes (GAPDH and B2-
microglobin) in each tissue and these 
values were then averaged.  Data from all 
groups were expressed as means ± SEM, 
relative to AL control animals at 6 PM. 

Serum Lipids 
Serum non-esterified fatty acid (NEFA) 
and triglyceride (TG) concentrations were 
determined by HR Series NEFA-HR and 
L-Type TG M methods (Wako 
Diagnostics), respectively. 

Statistical Analysis 
All results are presented as mean ± SEM.  
The area under the curve for Fig. 3 was 
calculated with a baseline of 0 and from x 
=0 to x= 24.  Differences between groups 
were analyzed by two-way ANOVA with 
Bonferroni post hoc test or T-test.  Data 
were analyzed by Prism Graphpad 
software (version 5.0a). 
 

Results 

Body weights and food intake 
pattern.  
The most obvious changes in response to 
CR in rodents are lower body weights and 
reduced adiposity. Another major 
adaptation that we have observed is a 
dramatic alteration in feeding pattern.  
Mice fed AL maintained relatively 
constant energy intake throughout the day 
(0.69  0.07 kcal/h; Fig. 1A).  In contrast, 
CR mice given food each day at 6 PM 
consumed their entire daily allotment of 
food in approximately one hour, at an 
average rate of 8.7 kcal/h, followed by a 
nearly twenty-three hour daily absence of 
food energy intake (Fig. 1A).  

Fuel selection 
To determine whether this pattern of 
feeding and fasting influences fuel 
selection throughout the day and to 
determine the duration of CR needed to 
induce a potential change, the RER was 
calculated after various durations of CR.  
We observed that CR immediately led to a 
dramatic change in the daily pattern of 
fuel selection (Fig. 2).  While AL mice 
maintained an RER of approximately 0.9 - 
1.0, representing primarily carbohydrate 
oxidation (Fig. 2A), as expected from the 
predominance of carbohydrate energy in 
the diet, CR mice exhibited two distinct 
phases of fuel selection each day (Fig. 2B-
F).  In the first phase, immediately 
following provision of food, the CR mice 
exhibited RER values significantly greater 
than 1.0, which is generally taken to 
represent both carbohydrate oxidation 
and endogenous FA synthesis (33).  In the 
second phase, beginning approximately 
six hours after food is presented each day, 
RER values rapidly fell to 0.7, 
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representing exclusively FA oxidation. 
This pattern became more pronounced 
over the course of the first 7 days of CR 
(Fig. 2A-D) and the circadian pattern 
continued for the remainder of the CR 
feeding regimen (Fig. 2F).  Thus, it 
appears that CR rapidly and significantly 
alters whole body fuel selection, leading to 
a metabolically unusual pattern of both 
increased FA oxidation and increased FA 
synthesis, on the whole-body level. 

Total fat oxidation in the whole 
body 
The energy derived from FA oxidation was 
calculated from a combination of RER 
(Fig. 3A) and energy expenditure (Fig. 
3B). Both the hourly and daily FA 
oxidation rates are shown (Fig. 3C & 3D; 
see calculations).  CR mice oxidized 
almost four times as much fat as AL mice 
per day (3.3  0.17 vs. 0.87  0.13 kcal/d, 
or 367  19 and 97  14 mg/d, 
respectively; Fig. 3D).  CR mice derived 
37% of their daily energy needs from fat 

oxidation, compared to only 7% for AL 
mice (Fig. 3D). Fat content of the diet fed 
to both groups was identical (9.7% of 
metabolizable energy).  These data 
demonstrate that CR dramatically 
increases the total energy derived directly 
from FA oxidation compared to AL 
controls.  
CR mice oxidized over 300mg of fat per 
day, but they only consumed 92 mg of fat 
per day. Over the last 28 days of the 35 
day CR regimen, CR mice were in neutral 
or positive energy balance (Fig. 1B).  To 
establish whether increased FA synthesis 
can be detected biochemically and 
whether this synthesis can account for the 
higher FA oxidation rates in the whole 
body, we measured endogenous FA 
synthesis from 2H incorporation into FAs 
in adipose and liver tissue after 
endogenous labeling with 2H2O.   
 
 

Figure 1.  Altered feeding pattern and body weight in response to calorie restriction.  Food 
was provided to CR and AL mice at 6 PM.  Food consumption was recorded hourly, using food balance in 
metabolic cages, over the next twenty-four hours (A). Mice were weighed weekly (B).  Values are means ± 
SEM for 6 mice per group.  indicates time when daily food was provided to CR mice. 
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Endogenous fatty acid synthesis 
CR led to a 15.8-, 26.8-, 30- and 3.2-fold 
increase in the daily accumulation of 
endogenously synthesized palmitate, 
palmitoleate, stearate and oleate (mg/g 
adipose tissue), respectively, in adipose 
tissue relative to AL controls (Fig. 4A).   
In contrast, CR did not alter the 
accumulation of any endogenously 
synthesized FA in the liver (Fig. 4B).  
When extrapolated to total fat mass, CR 
mice synthesized and retained in adipose 
tissue and liver a total of 212  13 mg 
FA/day as compared to 91  9 mg/day for 

AL controls (Fig. 4C). Thus, endogenous 
FA synthesis that was retained in the 
adipose tissue and liver (212 mg/day) 
accounts for a substantial proportion of 
the whole body FA oxidation that was in 
excess of food intake (~270 mg/day). 
Endogenous FAs that were synthesized 
and directly oxidized, rather than mixing 
into the general adipose TG pool,  would 
not accrue or be measured in adipose 
depots, and could account for the 
remainder of FA oxidation in excess of 
intake. 

Figure 2.  Time course of effect of CR on fuel selection pattern.  AL fed mice were placed in 
metabolic cages before starting a CR diet (A) and again at day 1 (B), 4 (C), 7 (D), 28 (E) and 56 (F) of 
calorie restriction.  Gas exchange was monitored for twenty-four hours each time mice were placed in 
metabolic cages.  Respiratory exchange ratios (RER) were recorded six times per hour, then averaged to 
give RER for each hour.  Values are means ± SEM for 4 mice per diet.  indicates time when daily food 
was provided to CR mice. 
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To determine whether the endogenous 
synthesis of FAs occurred in the adipose 
tissue directly or were transported to the 
adipose following synthesis in the liver, 
we measured 2H incorporation into 
palmitate in adipose (subcutaneous and 
epididymal depots), liver and VLDL 
throughout the first day after exposure to 
2H2O (Fig. 5).  In the first 3 hours after 
food was provided, a 5-fold increase was 
observed in the accumulation of newly 
synthesized palmitate in the subcutaneous 
depot (14.1  1.2  vs 2.7  0.2 mg/depot) 
and a 2-fold increase was observed in the 
epididymal depot (2.9   0.1 vs 1.5   0.1 

mg/depot) in CR mice relative to AL 
controls, after which accumulation 
occurred at a much slower rate (Fig. 5A & 
B).  This circadian pattern of FA synthesis 
parallels the pattern seen in the RER data 
(Fig. 2).  In contrast, there was no 
increase in the accumulation of 
endogenously synthesized palmitate in the 
liver at any time point (Fig. 5C) and only a 
small increase in plasma VLDL of CR mice 
six hours after feeding (Fig. 5D).  The 
magnitude and timing of the 
accumulation of endogenously 
synthesized palmitate in the adipose 
tissue relative to the liver suggests that 

Figure 3.  Higher rates of whole body fat oxidation in response to CR. Mice were adapted to CR 
or AL feeding for at least five weeks and were then placed in metabolic cages for twenty-four hours to 
determine respiratory exchange ratio (A) and energy expenditure (B) at each hour of the day.  Hourly fat 
oxidation (C) and summed daily macronutrient oxidation (D) were calculated as described in “Methods”.  
Values are means ± SEM (n=4-8 mice per group). ***P<0.001 difference from AL values, by ANOVA and 
Bonferroni post hoc test.   indicates time when daily food was provided to CR mice. 
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adipose tissue is the major site of FA 
synthesis in response to CR. 
 

Gene expression 
To determine whether changes in gene 
expression reflected these striking 
changes in flux through FA synthetic 
pathways, we measured FAS, ACC1, 
SREBP-1 and PPARΥ mRNA levels in liver 
and adipose tissue at several time points 
throughout the day (Fig. 6 & Fig. 7).   In 
the liver, FAS and ACC1 expression were 
widely variable throughout the day in CR 
mice, exhibiting 51- and 16-fold 
differences, respectively, between 6 PM 
and 9 PM (0.05 vs 2.55 RU and 0.09 vs 
1.44 RU, respectively; Fig. 6A & B).  In 
contrast, the expression of these genes 
varied little in AL controls over the same 
time period (1.00 vs 0.87 and 1.00 vs 0.72 
RU; Fig. 6A & B).  SREBP-1 followed a 

similar, but less dramatic, pattern 
between 6 PM and 9 PM in livers of CR 
mice (0.42 vs. 1.46 RU, respectively; Fig. 
6C), and again, there was very little 
change in control values (1.00 vs 0.97 
RU). There was a trend for decreased 
PPARΥ expression in CR livers at all time 
points (Fig. 6D).   
In the adipose tissue, FAS and ACC1 
expression were 4 and 3-fold higher, 
respectively, in CR than AL mice at 6 PM 
(3.97 vs 1.00 RU; 2.92 vs 1.00 RU; Fig. 7A 
& B), and this difference was maintained 
throughout the day.  While there was no 
difference in SREBP-1 expression in 
adipose tissue of CR mice at 6 PM, there 
was a 2-fold increase at 9 PM (2.02 vs 
1.03 RU; Fig. 7C).  There was no 
difference in PPARΥ expression in the 
adipose between CR and AL mice at any 
time point (Fig. 7D). 

 
 
 

 
 

Figure 4.  Effect of CR on FA synthesis in adipose tissue and liver.  Daily FA synthesis was 
calculated for the 4 most abundant fatty acids: palmitate (16:0), palmitoleate (16:1), stearate (18:0) and 
oleate (18:1) in the subcutaneous adipose depot (A) and the liver (B) in CR and AL mice, values are 
expressed as milligrams per gram of tissue.  Total adipose and liver FA that was synthesized during the 
period of 2H2O exposure and remained in the tissue was calculated from values in (A) and (B) and 
adjusted for estimated whole-body fat mass (as described in “Methods”) and measured liver weights, 
respectively (C).  Values are means ± SEM (n=8-14 mice per dietary group). ***P<0.001, **P<0.01, 
*P<0.05 difference from AL values, by ANOVA and Bonferroni post hoc test. 
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Serum Palmitoleate Leves in Mice 
It has recently been suggested that 
increased rates of FA synthesis in adipose 
tissue result in a particular accumulation 
of palmitoleate, which is an insulin 
sensitizing FA (5, 11), in adipose tissue as 
well as in serum (5, 19, 20, 32, 42, 43).  To 
determine if there was an increase in 
palmitoleate accumulation in our CR 
mice, we used gas chromatography 
coupled to flame ionization detection to 
measure FA composition in the inguinal 
and epidymal adipose depots and in the 

liver.  We found a significant increase in 
palmitate concentration in both adipose 
depots, but no increase in palmitoleate 
concentration in adipose tissue or the 
liver (Table 1).  

Serum lipids in CR mice 
To determine if changes in serum lipids 
reflect the pattern of feeding and fasting 
in CR mice, we measured serum NEFA 
and TG in CR and AL mice at 6 PM, before 
food was provided to CR mice, and 9 PM, 
3h after food was provided.  We found a 
significant increase in serum NEFA of CR 

Figure 5.  Endogenous synthesis of palmitate in various tissues throughout the day.  Mice 
were labeled with 2H2O at 12 PM and tissues were collected and endogenous palmitate synthesis was 
calculated at various times after provision of daily food: 6 PM (0h), 9 PM (3h), 12 AM (6h) and 12 PM 
(18h) in subcutaneos (A) and epididymal (B) adipose depots and in liver (C).   Endogenously 
synthesized palmitate was also calculated in plasma VLDL at 6 PM, 9 PM, 12 AM and 12 PM in the same 
mice (D).  Values represent palmitate synthesis in the total subcutaneous and epididymal depots as well 
as in the total liver.  Palmitate synthesis in VLDL is expressed per milliliter of serum.  Values are means 
± SEM (n= 6 mice per dietary group). ***P<0.001, **P<0.01, *P<0.05 difference from AL values, by 
ANOVA and Bonferroni post hoc test.  indicates time when daily food was provided to CR mice. 



Page 88 

 

Chapter 2: Calorie Restriction Increases Fatty Acid Synthesis  

and Whole Body Fat Oxidation Rates 

mice compared to AL mice at 6 PM (0.87 
 .10 vs 0.45  .02 mEq/L), but no 
difference at 9 PM.  In contrast, for serum 
TG, we found a significant increase in CR 
mice at 9 PM (81.0  3.8 vs 39.3  1.9 
mg/dL), but no difference at 6 PM.  These 
data are consistent with a prolonged 
fasting period in CR mice until 6 PM when 
food was provided and then a rapid 
feeding phase immediately following.   
 

Discussion 
The experiments presented here 
demonstrate that CR, administered by 
daily feeding, leads to a unique pattern of 
fuel selection in mice, characterized by a 
brief period of markedly increased 
endogenous FA synthesis in adipose tissue 

followed by a prolonged period of elevated 
whole body FA oxidation.  This pattern is 
consistent with previous reports 
demonstrating diurnal changes in RER in 
calorie restricted rats (12, 28).  Here we 
confirm these metabolic effects with 
indirect calorimetry, stable isotope 
labeling, FA composition and to some 
extent gene expression, and demonstrate 
that the pattern is induced rapidly and 
persists as long as the mouse remains 
calorie restricted.  
The metabolic adaptations to CR 
described here have implications for 
current hypotheses about the mechanisms 
mediating the effects of CR.  In addition, 
our data provide insight into a time 
dependence of experimental designs for 
studying genetic adaptations to CR.  

Figure 6.  Effect of CR on lipogenic gene expression in liver. FAS (A), ACC1 (B), SREBP-1 (C) 
and PPARγ (D) gene expression was measured in the liver of CR and AL mice at 6 PM, 9 PM or 12 AM.  
Expression was normalized first to both GAPDH and b2m and then these normalized values were 
averaged.  Values are shown relative to AL values measured at 6 PM (Relative Units; RU). Values are 
means ± SEM (n=6 mice per dietary group). ***P<0.001, **P<0.01, *P<0.05 difference from time-
matched AL values, by ANOVA and Bonferroni post hoc test.  indicates time when daily food was 
provided to CR mice. 
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The data confirm the view that the 
absolute amount of whole-body FA 
oxidation is higher in CR mice than AL 
controls (15, 23, 38).  This is, in fact, a 
remarkable result, in context of classic 
principles of whole-body macronutrient 
balances (13, 44). After an initial 1-2 week 
period of weight loss, CR mice reestablish 
a state of energy balance in which fat mass 
is preserved or even increased.  The 
energy intake from fat in CR mice is ~92 
mg/day (2.3g food/day x 4% fat in diet by 
weight), yet we measured by indirect 
calorimetry 367mg fat oxidized/day in CR 
mice. The majority of fat oxidation 
occurred during the 12 hours after feeding 
when mice were oxidizing exclusively fat 
(RER= 0.7, Fig. 3).  While there are 

limitations to estimating fat oxidation 
from indirect calorimetry (46), given that 
it only accounts for net changes, in this 
case, where RER values are 0.7 for so 
long, alternate interpretations are 
unlikely. Thus, the question remains, if 
CR mice oxidize a much greater quantity 
of FAs per day than dietary intake but 
remain weight stable, where does the FA 
substrate come from?   
"Very nice," he whispers appreciatively, 
and my nipples harden even more. He 
blows very gently on one as his hand 
moves to my other breast, and his thumb 
slowly rolls the end of my nipple 
elongating it. I groan, feeling the sweet 
sensation all the way to my groin.  He 
pinches me hard, and my body writhes 

Figure 7.  Effect of CR on lipogenic gene expression in adipose tissue. FAS (A), ACC1 (B), 
SREBP-1 (C) and PPARγ (D) gene expression was measured in the adipose tissue of CR and AL mice at 
6 PM, 9 PM or 12 AM.  Expression was normalized first to both GAPDH and b2m and then these 
normalized values were averaged.   Values are shown relative to AL values measured at 6 PM (Relative 
Units; RU). Values are means ± SEM (n=6 mice per dietary group). ***P<0.001 difference from time-
matched AL values, by ANOVA and Bonferroni post hoc test.  indicates time when daily food was 
provided to CR mice. 
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convulsively against his front. I gasp at the 
acute pleasure/pain. I feel him against 
me. I moan and my hands clench in his 
hair pulling harder.  I moan loudly. He 
moves, pounding into me, a fast, intense 
pace against my sore behind. The feeling 
is beyond exquisite, raw and debasing and 
mind-blowing.  He slides his leg in 
between mine, pushing my feet father 
apart, widening my stance, and runs my 
hands over my sex, one hand at a time in 
turn, setting up a rhythm. It's so erotic. 
Truly I am a marionette and he is the 
master puppeteer.  I groan. Parting my 
legs, he cuffs first my right ankle and then 
my left so I am staked out, spread-eagled, 
and totally vulnerable to him. 
He releases me and turns me around.  
“Hold on to the sink,” he orders and pulls 
my hips back again, like he did in the 
playroom, so I’m bending down.  He 
reaches between my legs and pulls on the 
blue string… what! And… a gently pulls 
my tampon out and tosses it into the 
nearby toilet. Holy fuck. Sweet mother of 
all… Jeez. And then he’s inside me… ah! 
Skin against skin… moving slowly at 
first… easily, testing me, pushing me… oh 
my. I grip on to the sink, panting, forcing 
myself back on him, feeling him inside 
me. Oh the sweet agony… his hands clasp 
my hips. He sets a punishing rhythm – in, 
out, and he reaches around and finds my 
clitoris, massaging me… oh jeez. I can feel 
myself quicken.   
“That’s right, baby,” he rasps as he grinds 
into me, angling his hips, and it’s enough 
to send me flying, flying high.  Whoa… 
and I come, loudly, gripping for dear life 
onto the sink as I spiral down through my 
orgasm, everything spinning and 
clenching at once. He follows, clasping me 
tightly, his front on my back as he 
climaxes and calls my name like it’s a 

litany or a prayer.  “Oh, Ana!” His 
breathing is ragged in my ear, in perfect 
synergy with mine. “Oh, baby, will I ever 
get enough of you?” he whispers. 
Will it always be like this? So 
overwhelming, so all-consuming, so 
bewildering and beguiling. I wanted to 
talk, but I’m crippled. 
Quantitatively, we demonstrate that the 
increase in FA oxidation is almost entirely 
accounted for by an increase in 
endogenous FA synthesis in CR mice. 
Some previous reports had suggested that 
CR reduces endogenous FA synthesis, 
based on FAS and/or ACC1 expression in 
the liver (6, 7, 30, 38).  Our stable isotope 
based measurements of flux through the 
FA synthetic pathway support the 
opposite conclusion. It should be noted 
that our calculations for endogenous FA 
synthesis are based on literature values 
for percent body fat in CR and AL from 
similarly aged and restricted C57BL/6 
male mice.  The literature values for 
percent body fat range from 15-30% for 
CR mice and 22-42% for AL mice.  For a 
conservative estimate of FA synthesis in 
CR mice we used the lower value of 15%.  
For the estimation of AL FA synthesis we 
used the median value of 32%.  In 
addition, any endogenously synthesized 
FAs that are oxidized rather than being 
stored in adipose tissue will not be 
detected by measurements on adipose 
tissue triglycerides. Thus, our 
measurements represent a lower bound 
estimate of FA synthesis in CR mice, yet 
accounted for the great majority of whole 
body FA oxidation in excess of dietary fat 
intake. 
Adipose tissue, as opposed to the liver, 
may be the primary site for whole body 
endogenous FA synthesis in CR mice.  
Within three hours of feeding there was 
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an accumulation of 14mg of endogenously 
synthesized palmitate in the subcutaneous 
depot and another 3mg in the epididymal 
tissue.  In contrast, only 4mg of 
endogenously synthesized palmitate 
accumulated in the liver over the same 
time period. In addition, in the first three 
hours post-feeding, endogenously 
synthesized palmitate accumulated in the 
subcutaneous depot five times faster in 
CR mice than AL controls, whereas in the 
liver and VLDL there was no difference in 
newly synthesized FA accumulation 
between these groups (Fig. 5C & D).  It is 
possible, though quantitatively unlikely, 
that a dramatic increase in VLDL-TG 
delivery to adipose tissue in CR mice 
could account for the accumulation of 
endogenously synthesized fatty acids in 
this tissue. This possibility may warrant 
further investigation. Glucose is likely the 
predominant substrate for FA synthesis in 
the adipose tissue.  Consistent with 
adipose playing a role in FA synthesis, 
Wetter et al. (45) demonstrated that 
glucose uptake is increased in  adipose 
tissue of calorie restricted rats.   
Several recent reports (5, 19, 20, 32, 42, 
43) have proposed that palmitoleate (16:1) 
accumulates in adipose tissue or serum 
during times of increased FA synthesis, 
and that increased palmitoleate content is 
a marker of FA synthesis in adipose tissue.  
While we saw an increase in palmitate 
(16:0) content in adipose of CR mice, we 
did not observe an increase in 
palmitoleate content.  Consistent with 
these data, the rate of palmitate synthesis 
was six times higher than the rate of 
palmitoleate in adipose tissue of CR mice 
(Fig. 4A).  To our knowledge, this is the 
first report to compare palmitate and 
palmitoleate synthesis rates under 
conditions of increased FA synthesis.  

Palmitoleate accumulation does not 
appear to be a universal marker of 
endogenous FA synthesis. It is possible 
that the increase in palmitoleate 
accumulation observed in previous 
reports was specifically related to a 
change in diet, since animals were 
switched from a high fat diet to a high 
carbohydrate diet, which may alter SCD-1 
activity (2, 8).   
Liver FAS, ACC1 gene expression at a 
single time point did not necessarily 
reflect the expression pattern in CR mice 
throughout the day. This previously 
unreported circadian pattern may have 
implications for future genomic studies in 
CR mice.  We observed that at 6 PM, just 
before food was provided, FAS and ACC1 
expression were 20- & 10-fold lower in CR 
than AL mice (Fig. 6A & B).  This is the 
same trend reported in several previous 
publications (6, 7, 30, 38) and has led to 
the conclusion that FA synthesis is 
decreased in CR.  However, immediately 
after food was provided, FAS expression 
increased 50-fold in CR mice, leading to 
values nearly 3-fold higher than AL 
controls (Fig. 6A).  In the same period, 
ACC1 expression increased 16-fold in CR 
mice, leading to values 2-fold higher than 
the AL group (Fig. 6B).  This increase in 
FAS and ACC1 expression correlated with 
a relatively small, but statistically 
significant increase in FA synthesis in the 
livers of CR mice.  Unfortunately, most 
studies investigating the changes in gene 
expression patterns in response to CR 
have measured expression at one time 
point, and in some cases animals were 
fasted overnight (6, 30), masking the 
time-dependent gene expression pattern.  
Furthermore, it is likely that the 
expression of other metabolic genes are 
influenced by this unique circadian 
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pattern. We believe that future studies 
into the physiologic, metabolic and 
genomic adaptations to CR must take into 
account this cyclical metabolic pattern. 
A larger question is whether this diurnal 
fuel selection pattern plays a role in 
mediating the effects of CR on health and 
longevity.  The pattern of food intake 
observed in response to CR is, in fact, a 
form of intermittent fasting.  Other 
intermittent fasting protocols, most 
notably alternate day fasting, have been 
shown to slow tumor growth, decrease cell 
proliferation, improve insulin sensitivity 
and increase longevity, perhaps without a 
concomitant decrease in body weight (41).  
It should be noted that Nelson & Halberg 
(31) demonstrated that CR provided as six 
meals per day increased longevity to an 
equal extent as CR provided as one meal 
per day.  Yet, it is possible that some of 
the effects of CR may be mediated by 
intermittent energy intake rather than or 
in addition to altered body composition.   
One potential effect of CR that may be 
mediated by intermittent fasting is a 
reduced production of ROS.  It has been 
hypothesized that an increased reliance 
on FA oxidation could lead to decreased 
ROS production, because FA oxidation 
increases the FADH/NADH ratio 
compared to carbohydrate oxidation (15).  
While NADH donates electrons to 
complex I of the electron transport chain, 
FADH donates electrons directly to 
complex II, the electron transfer 
flavoprotein dehydrogenase (ETF), which 
then passes the electrons to complex III 
via ubiquinone.  FADH oxidation 
therefore bypasses complex I, which is a 
major contributor to cellular ROS 
production (21, 24).   An interesting 
question for future research is whether 

effects of CR on ROS production depend 
upon the cyclic stimulation of FA 
synthesis. 
In conclusion, we have characterized a 
unique feeding and macronutrient 
metabolic pattern in CR mice associated 
with a dramatic increase in whole body FA 
oxidation and a marked increase in 
adipose tissue FA synthesis.  This pattern 
is rapidly induced, influences the daily 
pattern of gene expression, and may 
provide a metabolic switch that translates 
the dietary changes of CR into a program 
of health and survival.   
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Section 2 
The Transcriptomic and Proteomic Basis of Islet Cell 

Proliferation and Failure in Type 2 Diabetes 

Review of the Literature 

Type 2 diabetes (T2D) is a condition of 
increasing global prevalence, which 
affected an estimated 150 million people 
worldwide in the year 2000, and is 
estimated to grow to 300 million 
individuals by the year 2025 1.  In the 
United States alone, 25.8 million adults 
and children suffer from T2D, comprising 
8.3% of the population.  Contributing to 
this population are 79 million prediabetic 
individuals, diagnosed at a staggering rate 
of 1.9 million cases per year.  According to 
current estimates, the total number of 
diabetic patients in the United States will 
nearly double, to 44.1 million adults by 
2034 2,3.  In 2007, the total cost of 
diabetes in the United States was $218 
billion, with a 2.3 times higher medical 
care cost per individual in comparison 
with nondiabetics 4.  According to 
conservative estimates, annual diabetes 
related spending is expected to increase to 
$336 billion by 2034, adding a significant 
strain to the already overburdened health 
care system 3.   
While diabetes per se does not increase 
the risk of death, peripheral organ 
damage that occurs in response to 
fluctuating blood glucose levels presents 
increased risk for the development of 
cardiovascular disease (CVD), high blood 

pressure, retinopathy, nephropathy, 
neuropathy, macular degeneration, 
hypercholesterolemia, blindness, limb 
amputation, and atherosclerosis 4,5.  The 
risk for stroke in adults with diabetes is 2-
4 times that of healthy individuals, 
reflected by a 2-4 times increase in the 
death rate of diabetics due to CVD.  More 
than two-thirds of diabetics are 
hypertensive or use hypertensive 
medication to control elevated blood 
pressure.  In addition, diabetes is the 
leading cause of blindness among all 
adults, and accounted for nearly 50% of 
kidney failures in 2008.  More than 60-
70% of diabetics in the United States 
suffer from mild to severe neuropathy, 
partially accounting for 60% of all lower-
limb amputations 4.   

The Relationship Between Obesity 
and Type 2 Diabetes 
Following World War II obesity rates have 
grown exponentially, and now more than 
50 years after the start of the 
“gastronomic revolution,” 35% of 
Americans are obese 6, 65% are 
overweight, and 40% suffer from the 
metabolic syndrome 7.  While there is no 
international definition of the metabolic 
syndrome, this condition is a cluster of 
increasingly prevalent metabolic 
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dysfunctions, including (a) impaired 
glucose tolerance (IGT), or T2D, (b) 
hypertension, (c) hypertriglyeridemia, (d) 
low HDL cholesterol, and (e) central 
obesity.  Within 20 years an estimated 
100 million Americans will have the 
metabolic syndrome 8,9. 
To say that obesity is associated with the 
development of T2D underestimates the 
impact of adiposity on adverse glucose 
metabolism.  In fact, obesity is now 
classified as the most important 
determinant of insulin resistance (IR) and 
is the single most important risk factor for 
T2D and the metabolic syndrome 10.  In 
the human population, overweight is 
defined as having a body mass index 
(BMI, the ratio of weight (kg) to the 
square of height (m2)) between 25-30, and 
obesity is defined as having a BMI greater 
than 30.  There are now more overweight 
individuals than underweight individuals 
worldwide 11. 
As shown in Figure 1, in 1985, the highest 
proportion of obese individuals per state 
was 10-14%, and was prevalent in a total 
of 8 states.  By 2010, the picture had 
changed dramatically as the number of 
obese individuals increased significantly; 
every state had a prevalence of obesity 
greater than 20%.  More specifically, 
thirty-six states had an obesity prevalence 
of 25% or more, and 12 states had an 
obesity prevalence of 30% or more 12.   
 

 

 
 

Figure 1.  Obesity Pevalence in the United 
States between 1985 and 2010.  In the past 
quarter century, the prevalence of obese 
individuals in the United States has more than 
tripled.  A geographical representation of the 
proportion of obese individuals by state is shown 
for 1985 (left) and 2010 (right). 

 
While obesity increases the risk for 
developing T2D, not all obese individuals 
are diabetic, arguing against a causal 
relationship between the two conditions.  
Interestingly, a subset of obese individuals 
exhibit classic symptoms of IR while 
remaining resistant to the development of 
T2D despite prominent central adiposity.  
While the exact mechanism that protects 
these individuals from diabetes is 
unknown, both mouse and rat models of 
obesity, IR, and T2D are commonly used 
to investigate the molecular basis of the 
response of pancreatic islets to obesity.   
Obesity is a multi-factorial disease of 
dysregulated energy metabolism that 
results from genetic, lifestyle and 
psycosocial factors.  In obese animals and 
humans, excessive weight gain is the 
result of an imbalance between energy 
intake and energy expenditure.  The 
physiological mechanisms underlying 
energy imbalance are numerous, and 
differ between individuals, cultures, and 
geographical location.  Environmental 
factors contributing to the obesity 
epidemic include insufficient energy 
expenditure, excess caloric intake, and 
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excess dietary lipid.  These lifestyle 
determinants of obesity have been well 
classified, however the interaction 
between lifestyle and genetic makeup 
differs between individuals, increasing the 
importance of understanding the genetic 
basis of this complicated metabolic 
disorder.   
Support for the genetic basis of obesity 
originally came from a study conducted 
on overfed monozygotic twins.  The 
results of inducing positive energy balance 
in many pairs of twins indicated that the 
tendency for weight gain between twins 
was remarkably similar, while the degree 
of weight gain between sets of twins 
varied widely 13.  Similarly, studies on 
human subpopulations show that the risk 
for developing obesity and obesity-related 
disorders is in part determined by genetic 
factors.  Studies on Pima Indians clearly 
show accelerated risk for the development 
of obesity, due to reduced basal metabolic 
rate and not to sedentary behavioral 
factors alone 14. 
In the mid-1990s, leptin was discovered 
as an adipocyte-derived hormone that 
controlled central feeding behavior in 
proportion to the size of peripheral fat 
stores.  Leptin deficiency was soon 
discovered to play a major role in the 
central control of energy intake, and 
paramount studies in obese (ob/ob) and 
diabetic (db/db) mice demonstrated that 
mutations in both the leptin gene and its 
cognate receptor in the brain have 
significant negative impacts on energy 
metabolism, increasing the risk for the 
development of obesity and diabetes 15–18.  
In some humans and rodents however, 
obesity persists despite high levels of 
circulating leptin, creating a state of 
“leptin resistance” which is not affected by 

the administration of additional 
exogenous leptin.  Evolutionarily, leptin 
resistance may have been selected for due 
to an increased ability to store energy in 
times of feast 6.   
In addition, extensive research on 
uncoupling proteins (UCPs), inner 
mitochondrial  membrane proton-leak 
proteins that specifically uncouple the 
generation of a proton gradient from the 
production of ATP, has shown that these 
proteins promote adaptive thermogenesis 
primarily in brown adipose tissue (BAT) 
and skeletal muscle 19–23.  Conflicting 
research has led to the conclusion that 
none of the UCPs alone can 
singlehandedly fight against the 
development of obesity, but that specific 
combinatorial expression patterns across 
many tissues can have a significant effect 
on ameliorating dysregulated energy 
balance 6.  Further studies identified many 
genes as playing a causative role in the 
development of obesity, including 
ADD/SREBP1 24,25, as well as PGC-1a and 
PPAR-alpha 26.   

The Pathogenesis of Type 2 Diabetes  
Type 2 diabetes is characterized by two 
principal mechanisms: (a) IR and (b) islet 
failure (IF); the failure of the islets of 
Langerhans in the pancreas to adequately 
secrete insulin in response to elevations in 
blood glucose levels.  Maintenance of islet 
cell mass and function over the lifetime of 
an organism therefore protects against the 
development of T2D, and nutritional and 
therapeutic interventions to maintain 
normal islet cell function are therefore of 
great interest.   

Islet Cell Morphology 
Islet cells are clusters of endocrine cells in 
the pancreas with a highly specialized role 
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in regulating insulin secretion in response 
to nutrient intake.  The term islet cell 
refers to a cluster of pancreatic tissue 
containing between 400-4000 cells 27 
whose primary metabolic activity is the 
secretion of insulin in response to 
increases in circulating glucose (glucose-
stimulated insulin secretion, GSIS).  Islet 
cells are a heterogeneous collection of cell 
types, containing about 15-20% alpha cells 
(glucagon producing), 65%-80% beta cells 
(insulin producing), 5-10% delta cells 
(somatostatin producing), 3-5% PP cells 
(pancreatic polypeptide producing), and 
<1% epsilon cells (grehlin producing) in 
rats 28–30.  Each of these secreted peptide 
hormones affect glucose homeostasis 
independently, and have either direct or 
indirect actions on the promotion of 
insulin secretion or the inhibition of 
insulin secretion 31.   
Glucagon is a peptide hormone whose 
action indirectly opposes that of insulin.  
Glucagon is released by the alpha cells in 
response to hypoglycemic conditions, and 
signals for an increase in hepatic glucose 
production (HGP) by the liver via the 
breakdown of stored glycogen.  Increased 
HGP results in a transient increase in 
blood glucose values.  Thus, glucagon and 
insulin play opposing yet coordinated 
roles in regulating blood glucose 
concentrations.  Somatostatin is a peptide 
hormone released by the delta cells, and 
functions to reduce smooth muscle 
contractions and blood flow in the 
intestine, slow the rate of gastric 
emptying, suppress the release of insulin 
from the beta cells, inhibit the release of 
glucagon from the alpha cells, and 
suppress the secretory action of the 
exocrine pancreas 32.  Figure 2 shows a 
visual schematic and 

immunohistochemical distribution of islet 
cell types. 
 

 

 
Figure 2.  Distribution of Cell Types in the 
Islet Cell.  Top panel: schematic representation 
of the distribution of alpha, beta, delta, PP, and 
epsilon cell types in rat (above) and human 
(below) islets.  Image adapted from 30.  Bottom 
panels: immunohistochemical staining of rat islets, 
stained for glucagon (alpha cell, green) and insulin 
(beta cell, red).  Glucagon-positive cells are 
distributed towards the periphery of the islet cell, 
whereas insulin-positive cells cluster towards the 
core of the islet cell.   

 

The regulation of GSIS is the primary 
metabolic role of the beta cells.  In 
response to an increase in systemic blood 
glucose concentrations, the flux of glucose 
into the beta cell is facilitated by GLUT2 
transporters at the plasma membrane.  
Intracellular metabolism of glucose via 
the glycolytic pathway results in an 
increase in ATP concentrations, and a 
coordinate decrease in ADP.  ATP-
sensitive potassium channels embedded 
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in the membrane close in response to 
increased ATP availability, decreasing the 
permeability of the cell to potassium (K+).  
In response to channel closure, the 
membrane undergoes depolarization, 
causing the opening of voltage-gated 
calcium (Ca2+) channels and a subsequent 
influx of extracellular Ca2+.  Cytosolic 
vesicles containing insulin located 
adjacent to the plasma membrane then 
fuse with the plasma membrane in 
response to increased Ca2+, resulting in a 
pulsatile exocytosis of insulin 33–39.   

Peripheral Insulin Resistance 
In humans and in rodents, IR often 
proceeds islet failure.  IR is a condition 
characterized by reduced insulin action 
predominantly in skeletal muscle and 
liver, which in turn increases the demand 
for insulin production by islet cells 40.   
There are numerous causes underlying 
the development of IR, and in humans 
this condition can precede the onset of 
frank diabetes by 10-20 years.  In 
peripheral tissues including skeletal 
muscle, adipose, and liver, the 
accumulation of ectopic lipid has been 
shown to reduce glucose disposal and 
increase the prevalence of IR 9,41. 
Randle et al. were the first to postulate a 
mechanism by which fatty acid exposure 
impairs insulin-stimulated glucose 
oxidation in muscle tissue 42.  According 
to the Randle Hypothesis, as it became 
known, glycolytic enzymes are inhibited 
by alterations in cellular metabolism that 
result from fatty acid oxidation.  First, the 
oxidation of fatty acids results in an 
increase in both the ratio of mitochondrial 
NADH/NAD+ and the ratio of 
mitochondrial Acetyl-CoA/CoA, directly 
inhibiting pyruvate dehydrogenase 
located at the inner mitochondrial 

membrane.  In parallel, increases in 
cytosolic citrate resulting from increased 
fatty acid oxidation inhibits 
phosphofructokinase-1 (PFK-1), 
increasing intracellular glucose-6-
phosphate (G6P), in turn inhibiting the 
activity of hexokinase at the plasma 
membrane.  In effect, this theory provides 
a mechanism by which the oxidation of 
fatty acids directly reduces glycolytic flux 
and subsequently impairs glucose uptake 
in muscle tissue.   
Continued research in uncovering the 
mechanism of lipid-induced IR has 
resulted in a new hypothesis that has 
gained significant support in the IR 
community.  According to this theory, the 
accumulation of muscular fatty acids 
reduces the ability of insulin receptor 
substrate-1 (IRS-1) to stimulate 
phosphatidylinositol 3-kinase (PI3 
kinase), reducing the net activation of 
glucose transport 4 (GLUT4) proteins to 
the plasma membrane to promote insulin-
stimulated glucose uptake.  Intramuscular 
fatty acids also activate a serine kinase 
signaling cascade in which the theta 
subunit of protein kinase C (PKC-theta) 
and the inhibitor of nuclear factor kappa-
B kinase subunit beta (IKK-beta) 
stimulate a local inflammatory response, 
and impair insulin-stimulated muscle 
glycogen synthesis 11,41.   
The careful work of Kelley and 
Goodpaster et al. in humans has 
uncovered interesting findings relating 
skeletal muscle lipid content and the 
development of IR, and has recently 
uncovered a paradox in endurance-
trained athletes.  Ectopic storage of lipid 
in skeletal muscle is associated with IR in 
the settings of obesity 43–47, and T2D 48,49 
in human subjects.  Animal models of 
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obesity and T2D also support this 
hypothesis 50–52.  Importantly, the storage 
of lipid intracellularly may differ from the 
storage of lipid in muscle-resident 
adipocytes, however experimental 
techniques to study this pool of lipids 
have proven technically challenging.  
Recent studies using magnetic resonance 
spectroscopy (MRS) have found that 
intramyocellular lipid (IMCL) promotes 
IR in obese and T2D subjects, but does 
not impair insulin sensitivity in endurance 
trained athletes 53.   
The effects of insulin resistance on 
skeletal muscle fatty acid oxidation and 
mitochondrial metabolism are numerous.  
To address the effect of fatty acid 
availability on skeletal muscle 
mitochondrial metabolism, one must 
consider two important variables: (a) the 
development of IR, and (b) mitochondrial 
mass.  Conflicting results from many 
research groups have led to a somewhat 
contradictory state of affairs, namely that 
high fat diets cause IR and either 
stimulate or impair muscle mitochondrial 
metabolism. 
The connection between IR and 
mitochondrial metabolism is a classic 
chicken-and-egg story.  Two important 
questions predominate: 

Question 1: 

Do mitochondrial defects precede the 
onset of T2D and thus play a role in the 
development of T2D? 

Question 2: 

Is mitochondrial dysfunction a 
consequence of T2D? 

Kelley et al. showed that mitochondrial 
oxidative capacity is decreased in skeletal 
muscle of obese individuals and is highly 

correlated with IR 54.  In addition, they 
showed that obese and type 2 diabetic 
individuals show a reduction in the 
density of subsarcolemmal mitochondria 
independent of alterations to 
intermyofibrillar mitochondria 54.  
Subsarcolemmal mitochondria are located 
adjacent to the sarcolemma and play a 
role in signal transduction, ion exchange, 
substrate transport – all processes which 
are relevant to insulin action 55.  However, 
in order to determine whether defects in 
mitochondrial metabolism are a cause or 
effect of IR, many groups devised 
experiments to determine the effect of 
increased fatty acid availability on 
mitochondrial structure and function.   
Turner et al. showed that excess lipid 
availability increases mitochondrial fatty 
acid oxidative capacity in skeletal muscle, 
as evidenced by increased activity of beta-
HAD, MCAD, CPT1, and citrate synthase.  
In addition, they found that high fat diets 
increased the protein expression of PGC-
1a, and UCP3.  They argue that the 
increased capacity for fatty acid oxidation 
is merely a compensatory mechanism to 
protect against the storage of fatty acids in 
muscle tissue, and instead promote 
increased oxidation due to increased 
circulating fatty acid supply 40.  This 
finding was supported by two other 
papers from the research group of John 
Holloszy.  They found that raising 
circulating fatty acid concentrations by 
high fat feeding or by daily heparin 
infusions resulted in augmented 
mitochondrial function, including 
increased protein expression of MCAD, 
LCAD and VLCAD, and mitochondrial 
DNA copy number. In addition, they 
found that elevations in circulating fatty 
acid concentrations induced insulin 
resistance, as supported by both the 
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Randle Theory and the protein kinase C 
theory, arguing against the fact that 
insulin resistance causes defects in muscle 
mitochondrial metabolism.  Instead, this 
body of work supports the idea that 
increased fatty acid availability due to 
high fat feeding results in a macronutrient 
“switch,” from a glucose-centric to a lipid-
centric economy, despite the development 
of IR.     
In direct contradiction, Kelley et al. found 
that IR and elevated skeletal muscle lipid 
content lowers the oxidative capacity of 
skeletal muscle for fatty acid oxidation 56–

58.  In these studies, it was found that the 
deposition of ectopic lipid in skeletal 
muscle results in IR, and impairs 
mitochondrial function, opposing the 
findings of Turner, Hancock and Garcia-
Roves.  They further demonstrated that in 
the insulin resistant state, weight loss 
reduces IMCL and improves skeletal 
muscle insulin action, but does not 
stimulate mitochondrial biogenesis 
independent of increased physical activity 
59,60.  Together, these studies set the stage 
for conflicting viewpoints on the effects of 
IR on mitochondrial metabolism.   

Treatment of Insulin Resistance Via 
Diet and Exercise 
In both rodents and humans, insulin 
resistance can be treated by lifestyle 
interventions, including increased energy 
expenditure via exercise 5,61–65, reduced 
lipid intake 10,66, and calorie restriction 
(CR)  67–76.  Impaired islet cell function 
can be reversible, particularly at early 
stages of the disease process before an 
intangible and highly individual threshold 
has been crossed, preventing the return to 
normal GSIS 77.   
Exercise stimulates increased 
mitochondrial substrate oxidation in 

muscle tissue, increasing basal fatty acid 
oxidation rates 47,78–81, and enhances 
glucose disposal and insulin sensitivity 82–

85.  Exercise training is considered the 
gold standard for maintaining insulin 
sensitivity, yet the sedentary proportion of 
the American population is increasing 
with time.  According to a recent review 
article citing potential causes of T2D, 
Unger and Scherer stated: 

The 16-h of daily physical activity, 
previously allocated for productive 
human activities, have been drastically 
reduced or eliminated by technologies 
that require virtually no muscular 
contraction. This has created an 
unprecedented challenge for 
maintenance of metabolic homeostasis, 
for which no defense has had time to 
evolve 9.   

Figure 3 shows a county-level map of the 
age-adjusted estimates of the percentage 
of adults over 20 years old who were 
physically inactive in 2008.  These data 
indicate that in more than 25 states, 20% 
or more of the population was considered 
sedentary 86. 
The overconsumption of dietary fat results 
in a sustained deposition of fatty acids in 
adipose tissue.  After the storage capacity 
of the adipose tissue has reached a 
physiological maximum, ectopic lipid 
accumulation begins.  The consequences 
of ectopic lipid storage depend on the 
ability of extra-adipose tissues such as the 
skeletal muscle and liver to store excess 
fat as a neutral lipid.  Excess lipid 
accumulation in these peripheral tissues 
beyond storage capacity results in 
impaired tissue function and the 
production of inflammatory cytokines, a 
condition known as lipotoxicity.  
Reduction of lipid intake may reverse 
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ectopic lipid deposition, restoring normal 
metabolic function to lipotoxic tissues 9.   
 

 
 

Figure 3.  Age-Adjusted Estimates for the 
Percentage of Inactive Adults.  The 
percentage of sedentary individuals in 2008 is 
represented by on the county level.  States with the 
highest inactive proportion of the population 
include Oklahoma, Arkansas, Louisiana, Alabama, 
Mississippi, Tennessee, and Kentucky, and states 
with the lowest proportion of inactivity include 
Minnesota, Colorado, Oregon and Hawaii.   

In addition to the effect of reducing total 
lipid intake, substitution of saturated 
dietary fat with both omega-3 and omega-
6 unsaturated fatty acids has been shown 
to improve insulin sensitivity 87,88.  Calorie 
restriction (CR) results in reduced total 
body adiposity, reduced ectopic lipid 
accumulation, altered mitochondrial fatty 
acid oxidation, and reduces inflammation 
in white adipose tissue 89, together 
resulting in significant improvements in 
glucose tolerance and insulin sensitivity 
90,91.   

Pharmacological Interventions 
Antidiabetic drugs have become 
increasingly prevalent in western society, 
and function to improve dysregulated 
glucose homeostasis via a number of 
different mechanisms.  Each medication is 
designed to function independently of 

changes in diet (energy intake) and 
exercise (energy expenditure).   
The most commonly prescribed 
antidiabetic medication is Metformin 
(Glucophage, Riomet, Fortamet), and is 
recommended as the first-line oral 
therapy for T2D.  Thousands of papers 
document the cellular and molecular 
effects of Metformin action, given its 
effectiveness in the clinical setting at 
reducing hyperglycemia.  Metformin 
functions primarily via direct targeting of 
complex I in the respiratory chain of the 
liver, and secondarily through activation 
of the cellular low energy sensor AMP-
activated protein kinase (AMPK).  
Together, these two pathways converge by 
reducing hepatic glucose production 
(HGP) primarily by inhibition of the 
gluconeogenic pathway, thereby reducing 
circulating glucose concentrations 92,93.  In 
addition, Metformin increases AMPK 
activation in muscle tissue, increasing the 
rate of glucose disposal and muscle 
glycogen content 94.  Sulfonylureas 
(Glucotrol, DiaBeta, Glynase, Micronase, 
Amaryl),and meglitinides (Starlix, 
Prandin) 
It has been known for over 30 years that 
an oral glucose load increases insulin 
production over an intravenous glucose 
load due to the effects of neuro-hormonal 
incretin release from the intenstine in the 
presence of carbohydrates.  Two of these 
incretins, glucagon-like peptide 1 (GLP-1) 
and glucose dependent insulinotrophic 
peptide (GIP), promote insulin secretion, 
and are therefore a focus of the 
pharmaceutical industry in developing 
new targets for the treatment of T2D.  
These “gliptin” drugs (Sitagliptin, 
Vidagliptin) are prescribed for human use, 
and result in a reduction of glycosylated 
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hemoglobin (HbA1c, a circulating marker 
of 3-month glycemia) by 0.5-1.1% 95–99.   
Rosiglitazone and Pioglitazone are 
members of the thiazolidinedione (TZD) 
class of anti-diabetic compounds, and 
function as agonists of the peroxisomal 
proliferator-activated receptor gamma 
(PPAR-gamma) nuclear receptor 
superfamily of ligand-activated 
transcription factors.  PPAR-gamma is 
widely expressed in many human and 
rodent tissues, including adipose, skeletal 
muscle, cardiac muscle, endothelium, 
kidney, pancreas and bone, and is 
expressed in the beta cells of both humans 
and rodents 100–103.   
The insulin sensitizing action of 
rosiglitazone is mainly attributed to the 
activation of PPAR-gamma in peripheral 
tissues, yet recent in vitro and in vivo 
evidence suggest that TZDs may exert an 
effect on islet function and proliferation 
directly.  In cultured primary rat islets and 
insulinomas, PPAR-gamma activation 
directly promotes the expression of Glut2 
and glucokinase, and reduces cell 
proliferation in cancerous cultures of 
pancreatic acinar tissue 104–106.  In 
addition, treatment of prediabetic humans 
and rodents with PPAR-gamma agonists 
improves glucose-stimulated insulin 
secretion (GSIS), increases beta cell 
insulin content, inhibits islet cell 
apoptosis 77, and prevents against 
dysfunctions in islet architecture 107,108.  In 
prediabetic Zucker Diabetic Fatty rats 
(ZDF), a leptin receptor deficient obese, 
hyperglycemic and glucose intolerant rat 
model of T2D, PPAR-gamma activation 
protects against islet hyperplasia and 
necrosis, attenuates defects in GSIS, and 
prevents against the loss of beta cell mass 
by preventing an increase in net beta cell 

death 52,101,103,109–112.  In vivo, targeted 
knockout of murine beta cell PPAR-
gamma blunts islet hyperplasia in 
response to high fat feeding 107.  In 2008, 
two large meta-analysis studies reported 
that the usage of glitazones (Rosiglitazone 
and Pioglitazone) increased the incidence 
of myocardial infarction by 40%.  This 
greatly reduced the use of these 
antidiabetic agents, and as a result 
Rosiglitazone is now only available as a 
dual therapy with other medications, and 
is strongly unadvised in patients with 
ischaemic heart disease 113–115.   

Islet Cell Hyperplasia 
In addition to the deleterious effects of IR 
on peripheral tissue, islet cells are known 
to acquire direct functional impairments 
resulting from abnormal glucose 
homeostasis.  A fundamental question in 
the pathogenesis of T2D is the mechanism 
of islet failure due to prolonged periods of 
IR.  The proliferation of islet cell mass due 
to IR is present in many animal models 
116,117, and decreases in islet cell mass 
likely underlies islet cell failure 118–122.  
Glucotoxicity, lipotoxicity, 
proinflammatory cytokines, and islet cell 
amyloid protein result in impaired GSIS, 
ultimately contributing to the 
development of islet failure 77.  Islet cell 
hyperplasia is driven primarily by chronic 
elevations in blood glucose, and is a 
compensatory mechanism to increase 
insulin production in an effort to reduce 
circulating glucose concentrations.  In 
order to perform this, islet cells respond 
to IR by (a) transient increases in islet cell 
mass, and (b) increased insulin output.   
Increased islet cell mass can occur via a 
number of mechanisms, which include 
replication of preexisting islet cells, 
neogenesis of islet cell precursors 123–125, 
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and inhibition of islet cell apoptosis 126.  It 
still remains unclear which of these 
mechanisms results in increased islet cell 
mass in response to IR, however the net 
effect results in 2-5-fold elevations in islet 
cell mass and insulin production 127.  In 
rodents, however, pre-existing terminally-
differentiated islet cells have been shown 
to be the source of new islet cells, arguing 
against the hypothesis that neogenic 
differentiation of pluripotent stem cells 
significantly contributes to islet cell mass 
expansion in response to IR 128,129. 
Many studies have investigated the 
physiological behavior of islet cells in 
order to identify genes and proteins 
underlying mass expansion.  Three rat 
models are commonly used to investigate 
these effects: the Zucker Fatty (ZF), 
Zucker Diabetic Fatty (ZDF), and the 
Zucker Lean Control (ZLC) rat.  ZF rats 
are an obese, hyperlipidemic, glucose 
intolerant, insulin resistant strain that 
demonstrate severe peripheral insulin 
resistance in skeletal muscle and reduced 
insulin-stimulated glucose disposal.   
ZF rats are hyperphagic as compared with 
ZLC controls, yet they are resistant to 
hyperglycemia and the development of 
diabetes.  Studies show that islet 
proliferation in ZF rats far exceeds those 
of ZLC rats in response to IR, suggesting 
that resistance to T2D originates from an 
ability to increase islet mass via either 
preexisting islet cell proliferation or by 
islet neogenesis 121,130–135.   
The ZDF rat is obese, severely insulin 
resistant, and demonstrates islet cell 
hyperplasia prior to the onset of diabetes 
at eight to twelve weeks of age 136.  Studies 
have shown that ZDF rat islet failure 
occurs despite high rates of islet cell 
proliferation as compared with ZF rats, 

suggesting that a high rate of islet cell 
apoptosis is responsible for islet cell mass 
reduction and the transition to T2D 121.   
ZLC rats are heterozygous for a mutation 
in the leptin receptor (fa/+), and are used 
as a lean control strain against which ZF 
and ZDF rat models are compared.  ZLC 
rats are a non-obese, non-IR, non-diabetic 
model with the same genetic background 
as the obese ZF and ZDF phenotypes.   
The length of time in which islet cell 
hyperproliferation can occur is strain 
dependent.  In ZF rats, this physiological 
response to IR can last for long periods of 
time, protecting against islet failure.  In 
ZDF rats, however, islet 
hyperproliferation is temporally 
programmed independent of 
interventions that delay the transition to 
T2D, including oral antidiabetic drugs and 
exercise.  In our investigations, we used 
this temporal transition to diabetes to our 
advantage in designing experiments to 
study the genetic and proteomic 
mechanisms that may control the onset of 
T2D. 

Experimental Methods to Measure 
Islet Cell Hyperplasia 
The most ubiquitously utilized method for 
measuring the rate of cell proliferation in 
many tissues is labeling with 5-
bromodeoxyuridine (BrdU), a thymine 
analog that is readily incorporated into 
newly synthesized DNA and detected by 
immunofluoresence or flow cytometry 137–

140.  Despite the ease of use of BrdU, this 
non-radioactive agent has cytotoxic effects 
and chronic exposure can affect the rate of 
cell proliferation independent of external 
influences 141.  Furthermore, BrdU 
administration depends on the usage of 
semiquantitative methods to determine 
the rate of cell proliferation. 
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We have developed a technique for 
measuring cell proliferation rates in vivo, 
based on non-toxic 2H2O labeling and 
mass spectrometric analysis, which has 
been applied to the measurement of the 
proliferation of numerous cell types in 
experimental animals and humans, 
including islet cell proliferation in rats 
142,143.  This method is well suited for the 
measurement of cell proliferation in slow 
turnover tissues because 2H2O can be 
conveniently administered for long 
periods of time in drinking water, 
combined with the high sensitivity of 
mass spectrometric analysis of the 
deoxyribose (dR) moiety of DNA 144. 
Studies from our laboratory were 
conducted to determine the basal 
turnover rate of islet cells in a healthy rat 
pancreas using 2H2O labeling.  In this 
paper, Chen et al. found that BrdU 
administration suppressed islet cell 
proliferation, creating an experimental 
artifact that alters physiological islet cell 
proliferative dynamics that was detectable 
following only 7 days of labeling 143.  
Others have observed the same effect in 
various tissues 141,145,146, supporting the 
use of 2H2O labeling for the measurement 
of cell proliferation in slow turnover 
tissues.   

Islet Cell Failure 
In most cases, IR-induced compensatory 
insulin production over time results in the 
sudden and coordinated failure of islet 
cells, resulting in sharp reductions in islet 
cell mass, insulin secretory failure, and 
the transition to type 2 diabetes.  
Compensated IR is generally a finite 
process; the duration of time in which an 
animal can sustain insulin resistance 
before transitioning to diabetes is strain-
dependent.   

In mice, this strain-dependent physiology 
is evident when comparing ob/ob and 
db/db mice.  Both strains exhibit classic 
symptoms of dysregulated lipidemia, 
including hypercholesterolemia, obesity, 
insulin resistance, hyperglycemia, and 
glucose intolerance.  Ob/ob mice suffer 
from leptin deficiency, and are resistant to 
the development of diabetes, while leptin 
receptor-deficient db/db mice develop 
diabetes at an early age 147.   
In rats, a similar difference in physiology 
exists between Zucker Fatty (ZF) rats, and 
ZDF rats.  Similar to obese mouse models, 
the ZF and ZDF rat models are 
hyperlipidemic, hypercholesterolemic, 
obese, insulin resistant, hyperglycemic, 
and glucose intolerant.  Leptin-deficient 
ZF rats are resistant to diabetes, and 
remain insulin resistant their entire life, 
while ZDF rats experience a temporally 
programmed transition to diabetes due to 
the failure of islet cell compensation 148,149.   
In humans, the failure of islet cell 
compensation to IR also occurs, resulting 
in T2D.  The temporal nature of islet cell 
compensation is highly individual, and 
dependent on lifestyle-related factors 
including genetic predisposition, diet, and 
exercise as discussed above 1.   

Gene Expression Profiles of 
Hyperplastic and Failed Islets 
While hundreds to thousands of scientific 
papers have been written about the 
mechanisms underlying the pathogenesis 
of islet cell dysfunction in T2D, the 
underlying genetic mechanisms of islet 
cell hyperproliferation and failure remain 
elusive.  The effects of hyperglycemia-
induced islet proliferation and failure on 
the islet cell gene expression profile is an 
area of significant interest. 
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In Vitro Islet Genomic Approaches 
The first human islet genome was 
published in 2002 and investigated the 
effect of low and high concentrations of 
glucose on the gene expression of primary 
human islets.  Hyperglycemic conditions 
increased the expression of Txnip, Iapp, 
and Pc1/Pc3.  Two members of the TGF-
beta superfamily were highly regulated by 
high glucose concentrations, including 
BMP5 and PDF 150. 
In order to evaluate the effect of various 
glucose concentrations on key GSIS 
signaling pathway gene expression, 
Bensellam et al. performed a series of in 
vitro experiments followed by gene 
expression profiling using Affymetrix Rat 
230 2.0 microarrays.  Rat primary islets 
were incubated in either 2mM, 5mM, 
10mM, or 30mM glucose concentrations 
in culture followed by hybridization of 
mRNA to gene chips and downstream 
expression analysis.  They found a total of 
40 differentially expressed genes, of which 
16 were upregulated and 19 were 
downregulated.  Upregulated genes 
include Txnip, AldoB, Crem, and Fos, and 
downregulated genes include Dbp, Ddit3, 
and Trib3.  Many other pro-apoptotic, ER 
stress, cholesterol-regulated, and glucose 
metabolic genes were identified by this 
analysis, and often in ways that were not 
predicted a priori, resulting in a complex 
interaction of gene transcripts that does 
not follow the two-state (high vs. low 
glucose concentration) model 151.   
Webb et al. found that the expression of 
genes encoding proteins involved in 
ribosome docking, intermediary 
metabolism, amino acid metabolism, and 
urea metabolism were all significantly 
affected by high glucose concentrations in 
vitro 152.  Tsuboi et al. also found that the 

expression of the Glut2 and glucokinase 
genes were significantly downregulated 
due to high glucose concentrations in 
vitro, concomitant with abnormal 
termination of insulin release by 
inhibiting normal glucose sensing.  In 
other words, islet cells incubated at high 
glucose concentrations in culture exhibit 
decreased GSIS due to reductions in 
insulin signaling 153.  Genes involved in 
the differentiation of pancreatic AR42J 
cells into insulin producing cells include 
thymosin 10, PTHrP, SPP-24 precursor, 
Carboxypeptidase E, Amyloid precursor-
like protein, and Keratin D 154.   

In Vivo Islet Transcriptomic 
Profiling 
While the in vitro approach to discover 
islet-specific genes regulated by IR and 
islet failure are informative, a thorough 
understanding of the in vivo response to 
these conditions ultimately reveals a 
physiologically relevant set of target 
genes.  In the search for these in vivo gene 
targets, many microarray studies have 
begun to elucidate a set of transcription 
factors and genes that principally regulate 
GSIS, including the gene products of 
DNA-binding genes, ER-stress related 
genes, genes involved in ribosomal 
translation, protein and peptide vesicular 
transport, vesicle docking at the plasma 
membrane, glycolytic genes, as well as 
negative and positive regulators of 
apoptosis. 
Thanks to the efforts of researchers 
committed to centralizing information 
regarding transcriptomic profiling of both 
in vitro and in vivo pancreatic cell types, 
in 2007 the freely available EPConDB 
database 
(http://www.cbil.upenn.edu/EPConDB) 
was published by the Beta Cell Biology 
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Consortium.  The results contained in this 
database are obtained from studies 
investigating the gene expression profiles 
of mature pancreatic tissue, during 
development and growth, in vitro 
differentiation of insulin-producing cells, 
in response to beta cell injury, and genetic 
models of impaired beta cell function.  
Furthermore, the database allows 
researchers to explore the relationship 
between a specified gene, upstream 
transcriptional regulators, and 
downstream protein interactions 155.  In 
this database, a number of studies have 
identified important genes involved in the 
maintenance of normal beta cell biology.   
Ferrer et al. found a total of 42 
differentially expressed genes in human 
islet cells in comparison with exocrine 
tissue in vivo 156,157.  Rafaeloff et al. 
identified a number of novel genes 
expressed during islet neogenesis in the 
hamster pancreas in vivo, including 
Cytochrome c oxidase, Ubiquitin 
conjugating enzyme, Elastase I, the Reg 
gene family, and Pancreatitis Associated 
Protein (Pap) 158.  In a series of 
transcriptional profiling experiments, 
FoxA2 has been described as a critical 
determinant of vesicular trafficking, 
membrane targeting, and fuel-secretion 
pathways 159.  HNF-1alpha (also known as 
Tcf1) has been established as a central 
node in the regulation of downstream 
genes required for the maintenance of 
normal beta cells; microarray studies in 
HNF-1alpha knockout mice identified a 
HNF-1alpha promoter binding site in the 
transmembrane protein-27 (Tmem27), a 
cell surface glycosylated protein that is 
required for beta cell proliferation 160.  In 
addition, transcriptional profiling has 
identified Pdx-1 as an upstream regulator 
of ER-related genes involved in disulfide 

bond formation, protein folding, and the 
unfolded protein response, including 
Mafa, Slc2a2, Pax4, Ero1lb, and Nnat 161.   
Garnett et al found that reduced EGR-1 
expression may contribute to a decrease 
in beta cell proliferation and failure 
observed in later stages of type 2 diabetes 
162.  A recent article in Goto-Kakizaki rats 
showed that genes involved in glucose 
sensing, phosphorylation, incretin action, 
glucocorticoid handling, ion transport, 
mitogenesis, and apoptosis 163.   
In human microarray studies, genes 
responsible for the regulation of normal 
GSIS include HNF-4alpha, insulin 
receptor, IRS2, Akt2, G6PI, Aldo, PFK, 
PGM, and the transcription factor aryl 
hydrocarbon receptor nuclear translocator 
(ARNT, also known as HIF-1beta) 164.  
Further analysis of the transcriptomes of 
human alpha, beta, large duct, small duct, 
and acinar cells identified Hopx, Hdac9, 
and MafB as genes that play a central role 
in beta cell biology 165.   

Islet Proteommic Approaches Using 
Animal Disease Models 
Despite a growing body of research 
discussing the effect of IR and IF on 
individual proteins, the underlying global 
proteomic effects of IR and IF have yet to 
be described in detail.  Significant 
advances in liquid chromatography mass 
spectrometry (LCMS) in the past decade 
has allowed for detailed analyses of the 
islet proteome that was not possible 
before the advent of such sophisticated 
instrumentation.   
In 2001, the mouse SWISS-2D PAGE 
database was created to document the 
results of two(2)-Dimensional 
PolyAcrylamide Gel Electrophoresis on 
the quantitative expression of islet cell 
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proteins, and identified a limited set of 44 
proteins 166.   
In 2008, Petyuk et al. published the first 
comprehensive proteomic dataset of 
mouse islet cells, and identified 2,612 
proteins, containing 133 highly expressed 
islet cell proteins 31.  This dataset became 
the first publicly available mouse islet 
proteome, and is available online 
(http://ncrr.pnl.gov).  Of the 133 islet-
specific proteins identified in this study, 
high abundance proteins include those (a) 
involved in the regulation of secretion, 
including Chga, Chgb, Scg2, Scg3, and 
Scg5, (b) islet-specific peptide hormones, 
including Gcg, Iapp, Ins1, Ins2, Pdyn, Ppy, 
Pyy, Sst, and Ucn3.  These proteins are 
not only highly expressed in islet cells, 
they are expressed at very low levels in 
peripheral tissues.   
Waanders et al. published a more 
comprehensive repository of islet proteins 
in 2009 by quantifying the relative 
expression level of 6,873 proteins isolated 
from a single islet cell.  Using this 
approach, Waanders et al. found that the 
most highly expressed proteins in the islet 
proteome included insulin-1, insulin-2, 
glucagon, and the family of 
secretogranins.  More than half of the islet 
proteome are proteins that regulate 
housekeeping functions and cell adhesion.  
Proteins enriched more than 4-fold above 
bulk pancreas protein expression includes 
G protein coupled receptors, cAMP 
regulators, receptor tyrosine kinases, and 
ion channels.  Treatment of islet cells with 
high glucose concentrations in vitro 
resulted in the identification of increased 
protein expression of the mitochondrial 
stress regulator Park7, and a general 
upregulation of proteins involved in 

glycolysis, the TCA cycle, and ATP 
transport 27.   
Interesting findings from this study 
include increased expression of 
antioxidant proteins, including ERO1l-
alpha, Prdx3, Park7, Sod2, and a 
decreased expression of proteins that 
regulate vesicle secretion, including 
VAMP-2, Sytl-4, Rab3b, and the 
endoplasmic reticulum calcium ATPase 
SERCA complex.  Importantly, 24-hour 
glucose stimulation also stimulated the 
expression of proteins involved in 
cytoskeletal remodeling and cell 
proliferation, including Villin 1, Gelsolin, 
alpha actinin 1, alpha actinin 4, and 
integrin beta-1. 
In animal models of diabetes, protein 
profiling has also been performed 167.  The 
BioBreeding (BB-DP) rat is a model for 
type 1 insulin dependent diabetes (T1D), 
and islet proteomic profiling has revealed 
that IL-1beta significantly influenced the 
expression of proteins related to 
carbohydrate metabolism, DNA synthesis, 
protein synthesis, cell differentiation and 
apoptosis 168–171.  In the NOD mouse, 
another model of autoimmune T1D, the 
expression of intracellular stress 
regulators was higher when compared 
with the alloxan-resistant (ALR) mouse 
172. 
The proteomic expression of islet cells 
from animal models of T2D has also been 
studied.  Included in these models is the 
obese lep/lep mouse in which oxidative 
stress proteins glutathione S-transferase 
and calgranulin B were downregulated in 
comparison with lean litter mates 173.  In 
the IR non-diabetic MKR mouse model, 
proteins related to insulin secretory 
defects, unfolded protein response 
(Erp72, Erp44, Erp29, Ppib, Fkbp2, 
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Fkbp11, Dnajb11), ER-associated protein 
degradation (Vcp and Ufm1) and 
mitochondrial metabolism (Ndufa9, 
Uqcrh, Cox2, Cox4l1, Cox5a, ATP6v1b2, 
ATP6v1h, Ant1, Ant2, Etfa, and Etfb) were 
found to be differentially expressed in 
comparison with control mice.  The 
authors also performed gene expression 
profiling to determine the crossover 
between mRNA and protein datasets, and 
found that 46% of the proteins were 
represented by detectable transcripts, 
suggesting that post-translational 
modifications may underlie changes in 
protein function in the context of IR 174. 
While these studies are excellent 
classifications of the islet proteome in 
response to either IR, T1D, or T2D, each 
of these studies classifies the static 
quantitative expression of islet proteins 
through either physical (2D-PAGE) or 
bioinformatic quantitative methods.  
Determining the kinetics of protein 
expression in insulin sensitive, insulin 
resistant hyperplastic islets, and failed 
islet cells represents the next generation 
of islet proteome analysis, and we 
hypothesize that the combination of 2H2O 
labeling and LCMS analysis will 
contribute a significant advancement in 
the field of islet cell kinetic biology.   

Combining Genomic and Proteomic 
Datasets 
Given that transcriptomic and proteomic 
datasets are often large and only 
interpretable as a molecular network, 
there is a significant interest in combining 
the two types of data together to uncover 
both transcriptional and translational 
control of protein synthesis in response to 
IR and diabetes.  Experimentally, this can 
be performed using mRNA and protein 
homogenates from the same animals 

(ideal), or by performing parallel 
experiments (less ideal).  The goal of such 
an approach is to determine the degree of 
overlap between genomic and proteomic 
datasets, creating a single proteogenomic 
dataset that can be further used to explain 
underlying islet cell behavior.  The degree 
of overlap between genomic and 
proteomic datasets is determined by the 
experimental design, the degree of post-
translational modifications, and the 
bioinformatic analysis method used to 
determine statistical significance. 
Experimentally, comparing between 
experiments often yields a low degree of 
overlap, as found in a recent study in 
which the genomic and proteomic 
datasets of mouse models of T1D  were 
compared.  This cross-comparison 
resulted in 18% commonality between 
identified transcripts and protein 171,175.  
Comparing within experiments increases 
genomic and proteomic overlap, however 
a large proportion of identified transcripts 
are frequently unidenfitied in the 
proteomic datasets, or the transcript and 
protein expression are discordant 167.  In a 
study to investigate proteogenomic 
expression in the MKR mouse model of 
T2D, 45% of differentially regulated genes 
also demonstrated differentially regulated 
protein partners concordantly, yet in 54% 
of the differentially expressed proteins a 
corresponding mRNA transcript was not 
detected 174.  This approach minimized the 
proportion of discordant proteogenomic 
changes (1%).  In a recent study, a parallel 
proteogenomic approach was applied to 
human beta cells in vitro, resulting in 65% 
concordant overlap between differentially 
expressed transcripts and proteins, 
representing 54% concordant expression 
and 14% discordant expression 176.   
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Conclusions 
While much work has been done to 
classify the effect of insulin resistance and 
diabetes on the expression of islet cell 
proteins, techniques to study the dynamic 
synthesis and breakdown of a large 
number of islet-specific proteins remains 
to be performed.  Our objective in these 
studies is to contribute to this body of 
knowledge and identify the groups of 
proteins whose synthesis is markedly 
influenced by the ambient insulin 
secretory burden present in early and late 
stage type 2 diabetes.  This knowledge will 
help pinpoint the regulatory networks 
associated with islet cell hyperplasia in 
response to peripheral insulin resistance, 
and islet cell failure.  We hope that  this 
knowledge may help drive the 
development of therapeutics aimed at 
delaying or preventing the onset of type 2 
diabetes in the future.   
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Abstract 

Aims/Hypothesis 
Insulin resistance and beta cell failure are 
the two central etiological processes 
underlying type 2 diabetes.  The effect of 
insulin resistance and islet cell failure on 
islet cell proliferation and gene expression 
is of great interest.  We systematically 
investigated the cell proliferative response 
gene expression profiles of islet cells in 
the settings of islet maintenance, 
hyperproliferation, and failure.   

Methods 
Five-week old male Zucker Diabetic Fatty 
rats (n=24) were randomized into three 
groups: 4 week rosiglitazone treatment 

(RT), rosiglitazone withdrawal (RW), or 
untreated controls (UT).  Gene arrays 
were performed on isolated islets from 
heavy water (2H2O) labeled animals to 
measure the rate of islet cell proliferation 
and gene expression in the same animals 
in vivo.   

Results 
Two weeks of insulin resistance following 
the withdrawal of rosiglitazone promoted 
a rapid 3.2-fold increase in islet cell 
proliferation vs. insulin sensitive animals, 
followed by a sharp reduction in 
proliferation after 2 more weeks.  In 
response to islet failure, the expression of 
regenerating islet-derived genes Reg3a, 
Reg3b, and Reg3g were significantly 



Page 122 

 

Chapter 3: Regenerating Islet Derived (Reg) Gene Expression is 

Reduced in Failing Islet Cells of Zucker Diabetic Fatty Rats 

downregulated, concomitant with reduced 
serum insulin. Both insulin resistance and 
islet failure significantly downregulated 
the expression of genes involved in insulin 
synthesis, secretion, peptide processing, 
and vesicular transport, including Pdx-1, 
Nkx2.2, Nkx6.1, FoxA2, Pax6, Pcsk2, 
Rab27a, Tram1.  Insulin sensitization 
delayed islet cell failure by four weeks 
compared to untreated controls.   

Conclusions/Interpretation 
Islet cell failure in response to in vivo 
insulin resistance in ZDF rats is 
characterized by a unique gene expression 
profile in which the regenerating islet-
derived Reg gene family is significantly 
downregulated.  These genes may serve as 
candidate biomarkers of islet 
hyperproliferation and failure.   

Keywords 
Rosiglitazone, Microarray Analysis, Islet 
Cell Proliferation, Insulin Resistance In 
Vivo, Beta Cell Dysfunction, Beta Cell 
Compensation, Zucker Diabetic Fatty Rat, 
Gene Expression Profiling, 
Thiazolidinediones, TZDs 
 

Introduction 
Type 2 diabetes is a disease of increasing 
global prevalence that affects an estimated 
300 million individuals worldwide 1.  
Insulin resistance and bell cell secretory 
failure are the two principal etiological 
roots of this metabolic condition, and the 
transition to type 2 diabetes from insulin 
resistance is characterized by the inability 
of the beta cells in the islets of Langerhans 
to respond to an increasing peripheral 
demand for insulin 2.  Therapeutic 
interventions that preserve the capacity 
for beta cell proliferation and insulin 
secretion are therefore of great interest.   

A distinct set of circulating and 
intracellular signals regulate islet cell 
function in response to insulin 
sensitization, insulin resistance, and 
diabetes. Islet cells respond to systemic 
insulin resistance by increased 
proliferation in order to augment insulin 
production and prevent hyperglycemia 2–

5.  In animal models of type 2 diabetes, 
prolonged insulin resistance leads to a 
failure of islet cells to secrete insulin, 
resulting in overt hyperglycemia 6,7.  
Although these physiological responses of 
islet cells to insulin resistance have been 
studied, the genetic determinants of islet 
cell plasticity and failure are poorly 
understood.  Therefore, understanding 
the regulation of gene expression in 
hyperproliferating and failing islet cells in 
response to insulin resistance is important 
in developing effective strategies to treat 
diabetes.   
In this study, we used rosiglitazone as an 
experimental tool to synchronize the 
transition of Zucker Diabetic Fatty rats 
(ZDF, fa/fa) from insulin sensitive to 
compensated insulin resistance and 
diabetes. The ZDF rat model harbors a 
mutation in the leptin receptor, resulting 
in obesity, severe insulin resistance, and 
islet cell hyperplasia prior to the onset of 
diabetes at eight to twelve weeks of age 8.  
In a recent study, it was shown that 
rosiglitazone treatment delayed type 2 
diabetes disease progression, which then 
resumed at the normal rate once the drug 
was removed 9.  Accordingly, we treated 
ZDF rats with insulin sensitizing drug 
rosiglitazone, then removed it to initiate a 
synchronized transition to insulin 
resistance and diabetes in order to 
identify transcriptional signatures of islet 
cell maintenance, hyperproliferation, and 
failure.   
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We have developed a technique for 
measuring cell proliferation rates in vivo, 
based on non-toxic 2H2O labeling and 
mass spectrometric analysis, which has 
been applied to the measurement of the 
proliferation of numerous cell types in 
experimental animals and humans, 
including islet cell proliferation in rats 9,10.  
This method is well suited for the 
measurement of cell proliferation in slow 
turnover tissues because 2H2O can be 
conveniently administered for long 
periods of time in drinking water without 
toxic effects, combined with the high 
sensitivity of mass spectrometric analysis 
of the deoxyribose (dR) moiety of DNA 11. 
We sought to combine 2H2O labeling with 
microarray analysis to determine the 
temporal regulation of islet-specific genes 
in relation to islet cell proliferative 
capacity.  To our knowledge there have 
been no studies that combine 
measurements of islet cell proliferation 
rates and islet cell gene expression 
profiling during insulin resistance and 
type 2 diabetes in vivo.  Therefore, our 
objective in this study was to identify 
global changes in gene expression that 
correlate with islet cell maintenance, 
hyperproliferation, and failure in the same 
animals in vivo.   
 

Methods 

Animals 
Five-week old ZDF (fa/fa) animals (n=24) 
were purchased from Charles River 
Laboratories (Wilmington, MA).  
Following 48 hours of acclimation, 
animals were randomized into one of 
three groups: 4 week rosiglitazone treated 
(RT), 2 week rosiglitazone withdrawal 
(RW), or untreated controls (UT).  

Rosiglitazone was administered in the diet 
as powdered Avandia tablets (3mg 
rosiglitazone/kg body weight) from weeks 
5-9 in RT and RW animals, and removed 
from weeks 9-11 in RW animals only.  Two 
weeks before euthanasia, animals in each 
group were labeled with an 
intraperitoneal injection of 100% 2H2O 
(0.35mL/10 g body weight) and were 
subsequently provided 8% 2H2O drinking 
water to maintain body 2H2O enrichments 
of approximately 5% 11.  Animals were 
euthanized at week 9 (RT), week 11 (RW), 
and week 13 (UT) under isoflurane 
anesthesia, followed by cervical 
dislocation.  All experiments were 
performed under the approval of the 
Institutional Animal Use Committees of 
the University of California at Berkeley. 

Islet cell isolation and in vivo cell 
proliferation analysis 
Pancreatic islets were isolated 
immediately following euthanasia 
according to a perfusion protocol that has 
been described previously 10.  DNA was 
extracted from islets using the DNeasy kit 
(Qiagen, Valencia, CA), and was 
enzymatically hydrolyzed to free 
deoxyribonucleosides by overnight 
incubation at 37oC with S1 nuclease and 
potato acid phosphatase.  The dR moiety 
of the deoxyribonucleosides was 
derivatized to the pentane tetraacetate 
derivative as described previously 11, and 
was analyzed by positive chemical 
ionization GC/MS with a model 5973 
mass spectrometer fitted with a model 
6890 gas chromatograph (Agilent, Palo 
Alto, CA).  Selected ion monitoring was 
performed on mass isotopomers with 
mass-to-charge (m/z) ratios of 245, 246 
and 247, representing the M0, M1 and M2 
ions of the pentane tetraacetate 
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deoxyribonucleoside derivatives, 
respectively.  The excess fractional M1 
enrichment (EM1) of dR was calculated as 
follows: 

 

 
The fractional synthesis rates (f) of islets 
were calculated by comparison to bone 
marrow cells from the same animal 11. 

RNA isolation and quality control 
Total RNA was isolated from 20-30 mg of 
islets using the RNEasy kit according to 
the manufacturer’s instructions (Qiagen, 
Valencia, CA).  Equal amounts of RNA 
from each of 3 replicates were reverse 
transcribed to cDNA after the purity and 
concentration of RNA samples were 
determined from OD260/280 readings using 
a dual beam UV spectrophotometer.  RNA 
integrity was determined by capillary 
electrophoresis using the RNA 6000 Nano 
Lab-on-a-Chip kit and the Bioanalyzer 
2100 (Agilent Technologies). 

cRNA synthesis and labeling 
cRNA was synthesized and labeled with 
biotinylated UTP and CTP by in vitro 
transcription using the T7 promoter-
coupled double stranded cDNA as 
template and the Bioarray™ HighYield™ 
RNA Transcript Labeling Kit (ENZO 
Diagnostics Inc.).  The labeled cRNA was 
separated from unincorporated 
ribonucleotides by passing through a 
CHROMA SPIN-100 column (Clontech) 
and ethanol precipitated at –20oC for 1 hr 
to overnight. 
Oligonucleotide array hybridization 
and analysis 

Labeled cRNA (15.0 ug) was fragmented 
by Magnesium ion-mediated hydrolysis 
and hybridized for 16hr at 45oC to 
Affymetrix GeneChip Rat Genome 230 2.0 
arrays (Affymetrix, Santa Clara, CA).  
Arrays were washed and stained using an 
Affymetrix Fluidics Station 450. The 
arrays were stained with phycoerythrein-
conjugated streptavidin (Invitrogen, 
Carlsbad, CA) and the fluorescence 
intensities were determined using a GCS 
3000 7G high-resolution confocal laser 
scanner (Affymetrix). The scanned images 
were analyzed using programs resident in 
AGCC and Expression Console 
(Affymetrix). Quality control metrics for 
cRNA integrity, sample loading, and 
variations in staining were determined by 
MAS 5.0 statistical algorithms. 

Microarray data analysis 
Signal values were generated by the RMA 
method and detection p-values were 
generated by MAS 5.0 12,13.  Probe sets 
exhibiting significant differential 
expression were identified using 
GeneMaths XT (Applied Maths, Austin 
TX), based on the following criteria: (a) 
MAS5.0 detection p-values ≤ 0.05, (b) 
ANOVA p-value ≤ 0.05, (c) absolute signal 
log ratio ≥ 1.0 and independent t-test p-
value ≤ 0.05 for at least one pair wise 
comparison versus the control group. 
Unsupervised hierarchical clustering and 
heat map generation were performed 
following row mean centering of log2 
transformed RMA signal values.  Gene 
annotation, gene ontology information 
and biochemical pathway information 
were obtained from the Database for 
Annotation, Visualization and Integrated 
Discovery (DAVID) v6.7 from the 
National Institute of Allergy and 
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Infectious Diseases (NIAID), at the 
National Institutes of Health (NIH) 14,15.     

Gene expression analysis by 
quantitative qRT-PCR 
RNA was isolated from isolated islets 
using the RNeasy kit (Qiagen, Valencia, 
CA) and reverse transcribed with M-MulV 
reverse transcriptase (New England 
Biolabs). Next, 25 ng of diluted cDNA was 
run on an ABI 7500 Fast Real-Time PCR 
System using TaqMan gene expression 
master mix and probed with Fam-labeled 
primer-probe sets (Applied Biosystems, 
Carlsbad, CA). 
 

Results 

Food Intake and Body Weight 
Following two weeks on their respective 
diets, RT and RW animals consumed an 
average of 9.7 + 4.0 g/day (p<0.001) more 
food than UT animals, and removal of 
rosiglitazone from the diet decreased food 
intake to the levels of UT animals (Figure 
1A).  The body weights of rosiglitazone 
treated animals were also significantly 
higher than chow-fed animals (Figure 1B). 

Blood Glucose and Plasma Insulin 
In this study, we used rosiglitazone as an 
experimental tool to synchronize the 
transition of ZDF rats from insulin 
sensitive to compensated insulin 
resistance and diabetes.  We first 
measured the effect of rosiglitazone 
treatment and withdrawal on circulating 
glucose and insulin in ZDF rats (Figure 2A 
and B).  At 9 weeks of age RT rats had 
normal blood glucose levels (102.0 + 9.0 
mg/dL), and normal fasting insulin levels 
(7.0 + 1.4 ng/mL).  In contrast, UT 

controls at the same age were already 
hyperglycemic (380.0 + 32.0 mg/dL) and 
hypoinsulinemic (5.1 + 1.0 ng/mL), and 
maintained this phenotype for the 
remainder of the study.  Rosiglitazone 
withdrawal at 9 weeks led to a steady 
increase in blood glucose and a rapid but 
transient increase in fasting insulin.  At 11 
weeks of age, RW animals exhibited 
elevated blood glucose (163.0 + 40.0 
mg/dL) and insulin (15.0 + 4.8 ng/mL).  
By 13 weeks, RW animals were frankly 
hyperglycemic (276.4 + 47.1 mg/dL), and 
insulin concentrations had fallen to near 
baseline levels (8.0 + 1.3 ng/mL).  Taken 
together, these data demonstrate that 
rosiglitazone coordinated the progression 
of ZDF rats to diabetes, and acted as an 
effective insulin sensitizing agent.  In 
addition, this treatment-and-withdrawal 
regimen highlights three relevant stages 
in the progression towards diabetes: (a) 
insulin sensitivity (RT at 9 weeks), (b) 
insulin resistance (RW at 11 weeks), and 
(c) diabetes (UT at 13 weeks). 

Islet Cell Proliferation 

Next, we assessed how rosiglitazone 
treatment and withdrawal affected islet 
cell proliferation.  At 9 weeks of age, RT 
insulin sensitive mice exhibited low islet 
cell proliferation (0.90 + 0.09 % new cells 
per day) (Figure 3).  Rosiglitazone 
withdrawal at 9 weeks led to a rapid 
increase in islet cell proliferation by 11 
weeks (2.69 + 0.25 % new cells per day) 
that paralleled the increase in circulating 
insulin, indicative of islet cell 
hyperproliferation in the face of insulin 
resistance (compensated insulin 
resistance).   



Page 126 

 

Chapter 3: Regenerating Islet Derived (Reg) Gene Expression is 

Reduced in Failing Islet Cells of Zucker Diabetic Fatty Rats 

By 13 weeks, islet cell proliferation 
returned to baseline values (0.89 + 0.09 
% new cells per day), indicating islet cell 
failure.  The progressive decline in islet 
cell proliferation in UT animals 
demonstrates progressive islet cell failure 
throughout the study.  From 9 to 13 
weeks, islet cell proliferation rates fell by 
over 70%, and at 13 weeks of age islet cell 
proliferation in the UT group was only 
0.49% + 0.11 new cells/day.  Taken 
together with the glucose and insulin data, 
these results validate our experimental 
design and allow for the assessment of 
three distinct phases in the progression 
towards diabetes: (a) islet cell 
maintenance (RT at 9 weeks), (b) islet cell 
hyperproliferation (RW at 11 weeks), and 
(c) islet cell failure (UT at 13 weeks). 

Gene Expression Profiling 
We then performed gene expression 
profiling in these three cohorts under the 
conditions of islet cell maintainence, 
hyperproliferation and failure.  Total RNA 
was isolated from a subset of islets 

collected from RT, RW and UT animals.  
Affymetrix gene arrays (Rat 230 2.0) were 
used to evaluate changes in gene 
expression in response to islet cell failure 
and hyperproliferation in isolated islet 
cells (n=3 per group).  Gene expression 
profiling identified 620 probe sets 
representing 401 known genes as being 
differentially expressed.   
We performed four pair wise comparisons 
to determine the gene expression profiles 
that characterize islet cell failure (Table 1) 
and hyperproliferation (Table 2), and 
classify differentially expressed genes by 
function.   

Islet Cell Failure Gene Expression 
Profiling 
We performed two pair wise comparisons 
(UT vs. RT and UT vs. RW) to determine 
the gene expression profiles unique to 
failed islet cells.  In the first comparison 
we identified 228 probe sets representing 
149 known genes as differentially 
expressed.  There were 22 upregulated 
genes and 127 downregulated genes.  In 

Figure 1.  The effect of rosiglitazone treatment and removal on (A) mean daily food intake and (B) body 
weight in rosiglitazone treated (RT, open squares), rosiglitazone withdrawal (RW, open triangles), and 
untreated control (UT, open circles) ZDF rats.  Values are means + SEM, and significance was calculated 
by repeated measures ANOVA or a two-tailed student’s t-test vs. UT animals (*, p<0.05; **, p<0.01; ***, 
p<0.001).  Arrow indicates the time point at which animals in the RW group were switched to a chow diet 
devoid of rosiglitazone. 
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the second comparison we identified 35 
probe sets representing 23  known genes 
as differentially expressed, resulting in 17 
upregulated genes and 6 downregulated 
genes (Table 1).   
We identified 3 genes that were 
downregulated in both comparisons: 
Reg3b, Reg3g, and TRH.  Reg3b 
expression was downregulated 2.30-fold 
and 2.94-fold, Reg3g expression was 
downregulated 14.00-fold and 14.92-fold, 
and TRH expression was downregulated 
6.65-fold and 3.00-fold in comparison 
with RT and RW animals, respectively.  
We also identified 2 genes that were 
upregulated in both comparisons: AldoB 
and Txnip.  AldoB expression was 
upregulated 21.10-fold and 13.85-fold, 
whereas Txnip was upregulated 2.80-fold 
and 2.71-fold in comparison with RT and 
RW animals, respectively.  Of all the probe 
sets represented on the gene array, AldoB 

demonstrated the largest magnitude of 
downregulation.   
Genes involved in islet cell proliferation, 
differentiation and migration were 
downregulated in UT animals in 
comparison with RT animals only.  These 
genes include Fos, Jun, Mapt, and Wif-1 
and have well classified effects on 
promoting cellular proliferation and 
differentiation.  In addition, pro-apoptotic 
genes including Gch1, App, Nell1, Siva1, 
Kcnma1, Il1r1, and Dusp1, as well as the 
anti-apoptotic genes Dnajb9, Wfs1, Btg2, 
Nfkbia, Scg2 and Hspa1b were 
downregulated between 2.04 and 4.00-
fold.  Our data suggest that the gene 
expression profile of apoptotic genes does 
not correlate with functional pathway 
activity, and that the reduction in 
proliferation due to islet cell failure is a 
complex integrated balance between the 
expression of the proliferative and 
apoptotic genes identified here.   

Figure 2.  The effect of rosiglitazone treatment and removal on (A) blood glucose and (B) plasma insulin 
over time in rosiglitazone treated (RT, open squares), rosiglitazone withdrawal (RW, open triangles), and 
untreated control (UT, open circles) ZDF rats.  Values are means + SEM, and significance was calculated 
by repeated measures ANOVA or a two-tailed student’s t-test vs. UT animals (*, p<0.05; **, p<0.01; ***, 
p<0.001).  Arrow indicates the time point at which animals in the RW group were switched to a chow diet 
devoid of rosiglitazone.  The RT group was euthanized at week 9.   
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Similarly, genes involved in insulin 
secretion, peptide processing, and 
vesicular transport were downregulated in 
UT animals only in comparison with RT 
animals.  The expression of this family of 
genes was downregulated between 2.1 and 
6.65-fold, and includes Gipr, Nnat, Pcsk2, 
P2ry1, Rab27a, Rab3b, Tram1, Spcs2, 
and Hspa1b.  In contrast to the increased 
expression of AldoB, genes involved in 
glucose metabolism including Prkacb, 
Prkar1a, and Sst were significantly 
downregulated in UT animals in 
comparison with RT animals.   

Islet Cell Hyperproliferation Gene 
Expression Profiling 
We performed two pair wise comparisons 
(RW vs. RT and RW vs. UT) to determine 
the gene expression profiles common to 
hyperproliferating islet cells.  In the first 
comparison we identified 357 probe sets 
representing 229 known genes as 
differentially expressed, resulting in 13 
upregulated genes and 216 downregulated 
genes.  In the second comparison we 
identified 35 probe sets representing 23 
known genes as differentially expressed, 
resulting in 6 upregulated genes and 17 
downregulated genes (Table 2).   
Interestingly, we found that there were no 
genes in common to both comparisons, 

however genes grouped by functional 
pathway were coordinately regulated.  We 
found that there was no significant change 
in the expression of the Reg family of 
genes in RW animals in comparison with 
RT animals, and that the expression of 
these genes was different only in 
comparison with UT animals.   
Genes involved in proliferation, 
differentiation and migration, including 
Fos, Jun, Mapt, Wif1, Atf4, and Ppm1b 
did not reflect islet cell hyperproliferation.  
All genes in this group were 
downregulated between 2.01 and 3.34-
fold.  We also found a reduced expression 
of negative regulators of islet cell 
apoptosis in comparison with RT animals, 
between 2.03 and 2.38-fold.  Genes in this 
family included Vegfa, Dnajb9, Btg2, 
Nfkbia, Scg2, Hspa1b, Sod2, and Irak1.  
In addition, 3 genes involved in the 
positive regulation of apoptosis were 
downregulated between 2.03 and 2.35-
fold, including Siva1, Il1r1, and Dusp1.  
Taken together, these data indicate that 
while proliferative and apoptotic genes 
may play a role in regulating islet cell 
plasticity, expression levels of these genes 
are poor transcriptomic signatures of islet 
cell hyperplasia. 
 

Figure 3. The effect of rosiglitazone treatment 
and removal on islet proliferation in rosiglitazone 
treated (RT, open squares), rosiglitazone 
withdrawal (RW, open triangles), and untreated 
control (UT, open circles) ZDF rats.  Values are 
means + SEM, and significance was calculated by 
repeated measures ANOVA or a two-tailed 
student’s t-test vs. UT animals (*, p<0.05; **, 
p<0.01; ***, p<0.001).  Animals in all groups 
were labeled for 2 weeks preceding euthanasia 
(n=3 animals/time point). 
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Gene 

Symbol 

Fold Change 

UT vs. RT 

Fold Change  

UT vs. RW 
Gene Name 

Pancreatic Regeneration and Inflammation 

Reg3a - -2.36b Regenerating islet-derived 3 alpha 

Reg3b -2.30 -2.94b Regenerating islet-derived 3 beta 

Reg3g -14.00 -14.92c Regenerating islet-derived 3 gamma 

Nupr1 -2.28a - Nuclear protein, transcriptional regulator, 1 

Cell Proliferation, Differentiation and Migration 

Fos -4.14b - FBJ osteosarcoma oncogene 

Jun -2.64-3.08b - Jun oncogene 

Mapt -2.16c - Microtubule-associated protein tau 

Wif1 -2.20a - Wnt inhibitory factor 1 

Atf4 - - Activating transcription factor 4 

Ppm1b - - Protein phosphatase 1B, beta isoform 

Positive Regulation of Insulin Secretion, Peptide Processing, and Vesicular Transport 

Gipr -2.13b - Gastric Inhibitory Polypeptide Receptor 

Nnat -4.40b - Neuronatin 

Serp1 - - Stress-associated endoplasmic reticulum protein 1 

Snap25 - - Synaptosomal-associated protein 25 

TRH -6.65b -3.00b Thyrotropin releasing hormone 

Apln - - Apelin 

Cadps - - Calcium-dependent secretion activator 

Pcsk2 -2.15b - Proprotein convertase subtilisin/kexin type 2 

P2ry1 -4.01a - Purinergic Receptor P2Y, G-protein coupled 1 

Rab27a -2.40b - Rab27a, member RAS oncogene family 

Rab3b -2.35b - Rab3b, member RAS oncogene family 

Tram1 -2.10b - Translocation associated membrane protein 1 

Spcs2 -2.10b - Signal peptidase complex subunit 2 homolog 

Rapgef4 - - Rap guanine nucleotide exchange factor 4 

Hspa1b -4.00b - Heat shock 70kD protein 1B 

Scfd1 - - Sec family domain containing 1 

Glucose Metabolism 

AldoB 21.10c 13.85c Aldolase B, fructose-bisphosphate 

Prkacb -2.30c - Protein kinase, cAMP dependent, catalytic, beta 
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Prkar1a 2.01 - Protein kinase, cAMP dependent, regulatory, type 1 alpha 

Sst -2.44b - Somatostatin 

Positive Regulation of Apoptosis 

Gal 3.18b - Galanin proteptide 

Txnip 2.80b 2.71b Thioredoxin interacting protein 

Gch1 -2.04b - GTP cyclohydrolase 1 

App -2.11b - Amyloid beta (A4) precursor protein 

Nell1 -2.12b - NEL-like 1 (chicken) 

Siva1 -2.23a - SIVA1, apoptosis-inducing factor 

Kcnma1 -2.25b - Potassium large conductance calcium-activated channel, 

subfamily M, alpha member 1 

Il1r1 -2.29b - Interleukin 1 receptor, type 1 

Dusp1 -2.32b - Dual specificity phosphatase 1 

Negative Regulation of Apoptosis 

Vegfa 2.02c - Vascular endothelial growth factor A 

Dnajb9 -2.05a - DnaJ (Hsp40) homolog, subfamily B, member 9 

Wfs1 -2.15b - Wolfram syndrome 1 homolog (human) 

Btg2 -2.26-2.42b - B-cell translocation gene 2 

Nfkbia -2.43c - Nuclear factor of kappa light polypeptide gene enhancer 

in B-cells inhibitor, alpha 

Scg2 -2.44b - Secretogranin II 

Hspa1b -4.00b - Heat shock 70kD protein 1B 

Sod2   Manganese superoxide dismutase, mitochondrial 

Irak1 - - Interleukin-1 receptor-associated kinase 1 

 
Table 1.  Gene Expression Profile in Failing Islet Cells.  The effect of islet cell failure on the 
expression of selected differentially expressed genes.  A range of fold change values is presented for genes 
that were represented by multiple probes on the Affymetrix microarray.  Positive values indicate 
upregulation in UT animals, and negative values indicate downregulation in UT animals as compared 
with the latter group in each pair wise comparison.  Significance was calculated by a two-tailed student’s 
t-test (a, p<0.05; b, p<0.01; c, p<0.001). 
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We found that genes involved in the 
regulation of insulin secretion, peptide 
processing and vesicular transport 
displayed a consistent 2.0 to 2.7-fold 
downregulation in RW animals in 
comparison with RT animals, including 
Serp1, Snap25, Cadps, Rapgef4, Scfd1, 
and the previously identified genes Gipr, 
Nnat, Pcsk2, P2ry1, Rab27a, Rab3b, 
Tram1, and Spcs2.  Additionally, master 
beta cell transcription factors Pdx-1, 
Nkx2.2, Nkx6.1, FoxA2, Pax6, and 
NeuroD1 were downregulated between 
2.0 and 2.7-fold.  Pdx-1 is an important 
transcription factor that promotes the 
expression of insulin, Glut-2, Nkx-6.1, 
IAP, and Nkx-6.1, while Nkx-6.1 is a beta 
cell transcription factor which binds to the 
insulin promoter to initiate insulin gene 
expression 16,17. 
 
In comparison with UT animals, RW 
animals displayed minor differences in 
the expression of genes involved in (a) 
islet cell proliferation, differentiation and 
migration, (b) positive regulation of 
insulin secretion, peptide processing and 

vesicular transport, (c) master islet cell 
transcription factors, (d) genes that 
promote apoptosis, and (e) genes that 
negatively regulate apoptosis.  
Interestingly, these data indicate that the 
gene expression profile of 
hyperproliferating islet cells closely 
matches that of failed islet cells despite 
significant differences in islet cell 
proliferative capacity.   
PCR Confirmation of Gene Targets 
Given that gene expression profiling 
identified a significant downregulation of 
regenerating islet-derived genes, we 
confirmed the expression of all genes 
involved in pancreatic regeneration and 
inflammation, including Reg3a, Reg3b, 
Reg3g, and Nupr1 using quantitative 
PCR.  The selected gene expression 
followed microarray trends (Figure 4A-
D).  In addition, we confirmed the 
expression of selected genes from the 
functional pathways discussed above in 
order to validate microarray expression 
values (Figure 4E-X).  IS THIS 
NECESSARY? 
 

Figure 4. Quantitative PCR confirmation of Reg3a, Reg3b and Reg3g in response to (A) long-term islet 
cell failure (UT vs. RT), (B) acute islet cell failure (UT vs. RW), (C)???, and (D) ???.  The normalized 
expression of each gene is corrected for the average expression of GAPDH and RPL37a and is expressed in 
arbitrary units.  Values are means + SEM, and significance was calculated by two-tailed student’s t-test vs. 
the latter group in each comparison (*, p<0.05; **, p<0.01; ***, p<0.001). 
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Discussion 
These data demonstrate a number of 
novel findings regarding islet cell 
physiology and gene expression in 
response to insulin resistance and 
diabetes.  We show that the rosiglitazone 
treatment-and-withdrawal regimen was 
an effective tool to synchronize the 
transition of ZDF rats to compensated 
insulin resistance and diabetes.  Removal 
of the insulin sensitizing agent 
rosiglitazone from the diet triggered acute 
onset insulin resistance, and a rapid 
increase in islet cell proliferation that 
persisted for only two weeks.  This period 
of islet cell hyperproliferation is then 
followed by an immediate and sharp 
decline in islet cell proliferative capacity 
that marked the transition to diabetes.  
Together, these dynamic results suggest 
that islet cell hyperproliferation reveals an 
important physiological response to 
insulin resistance in that blood glucose 
values are maintained at the expense of 
large increases in islet cell mass and 
insulin secretion.  Maintenance of insulin 
sensitivity preserved the capacity of islet 
cells to proliferate later in life in response 
to the emergence of insulin resistance.  
Our findings imply that the failure of islet 
cell proliferation is not a temporally 
programmed intrinsic feature of the ZDF 
phenotype, but is rather influenced by 
ambient insulin secretory burden.  Thus, 
in ZDF rats early treatment of insulin 
resistance reduces the need for islet cell 
proliferation and prolongs the subsequent 
capacity for islet cell expansion, 
preserving the ability to adequately 
regulate glucose homeostasis at later 
stages of life.  Most importantly, there 
appears to be a finite islet cell proliferative 
reserve.   

Using genome-wide gene expression 
profiling, we demonstrated that the Reg 
family of genes (Reg3a, Reg3b, and 
Reg3g) are significantly downregulated in 
response to islet failure.  We show that in 
diabetic animals, Reg3b and Reg3g are 
downregulated in comparison with both 
insulin sensitive and insulin resistant 
animals.  This family of regenerating islet-
derived genes encodes secretory proteins 
that play roles in recruiting macrophages 
to sites of inflammation in many organs, 
including the pancreas, bowel, liver, 
ovaries and heart, and are associated with 
islet cell regeneration and inflammation 
18.   
Previous studies have shown that the 
family of Reg genes encode secretory 
proteins of the endocrine and exocrine 
pancreas that act as growth stimulants to 
promote cell proliferation and neogenesis 
in response to stress in humans and in 
rodents 19.  Since the original discovery 
that Reg mRNA is increased in 
regenerating islets of depancreatized rats 
treated with the islet growth stimulant 
nicotinamide (okamoto, 1987), many 
studies have shown that Reg proteins 
regulate apoptosis, cell regeneration, cell 
proliferation, and inflammation in 
response to endocrine and exocrine cell 
damage 18,20.  Importantly, Reg gene 
products have been identified as 
important markers of beta cell stress and 
acute phase pancreatitis 21.   
Expression of Reg3a is associated with 
islet cell expansion, and studies have 
shown that Reg3a transcript and protein 
levels are significantly increased in 
humans with type 1 or type 2 diabetes, 
and during pregnancy 21–24.   
While the direct effect of Reg3b 
expression on beta cells has yet to be 
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established, the function of Reg3b in liver 
tissue closely resembles that of Reg1 in 
stimulating pancreatic regeneration.  It 
has been proposed that Reg3b promotes 
islet cell proliferation, cell survival, insulin 
secretion, and neogenesis 25,26.   
Previous work has shown that islet cell 
proliferation and regeneration promotes 
an increased expression of Reg proteins 23 
MORE REFS HERE, yet we are the first to 
show that the ensuing failure of islet cells 
downregulates Reg expression in vivo.  
Previous work has demonstrated that 
Reg3a is downregulated in human gastric 
carcinomas 27 MORE REFS HERE, yet to 
date a reduced expression of Reg genes in 
failing islets has not been reported.  
In addition, we found that long-term islet 
failure reduced Nupr1 gene expression by 
2.28-fold, a beta cell nuclear protein that 
enhances islet cell growth, survival and 
function 26.  Nupr1 was originally 
identified in acinar cells in response to 
acute pancreatitis, but has now been 
shown to regulate beta cell growth and 
apoptosis 28.  Our results support the 
finding that Reg3b and Nupr1 participate 
in a coordinated two-way feedback 28.   
TRH was found to be downregulated in 
response to islet failure by 6.65-fold in 
comparison with RT animals, and 3.0-fold 
in comparison with RW animals.  
Pancreatic TRH has two principal effects: 
(a) positive regulation of glucagon 
secretion, and (b) attenuation of exocrine 
secretion.  TRH content in rat islets is 
high during growth and development and 
decreases into adulthood 29.  This 
hormone is localized and secreted with 
insulin, and is correlated with insulin 
secretory capacity of the islet cell 29,30.  
Our data demonstrate that islet cell failure 
is coupled with a reduced TRH transcript 

level, supporting a role for TRH in 
regulating GSIS.  These results provide 
evidence that TRH expression and insulin 
secretion play a coordinated role in 
maintaining beta cell function in the adult 
rat pancreas.   
We found that Pdx-1 expression was 
downregulated by insulin resistance, 
suggesting a pivotal role for this 
transcription factor in the regulation of 
GSIS.  While Pdx-1 primarily mediates the 
secretion of insulin, Pdx-1 also plays a role 
in beta cell neogenesis, differentiation, 
and apoptosis 31,32.  Pdx-1 is the principal 
regulator of GSIS, and is expressed in 
both insulin-producing beta cells and 
somatostatin-producing delta cells.  
Elevations in circulating glucose increase 
beta cell glycolytic flux which translocates 
Pdx-1 to the nucleus where it regulates the 
transcription of genes involved in beta cell 
maturation, including GLUT2, Gck, Sst, 
Iap, and MafA 33–36.  These data support 
our findings that Pdx-1 expression is 
downregulated by insulin resistance, 
supporting a central role for Pdx-1 in 
regulating the transcription of genes that 
promote islet cell function. 
In this study, the emergence of insulin 
resistance stimulated a net 
downregulation of master islet cell 
transcription factors, including Pdx-1, 
Nkx2.2, Nkx6.1, FoxA2, Pax6, and 
NeuroD1.  Specifically, we found that 
insulin resistance resulted in a 2.3-fold 
downregulation of Nkx6.1, a beta-cell 
specific gene that may function 
downstream of Nkx2.2 37,38.  Interestingly, 
Nkx2.2 knockout mice develop severe 
hyperglycemia and die shortly after birth 
39, while mutation of the Nkx6.1 gene 
eliminates beta cell neogenesis and results  
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Gene 

Symbol 

Fold Change  

RW vs. RT 

Fold Change  

RW vs. UT 
Gene Name 

Pancreatic Regeneration and Inflammation 

Reg3a - 2.36b Regenerating islet-derived 3 alpha 

Reg3b - 2.94b Regenerating islet-derived 3 beta 

Reg3g - 14.92c Regenerating islet-derived 3 gamma 

Nupr1 - - Nuclear protein, transcriptional regulator, 1 

Cell Proliferation, Differentiation and Migration 

Fos -3.34a - FBJ osteosarcoma oncogene 

Jun -2.18-2.52a - Jun oncogene 

Mapt -2.03c - Microtubule-associated protein tau 

Wif1 -2.57b - Wnt inhibitory factor 1 

Atf4 -2.12b - Activating transcription factor 4 

Ppm1b -2.01b - Protein phosphatase 1B, beta isoform 

Positive Regulation of Insulin Secretion, Peptide Processing, and Vesicular Transport 

Gipr -2.02b - Gastric Inhibitory Polypeptide Receptor 

Nnat -2.93b - Neuronatin 

Serp1 -2.12b - Stress-associated endoplasmic reticulum protein 1 

Snap25 -2.14c - Synaptosomal-associated protein 25 

TRH - 3.0b Thyrotropin releasing hormone 

Apln 2.06b - Apelin 

Cadps -2.00c - Calcium-dependent secretion activator 

Pcsk2 -2.1b - Proprotein convertase subtilisin/kexin type 2 

P2ry1 -2.26 - Purinergic Receptor P2Y, G-protein coupled 1 

Rab27a -2.07b - Rab27a, member RAS oncogene family 

Rab3b -2.26b - Rab3b, member RAS oncogene family 

Tram1 -2.1c - Translocation associated membrane protein 1 

Spcs2 -2.2c - Signal peptidase complex subunit 2 homolog 

Rapgef4 -2.30b - Rap guanine nucleotide exchange factor 4 

Hspa1b - - Heat shock 70kD protein 1B 

Scfd1 -2.24b - Sec family domain containing 1 

Master Islet Cell Transcription Factors 

Pdx-1 -2.1c - Pancreatic and duodenal homeobox 1 

Nkx2.2 -2.1c - NK2 homeobox 2 
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Nkx6.1 -2.3c - NK6 homeobox 1 

FoxA2 -2.0b - Forkhead box A2 

Pax6 -2.7b - Paired box 6 

NeuroD

1 

-2.3c - Neurogenic differentiation 1 

Slc2a2 -2.01c - Solute carrier 2 (facilitated glucose transporter), 

member 2 (Glut-2) 

Glucose Metabolism 

AldoB - -13.85c Aldolase B, fructose-bisphosphate 

Prkacb -2.12c - Protein kinase, cAMP dependent, catalytic, beta 

Prkar1a - - Protein kinase, cAMP dependent, regulatory, type 1 

alpha 

Sst -3.80c - Somatostatin 

Positive Regulation of Apoptosis 

Gal - - Galanin proteptide 

Txnip - -2.71b Thioredoxin interacting protein 

Gch1 - - GTP cyclohydrolase 1 

App - - Amyloid beta (A4) precursor protein 

Nell1 - - NEL-like 1 (chicken) 

Siva1 -2.03a - SIVA1, apoptosis-inducing factor 

Kcnma1 - - Potassium large conductance calcium-activated channel, 

subfamily M, alpha member 1 

Il1r1 -2.09b - Interleukin 1 receptor, type 1 

Dusp1 -2.35b - Dual specificity phosphatase 1 

Negative Regulation of Apoptosis 

Vegfa -2.07-2.09c - Vascular endothelial growth factor A 

Dnajb9 -2.38c - DnaJ (Hsp40) homolog, subfamily B, member 9 

Wfs1 - - Wolfram syndrome 1 homolog (human) 

Btg2 -2.01-2.27a - B-cell translocation gene 2 

Nfkbia -2.03b - Nuclear factor of kappa light polypeptide gene enhancer 

in B-cells inhibitor, alpha 

Scg2 -2.05c - Secretogranin II 

Hspa1b -2.52 - Heat shock 70kD protein 1B 

Sod2 -2.16a  Manganese superoxide dismutase, mitochondrial 
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Irak1 -2.04b - Interleukin-1 receptor-associated kinase 1 

 
Table 2.  Gene Expression Profile in Hyperproliferating Islet Cells.  The effect of islet cell 
hyperproliferation on the expression of selected differentially expressed genes.  A range of fold change 
values is presented for genes that were represented by multiple probes on the Affymetrix microarray.  
Positive values indicate upregulation in RW animals, and negative values indicate downregulation in RW 
animals as compared with the latter group in each pair wise comparison.  Significance was calculated by a 
two-tailed student’s t-test (a, p<0.05; b, p<0.01; c, p<0.001). 
 
 
in a complete loss of beta cell precursor 
cells 40.  In addition, FoxA1 and FoxA2 
play distinct roles in the secretion of many 
endocrine hormones in tissues including 
the pancreas 41,42.  We found that acute 
induction of insulin resistance stimulated 
a 2-fold downregulation of FoxA2, likely 
contributing to insulin secretion 
abnormalities.  In addition, it has been 
demonstrated that Pax6 controls the 
transcription of Pcsk2 and NeuroD1, 
genes involved in the transactivation of 
insulin expression 43,44.  Mutation of 
NeuroD1 causes MODY6 in humans, and 
severe glucose intolerance in mice 44, 
indicating that NeuroD1 is required for 
proper beta cell maturation.  In the 
present study, we demonstrate that islet 
cell hyperplasia is coincident with a 2.7-
fold downregulation of Pax6, a 2.1-fold 
downregulation of Pcsk2, and a 2.3-fold 
downregulation of NeuroD1.  These 
findings are consistent with previous 
studies that identify Pdx-1, Nkx2.2, 
Nkx6.1, FoxA2, Pax6, and NeuroD1 as 
crucial determinants of beta cell 
maturation and the reprogramming of 
extrapancreatic tissue to glucose-
responsive insulin-producing cells 45.   
One limitation of this study is whether the 
transcriptional effects of islet cell 
hyperproliferation and failure are due to 
rosiglitazone withdrawal and the 
inactivation of PPAR-gamma.  A growing 
body of evidence supports a direct effect 

of PPAR-gamma agonists on beta cell 
function in humans and in rodents 46–48.  
In a recent study, it was shown that beta 
cell-specific PPAR-gamma deletion 
blunted increases in beta cell mass in 
insulin resistant mice, suggesting that 
beta cell PPAR-gamma is required for 
beta cell proliferation 49.  In another 
pancreatic-specific PPAR-gamma 
knockout mouse model, isolated islets 
were not hyperplastic, and showed 
blunted GSIS and downregulation of the 
genes Pdx-1 and GLUT2, highlighting the 
role of PPAR-gamma in mediating islet 
cell maturation 50.   
In line with this reasoning, we found that 
genes involved in the regulation of insulin 
secretion, peptide processing, and 
vesicular transport were downregulated 
only in comparison with RT animals.  We 
observed that in UT and RW animals, 
these genes were downregulated between 
2.00 and 6.65-fold, suggesting that this 
family of genes is sensitive to rapid 
alterations in islet cell metabolism 
induced by either insulin resistance or 
diabetes.  These data suggest that the 
direct effects of PPAR-gamma 
deactivation may be responsible for our 
observed gene expression results.  The 
inactivation of beta cell PPAR-gamma has 
been shown to result in a number of pro-
apoptotic beta cell mechanisms, including 
the activation of endoplasmic reticulum 
stress pathways 51, oxidative stress 52, and 
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lipotoxicity 53.  Collectively, our study 
supports the idea that PPAR-gamma 
deactivation results either in the direct 
transcriptional reprogramming of beta 
cells or in the evolution of insulin 
resistance, resulting in profound islet cell 
abnormalities and the eventual ablation of 
insulin secretion. 
In summary, this experimental approach 
provided insight into the pattern of gene 
expression that regulates both the 
hyperplastic and failure mechanisms.  By 
combining physiological data with 
transcriptional profiling, we 
demonstrated for the first time important 
changes in gene expression in response to 
islet cell hyperproliferation and failure in 
the same animals in vivo.  The genes 
identified here play a role in the response 
of islets to increased demand for insulin 
secretion, and are involved in the 
regulation of islet cell maintenance, 
hyperproliferation, and failure.  Reg3a, 
Reg3b, and Reg3g proteins are exciting 
candidate biomarkers of islet cell 
hyperplasia and failure, and further 
studies are needed to clarify the potential 
regulatory role of Reg3 gene products in 
directing islet cell proliferation in 
response to insulin resistance.   
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Abstract 
Insulin resistance and islet cell failure are 
the two fundamental processes underlying 
type 2 diabetes.  Alterations in 
mitochondrial protein turnover have been 
implicated in the pathology of type 2 
diabetes, however the specific effect of 
insulin resistance and diabetes on the 
intracellular dynamic islet proteome have 
yet to be described.  In this study, we 
investigated the effects of insulin 
resistance and diabetes on the synthesis of 
proteins from isolated rat islets for the 

first time, using both 2H2O (heavy water) 
labeling and SILAM quantitative 
proteomics.  Using this approach, we 
measured fractional and absolute 
synthesis rates of cytoskeletal, glycolytic, 
mitochondrial, ER, and ribosomal 
proteins, the principal pathways 
responsible for glucose stimulated insulin 
secretion (GSIS).  We found that insulin 
resistance increased the fractional 
synthesis rates (FSR) of 97% of all 
measured islet proteins, and the 
subsequent transition to diabetes resulted 
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in the selective impairment of ribosomal 
protein synthesis.  Absolute synthesis 
rates followed the same trend; insulin 
resistance increased absolute turnover 
rates, and islet failure reduced this effect.  
Our findings suggest that the rapid rate of 
islet cell proliferation due to insulin 
resistance is accompanied by increased 
fractional and absolute synthesis of 
critical GSIS proteins, and that the failure 
of islets results mainly in impaired 
ribosomal pathway flux, independent of 
alterations in mitochondrial metabolism.  

Keywords 
Insulin Resistance, Diabetes, Protein 
turnover, Proteome Dynamics, Glucose 
Stimulated Insulin Secretion, Ribosomal 
Protein Synthesis, Isotopic Labeling. 
 

Introduction 
Type 2 diabetes (T2D) is a condition of 
increasing global prevalence, which 
affected nearly 150 million people 
worldwide in the year 2000, and is 
estimated to grow to 300 million 
individuals by the year 20251.  The 
physiological basis of T2D includes two 
principal etiologies: insulin resistance 
(IR) and beta cell secretory failure2.  In 
the early stages of the disease process, IR 
in peripheral tissues stimulates the 
proliferation of pancreatic islet cells to 
increase insulin biosynthesis and 
maintain normoglycemia2–5.  The 
subsequent transition from IR to T2D is 
marked by the failure of islet cells to 
secrete insulin altogether, resulting in 
overt hyperglycemia6–9.  Although the 
proliferative response of islet cells to IR 
and subsequent failure in diabetes has 
been well characterized, the underlying 
cellular mechanisms that differentiate the 
proliferative and failure states are poorly 

understood2,10.  Therefore, understanding 
the molecular determinants of each is 
important in developing effective 
strategies to treat and prevent T2D. 
It is commonly known that dysfunctions 
in protein turnover are associated with a 
number of age-related diseases, including 
diabetes, cancer, hypertension, 
cardiovascular disease, and Parkinson’s 
disease11,12.  An increasingly large body of 
evidence has shown that impairments in 
protein replacement result in the 
accumulation of misfolded proteins, 
cross-linked aggregates, and a reduced 
ability to degrade damaged proteins, 
resulting in aberrant cell behavior13.  In 
insulin secreting beta cells, the ubiquitin-
proteasome pathway mediates the 
expression of genes involved in glucose 
stimulated insulin secretion (GSIS)14, 
providing an important connection 
between protein replacement and the 
regulation of glucose metabolism.   
While microarray studies have uncovered 
key transcriptional regulators of IR-
mediated islet cell dysfunction and 
failure15–17, few studies have investigated 
the effect of IR on the islet cell proteome.  
More importantly, this is the first study to 
investigate the kinetics of islet cell protein 
synthesis and replacement, two integral 
processes which are critical indicators of 
islet cell health.   
Both relative and quantitative proteomics 
have been applied to the study of diabetic 
mouse islet cells, identifying altered 
expression of proteins involved in insulin 
secretion, the unfolded protein response, 
ER-associated protein degradation, 
cytoskeletal remodeling, cell proliferation, 
and mitochondrial metabolism18–20.  To 
this effect, an increasing body of evidence 
suggests that defects in mitochondrial 
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metabolism may play a central role in islet 
cell dysfuntion21–27.   
In this study, we combined in vivo stable 
isotope metabolic labeling using 2H2O 
(heavy water)28 with exogenously labeled 
standards (SILAM)29–31 to measure both 
fractional and absolute protein synthesis 
rates.  This approach resulted in the 
calculation of synthesis and breakdown 
rates of many islet cell proteins using LC-
MS/MS.  The objective of this study was 
to employ a novel combination of dynamic 
and quantitative proteomics in order to 
determine fractional and absolute protein 
turnover rates across a large spectrum of 
the islet cell proteome in response to IR 
and diabetes for the first time.  To study 
the effect of IR on islet cell protein 
turnover, we compared prediabetic 
insulin resistant Zucker Diabetic Fatty 
rats (7 week old ZDF) with Zucker Lean 
control rats (ZLC).  To determine the 
effect of diabetes on islet cell protein 
turnover, we compared diabetic rats (15 
week old ZDF) with Zucker Lean control 
rats (ZLC).   
We found that IR significantly increased 
the fractional replacement rates of 97% of 
all measured islet proteins (75/77), 
including those involved in the 
endoplasmic reticulum, glycolysis, 
cytoskeletal remodeling, mitochondrial 
metabolism, and ribosomal protein 
synthesis, concomitant with a 2.8-fold 
increase in islet cell proliferation and 
severely diminished insulin sensitivity in 
comparison with control animals.  In 
addition, we found that diabetes reversed 
this effect; protein fractional synthesis 
was significantly decreased in 48% of all 
measured islet proteins (39/80), and islet 
cell proliferation was decreased by 30% in 
comparison with control animals.    

These findings demonstrate that 
peripheral IR (a) stimulates rapid 
increases in the rate of islet cell 
proliferation, (b) increases ribosomal 
pathway flux, responsible for the 
synthesis of both intracellular and 
secreted proteins, and (c) diabetes results 
in impaired islet cell proliferation and 
ribosomal pathway flux, independent of 
mitochondrial metabolism.  Our data 
support the hypothesis that islet cell 
proteome dynamics are highly responsive 
to the levels of circulating glucose and 
insulin.   

Materials and Methods 

Animals 
Four groups of animals were purchased 
from Charles River (Wilmington, MA): 
seven week old prediabetic ZDF rats 
(ZDFp), seven week old Zucker Lean 
Controls (ZLC), fifteen week old diabetic 
ZDF rats (ZDFd), and fifteen week old 
Zucker Lean Controls (ZLC).  Following 
one week of acclimation, animals in each 
group were labeled with an 
intraperitoneal injection of isotonic 100% 
2H2O (0.35mL/10g body weight), and 
were subsequently provided 8% 2H2O 
drinking water for the remainder of the 
study to maintain body 2H2O enrichments 
of approximately 5%, as described 
previously32.  For dynamic proteomics 
experiments, animals were sacrificed 
following either 12 hours, 2 days or 5 days 
of 2H2O labeling (Figure 1B), and for 
SILAM quantitative proteomics all 
animals remained unlabeled (Figure 1A).  
Body weights and blood glucose were 
measured at the time of metabolic 
labeling and at the time of euthanasia.  
Animals were sacrificed via CO2 
asphyxiation followed by cervical 
dislocation and cardiac puncture.  All 
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experiments were performed under the 
approval of the Institutional Animal Care 
and Use Committees of the University of 
California at Berkeley (IACUC).   

Islet Cell Isolation 
Islet cells were isolated according to a 
pancreatic perfusion protocol that has 
been previously described33.  Briefly, 
animals were euthanized by CO2 
asphyxiation and cervical dislocation.  A 
clamp was placed at the distal end of the 
pancreatic duct at the entrance to the 
duodenum, and the pancreas was then 
perfused with 15mL HBSS (Sigma, St. 
Louis, MO) containing 2 mg/mL BSA 
(Sigma, St. Louis, MO) and 0.5 mg/mL 
collagenase Type X (Sigma, St. Louis, 
MO).  Following perfusion, the pancreas 
was excised, removed from surrounding 
viscera, digested by shaking in a hot water 
bath 37oC and 160 rpm.  Islet cells were 
then isolated by hand under microscopic 
visualization, and immediately frozen at -
20oC until further analysis.   

Measurement of 2H Enrichment in 
Body Water 
Enrichment of 2H2O in body water (blood) 
was measured by IRIS.  Briefly, whole 
blood was centrifuged at 6000g for 10 
minutes at 4oC, and the plasma 
supernatant was removed and distilled at 
45oC overnight.  The plasma distillate 
(water) was then collected, and was then 
analyzed for 2H/18O isotopic enrichment 
by IRIS. 

Glucose Disposal Test and 
Measurment of Whole Body 
Glycolysis 
Animals were given a 500uL 
intraperitoneal bolus injection of 10% 
H218O (Cambridge Isotopes, Andover, 
MA) to determine the total body water 

pool volume by dilution.  Two hours later, 
animals were given an oral gavage of 10% 
[6,6-2H]glucose (Cambridge Isotopes, 
Andover, MA) at a dose of 1g/kg body 
weight.  Blood was sampled via tail vein 
bleed at baseline and 10 min post gavage 
and the blood was sampled directly into 
microcapillary tubes for the 
determination of 2H2O isotopic 
enrichment (25uL, Sarstedt 16.446.100) 
and plasma insulin concentrations (25uL, 
Sarstedt 16.444.100).  Blood for isotopic 
enrichment was subsequently distilled at 
45oC for two hours, and the distilled water 
was then analyzed for 2H/18O isotopic 
enrichment by IRIS.  Insulin 
concentrations were assayed in duplicate 
using an ultrasensitive rat insulin ELISA 
kit (Crystal Chem, Downers Grove, IL).  
Blood glucose was taken at baseline (0 
min), 10 min, 30 min, and 60 min post 
gavage using a hand held blood glucose 
monitor (Contour Ascencia, Bayer Corp.).  
Insulin sensitivity was calculated by the 
following equation: 

SI=∆D2O (%)*GlucoseAUC-1*InsulinAUC-1 

where ∆D2O (%) represents the change in 
D2O isotopic enrichment (IE) in blood 
between the 0 and 60 minute time points; 
GlucoseAUC represents the integral of the 
glucose tolerance curve between 0 to 60 
minutes; and InsulinAUC represents the 
integral of the insulin secretion curve 
between 0 to 60 minutes.  Glucose and 
Insulin area under the curves (AUC) were 
calculated using the trapezoidal method.   

Immunohistochemistry 
Whole pancreas was snap frozen in liquid 
N2 in OCT (Sakura Finetek, Netherlands) 
and stored at -80oC until further analysis.  
Cryosections were cut at a thickness of 
10um at -24oC and placed onto frostless 
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glass slides, and immediately transferred 
to -80oC.  Slides were allowed to thaw for 
2 minutes at room temperature, fixed in 
ice cold acetone for 60 seconds, then 
blocked for 1 hour in TBS-T containing 5% 
goat serum at room temperature.  Slides 
were then incubated in rabbit monoclonal 
anti-insulin primary antibody (C27C9, 
Cell Signaling) at a dilution of 1:400 at 4C 
overnight.  Slides were then incubated in 
an AlexaFluor 546 goat anti-rabbit 
secondary antibody (A1101, Invitrogen) at 
a dilution of 1:500 for 2 hours at room 
temperature.  Images were taken using a 
Zeiss Axioimager M2 fluorescent 
microscope fitted with a digital color 
camera (Hamamatsu, Bridgewater, NJ) at 
a magnification of 1:400 using iVision 
software.  Fluorescence intensity was 
quantified using ImageJ version 1.46 
(NIH, Bethesda, MD).   

In Vivo Cell Proliferation 
DNA was extracted from 50-200 islet cells 
using the DNeasy kit (Qiagen, Valencia, 
CA), and was enzymatically hydrolyzed to 
free deoxyribonucleosides by overnight 
incubation at 37oC with S1 nuclease and 
potato acid phosphatase.  Hydrolysates 
were reacted with pentafluorobenzyl 
hydroxylamine and acetic acid and then 
acetylated with acetic anhydride and 1-
methylimidazole. Dichloromethane 
extracts were dried, resuspended in ethyl 
acetate, and analyzed by gas 
chromatography-mass spectrometry on a 
DB-17 column with negative chemical 
ionization, using He as carrier and CH4 as 
reagent gas. The fractional molar isotope 
abundances at m/z 435.2 (M0 mass 
isotopomer) and 436.2 (M1) of the 
pentafluorobenzyl triacetyl derivative of 
purine dR were quantified using 

ChemStation software. Excess fractional 
M+1 enrichment (EM1) was calculated as: 
 

 

 
where sample and standard refer to the 
analyzed sample and an unenriched 
pentafluorobenzyl triacetyl purine dR 
derivative standard, respectively. The 
fractional replacement rate (f) was 
calculated by a comparison of EM1 to the 
theoretical maximum EM1 of a fully 
turned over tissue at the measured body 
water enrichment according to the 
following equation: 

 

Protein Isolation and In-Gel Trypsin 
Digestion 
Protein was isolated by tissue 
homogenization in RIPA buffer containing 
0.1% SDS, 1uM DTT, PhosStop, 1nM 
trichostatin A, 1mg/mL leupeptinin, 
1mg/mL pepstatin, 2mg/mL aprotinin, 
100nM PMSF, and 100nM nicotinamide 
using a TissueLyser (Qiagen, 
Germantown, MD), followed by 
centrifugation at 10,000g for 10 minutes 
at 4 oC.  The supernatant contained 
soluble proteins whereas the cell pellet 
was used for cell proliferation analysis.  
Protein from prepared homogenates was 
uniformly reduced by incubation in 10 
mM DTT and SDS-PAGE sample loading 
buffer for 7 min at 95°C. The reduced 
samples were then alkylated by incubating 
in 15 mM iodoacetamide for 1 hour at 
room temperature in the dark. Proteins 
were then fractionated by SDS-PAGE. 
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Using in-gel molecular weight markers, 
each sample was divided into molecular 
weight regions and subjected to overnight 
trypsin digestion at 37oC (Trypsin Gold, 
Promega, Madison, WI).  

LCMS Data Acquisition 
The trypsin-digested peptides were 
analyzed on an Agilent 6550 QToF with 
Chip Nano source and 1200 series 
nanoflow and capillary HPLC pumps 
(Agilent Technologies, Santa Clara, CA). 
Each sample was injected twice per 
analysis using a Polaris HR chip (Agilent 
#G4240-62030) consisting of a 360 nL 
enrichment column and a 0.075 x 150 mm 
analytical column, both packed with 
Polaris C18-A stationary phase (3um 
particle size).  Mobile phase for the nano 
LC was 3% v/v acetonitrile, 0.1% formic 
acid, in 18MΩ water (Solvent A) and 95% 
acetonitrile, 0.1% formic acid in 18MΩ 
water (Solvent B).  Samples were eluted at 
a flow rate of 350 nL/min with an 18 min 
gradient (5% to 30% B in 10 min, 50% B 
in 3 min, 90% B in 0.1 min, 5 min hold at 
90% B). During the first injection, data 
dependent MSMS fragmentation spectra 
were collected with the instrument set to 
collect 6 MS scans per second, 4 MSMS 
spectra per second, and up to 12 
precursors per cycle.   During the second 
injection, no MSMS fragmentations were 
performed and a longer dwell time (1 
spectrum per second) was used in the full 
scan acquisition.  The longer dwell time 
increased the signal to noise ratio for the 
observed isotopomer patterns. MSMS 
fragmentation data were analyzed using 
Spectrum Mill MS Proteomics Workbench 
(version B.04.00, Agilent Technologies, 
Santa Clara, CA) using the Swiss-Prot rat 
database (08/2010) with a global false 
discovery rate of 1%. Fixed modifications 

(carbamidomethylation of cysteine) and 
variable modifications (oxidized 
methionine, pyroglutamic acid) were 
enabled and up to two missed cleavages 
allowed.  Results validated at the peptide 
and protein level were searched again 
allowing for non-specific cleavage of the 
protein.  A list of peptides with scores 
greater than 11 and scored peak intensities 
greater than 50% was exported from 
Spectrum Mill and collapsed into a non-
redundant peptide formula database 
using Excel. This database, containing 
peptide elemental composition, mass, and 
retention time, was used to extract 
peptide isotopomer abundances 
(containing kinetic information) of each 
peptide from corresponding MS-only 
acquisition files with the Find-by-Formula 
algorithm in Mass Hunter (version 
B.05.00, Agilent Technologies, Santa 
Clara, CA).  

Extraction of Kinetic Labeling 
Information  
MSMS fragmentation data was analyzed 
using Spectrum Mill (Agilent, Palo Alto, 
CA) and protein identifications were 
based on the Uniprot/Swissprot database 
(08/2010) where species=rat, trypsin 
digest, and carbamidomethylation of 
cysteine were used as restrictions on the 
search.  Isotopomer patterns were 
extracted from the MS scan data using the 
MassHunter software package from 
Agilent.  The peptide list with calculated 
neutral mass, elemental formula, and 
retention time was used to filter the 
observed isotope clusters.  A visual basic 
application was used to calculate peptide 
elemental composition from lists of 
peptide sequences and calculate 
isotopomer patterns over a range of 
precursor body 2H2O enrichments (p),  for 
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the number (n) of C-H positions actively 
incorporating H/D from body water.  
Subsequent data handling was performed 
using Microsoft Excel. 

Calculation of Turnover Rate 
Fractional replacement (f) is the 
proportion of newly synthesized proteins 
in a population, expressed as a fraction of 
the total pool.  The kinetic interpretation 
of the time-dependent replacement of pre-
existing protein molecules by newly 
synthesized molecules requires an 
knowledge of the mass isotope pattern of 
newly-synthesized species as compared to 
unlabeled species32,34.  The mass 
isotopomer pattern of peptides 
synthesized in the presence of a stable-
isotope enriched precursor pool can be 
calculated based on the elemental 
composition of the peptide. Each protein 
(and by extension, each tryptic peptide) 
acquires isotopic enrichment from the 
precursor pool at the rate of protein 
turnover (k), the 2H-isotopic enrichment 
in the body water (p), and the number of 
sites in the peptide capable of 
incorporating H/D from water(n).  
Therefore, p and n must both be known to 
calculate k.  In these experiments, we 
have measured p directly.  At the 2H 
enrichments used in this study the mass 
spectra of newly synthesized protein will 
occupy the same m/z range as the 
unlabeled species, but knowing p and n 
we can deconvolute the isotopomer 
patterns. 
For a f between 0-100% (i.e. a mixed 
protein pool), deconvoluting the two 
subpopulations is carried out by treating 
each peptide as a biochemical polymer 
and calculating quantitative changes in 
the relative isotopic abundance pattern 
using the Mass Isotopomer Distribution 

Analysis (MIDA)35.  As described 
previously34, the mass isotopomer of each 
peptide was normalized to the total 
intensity of the isotopomer envelope, 
typically 4 masses (M0-M3).  Peptides with 
a mass greater than ~2,400 Da exhibit a 
larger isotopomer envelope, so 5 masses 
(M0-M4) were used.  We have based our 
calculations of f on the change in intensity 
of the normalized monoisotopic peak 
(EM0).  We find that the signal to noise is 
most favorable for EM0, because of the 
larger change in fractional abundance for 
this isotopomer (EM0 decreases while 
labeled species distribute from EM1 to 
EM4). Peptides which met our criteria for 
inclusion had signal intensity >30,000 
counts, an RMS error against the 
theoretical natural abundance spectra of 
less than 1.5% for the day 0 (unlabeled) 
sample, and had a LC elution time within 
30 seconds of the unlabeled control.  The f 
of each peptide was calculated using the n 
specific for that sequence and the p 
measured for the mouse.  Each peptide 
was considered as a replicate 
measurement of the fractional 
replacement for the protein of origin.  
Therefore the protein f in each mouse was 
calculated as the median f of the peptide 
population from that protein. A time-
dependent fractional replacement curve 
was constructed for each protein, by 
plotting the protein f for the each mouse 
in each feeding regime against the time of 
exposure to 2H2O.  Proteins which were 
observed in fewer than 3 mice were 
removed from the data set.  The rate 
constant k for each protein was calculated 
using a regression fit for the single pool 
model (f=1-e(-kt)) in the Prism software 
package (Graph Pad, La Jolla CA).  A 
coefficient of variation (%CV) was 
calculated for each protein as the ratio of 
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standard deviation reported for the 
regression over the rate constant.  
Proteins which had a %CV of more than 
30% for either the CR or AL feeding 
regime were removed from the data set. 

Stable Isotope Labeling in Mammals 
(SILAM) Quantitation 
SILAM was performed using the “spike-
in” method, in which 100ug of a protein 
homogenate isolated from labeled INS-1E 
rat insulinoma cells in vitro was mixed 
with 100ug of islet cell protein 
homogenates from unlabeled animals.  
Rat INS-1E cells were grown in custom 
made RPMI-1640 SILAC media 
containing 11mM glucose, HEPES, and 
Glutamax (AthenaES, Baltimore, MD), 
enriched with 99% 13C6-Leucine (CLM-
2262, Cambridge Isotopes, Andover, MA) 
and 13C6-Lysine (CLM-2247, Cambridge 
Isotopes, Andover, MA). 
Protein was then isolated from INS-1E 
cells and islet cells from unlabeled 
animals as described above, and mixed 
together in a 1:1 ratio prior to reduction 
and alkylation.  Alkylated protein 
homogenates were then fractionated by 
SDS-PAGE, then divided into molecular 
weight regions and subjected to overnight 
trypsin digestion at 37oC (Trypsin Gold, 
Promega, Madison, WI).  Ratios of 
heavy:light peptides were calculated using 
two algorithms: (a) the XPRESS algorithm 
included in the Trans Proteomic 
Pipeline36,37, and (b) extracted MS data 
scans using the MassHunter software 
package from Agilent.  Ratios of 
heavy:light peptides were combined with 
fractional synthesis data in order to 
calculate control-corrected absolute 
protein replacement rates according to the 
equation: 

Control-Corrected Absolute  

Protein Synthesis Rate (%/day) =  
%f (%/day)*Q(heavy:light 

experimental)/Q(heavy:light control) 

Gene Ontology and Pathway 
Analysis 
Gene annotation, gene ontology and 
biochemical pathway information were 
obtained from the Database for 
Annotation, Visualization and Integrated 
Discovery (DAVID) v6.7 from the 
National Institute of Allergy and 
Infectious Diseases (NIAID), at the 
National Institutes of Health (NIH)38,39.  
Network analysis was performed using 
MetaCore (GeneGo V6.11). 
 

Results 
The body weights of all animals are shown 
in Figure 2.  Insulin resistant animals 
weighed significantly less than controls 
(188.5 vs. 344.6 g, p<0.001), and diabetic 
animals weighed significantly more than 
controls (408.5 vs. 344.6 g, p<0.001). 

Glucose Homeostasis 
First, we performed a series of glucose 
disposal tests (GDT) to quantify (a) 
whole-body glycolysis, (b) circulating 
insulin, (c) glucose tolerance, and (d) 
insulin sensitivity40.  Diabetic animals had 
significantly higher circulating glucose at 
all time points following an oral glucose 
challenge in comparison with insulin 
resistant and control animals (Figure 3A).  
Insulin resistant animals had significantly 
higher circulating insulin at all time 
points following glucose challenge vs. 
diabetic and control animals (Figure 3B).  
Whole-body glycolysis was highest in 
control animals at 10, 30, and 60 minutes 
as determined by the production of 2H2O 
(Figure 3C).   
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Insulin sensitivity was lowest in diabetic 
animals (0.18% vs. controls), and 
significantly reduced in prediabetic 
animals (0.34% vs. controls) (Figure 3D).  
Taken together, these results verify three 
distinct phases of glucose homeostasis: (a) 
insulin resistant ZDF rats (ZDFp), (b) 
diabetic ZDF rats (ZDFd), and (c) insulin 
sensitive controls (ZLC).   

Immunohistochemistry 
Next, we performed 
immunohistochemistry on serial sections 
from each experimental group in order to 
verify morphological changes in islet cells 
in response to insulin resistance and 
diabetes.  Islet cells in control animals 
showed a distinct clustered morphology, 
were numerous, and were structurally 
distinct from surrounding exocrine tissue 
(Figure 4A).  Islet cell fluorescence 
intensity was increased by 86% in ZDFp 
animals vs. controls, suggesting islet cell 
hyperplasia (Figure 4B).  Islet cells in 
diabetic animals showed a diffuse staining 
pattern and irregular shape.   

Islet Cell Proliferation 
Next, we measured the rate of islet cell 
proliferation in response to insulin 
resistance and diabetes.  Following 
euthanasia, islet cells were isolated by 
hand following pancreatic perfusion 
under microscopic visualization and were 
clearly distinguishable from acinar and 
ductal tissue (Figure 5A).  Control animals 
proliferated at a rate of 1.15% new 
cells/day, in agreement with previous 
observations33.  In insulin resistant 
animals, islet cell proliferation was 2.8-
fold higher than in control animals 
(p<0.001), at a rate of 3.27% new 
cells/day.  Islet cells in diabetic animals 
proliferated at a rate of 0.80% new 

cells/day, a 30% reduction in the rate of 
new cell synthesis vs. controls (Figure 5B). 

Islet Cell Proteome Dynamics 
Animals were labeled for 12 hours (n=3 
per group), 2 days (n=3 per group), and 5 
days (n=3 per group) in order to identify 
rapid, moderate, and long turnover 
proteins using a target body water 
enrichment of 5% (Figure 1B).  Following 
LC-MS/MS measurement of peptide 
spectra, we used five stringent selection 
criteria to remove low confidence kinetic 
data: (a) peptide signal intensity less than 
30,000 counts, (b) RMS error for 
unlabeled peptide mass isotopomer 
abundance measurements must be less 
than 1.5% compared with natural 
abundance, (c) observation of the parent 
protein in at least 2 rats per experimental 
group, (d) a coefficient of variation of the 
one-phase exponential association curve 
fit less than 30%, and (e) an r2 curve fit 
value greater than 0.7.  (Figure S1).  We 
identified 3042, 3418, and 4162 peptides, 
corresponding to 243, 167, and 138 
proteins in insulin resistant, diabetic, and 
control animals, respectively (Figure S3). 
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Figure 1.  Dynamic Proteomics Workflow and Experimental Design.  (A) Dynamic 
proteomics was performed by labeling rats with 2H2O at a target enrichment of 5%, followed by in vivo 
protein synthesis, islet cell isolation, SDS-PAGE protein separation, in-gel trypsinization, and LCMS 
analysis.  Quantitative proteomics was performed by growing INS-1E rat insulinoma cells in vitro in the 
presence of heavy lysine (13C6-K) and heavy leucine (3C6-L), then using this protein lysate as the spike-in 
standard for unlabeled protein isolated from unlabeled rats, followed by SDS-PAGE protein separation, 
in-gel trypsinization, and LCMS analysis.  (B) Three groups of animals were studied: insulin resistant 
ZDF prediabetic rats at 7 weeks of age, ZDF diabetic rats at 16 weeks of age, and ZLC controls at 16 
weeks of age.   
 

A 

B 
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Fractional and Absolute Protein 
Synthesis Rates in Insulin Resistant 
Rats  
 Insulin resistance increased the FSR of 
97% of measured islet cell proteins as 
compared with controls (Figure 6A).  Of 
the 93 proteins common to both groups, 
75 proteins showed increased FSR 
(ZDFp/ZLC > 1.1), 16 proteins showed no 
change (0.9 < ZDFp/ZLC < 1.1), and 2 
change (0.9 < ZDFp/ZLC < 1.1), and 2 
proteins showed decreased FSR 
(ZDFp/ZLC < 0.9) as compared with 
controls (Figure 6A).  Mean protein 
fractional synthesis was increased by 
26.5% due to insulin resistance.  We 
performed a gene ontology analysis to 
determine the localization of the proteins 
that were affected by insulin resistance 
Interestingly, insulin resistance increased 
the FSR of proteins across many pathways 
involved in GSIS, including the TCA cycle, 
oxphos, glycolysis, ER-mediated protein 
processing and folding, cytoskeletal 
remodeling, and ribosomal protein 
synthesis (Figure 6B-G).  Insulin 
resistance increased the FSR of proteins 
in each pathway, independent of their 
distribution between organelles.  The 
ribosome contained the largest number of 
measured proteins (n=26), and insulin 
resistance increased the FSR by 19% 
(12.7% day-1 vs. 10.7% day-1), 
corresponding to a decrease in mean half-
life of 1.0 days (5.4 days vs. 6.4 days) 
(Figure 6G).   
Next, we performed quantitative 
proteomics (SILAM) in order to 
determine absolute protein synthesis rates 
in response to IR.  In order to generate 
exogenous labeled proteins, we grew rat 
INS-1E cells in vitro in custom made 
media enriched with 99% 13C6-Leucine 

and 13C6-Lysine, as previously described41.  
For labeling experiments, it is crucial to 
appropriately select the heavy amino acids 
in order to achieve a high degree of 
labeled peptides following trypsin 
digestion.  It is well known that in INS-1E 
cells, arginine can be converted into 
proline, introducing a bias into the 
downstream quantification41.  Therefore, 
we cultured INS-1E cells in media 
enriched with 99% 13C6-Leucine and 13C6-
Lysine given that leucine is an abundant 
amino acid in cellular proteins, and lysine 
corresponds to the trypsin cleavage site.  
According to this strategy, we reasoned 
that the islet proteome would achieve 
more than 98% enrichment following 6 
doubling times (%enrichment = (1- 
(1/2)6)).   
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Figure 2.  ZDF prediabetic rats weighed 
significantly less than both diabetic and 
control rats at 16 weeks of age.  ZDF diabetic 
rats weighed significantly more than ZLC 
controls at 16 weeks of age.  Significance was 
calculated by one-way ANOVA vs. ZLC 
animals (*, p<0.05; **, p<0.01; ***, p<0.001).   
 
We found that insulin resistance 
increased the absolute synthesis rates of 
88% of identified proteins (15/17 
proteins), and that these proteins were 
not clustered into any specific gene 
ontology.  Absolute synthesis fold-changes 
ranged from 0.6 to 1.6 in comparison with 
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control animals (Table S1).  The protein 
with the largest increase in absolute 
synthesis was High mobility group protein 
B1 (Hmgb1, 1.6-fold increased vs. 
controls), a DNA-binding protein that has 
been associated with chronic 
inflammation as well as type 1 and type 2 
diabetes42–44.   
Beta cells are the body’s primary glucose 
sensors, and optimal secretion of insulin 
in response to elevations in circulating 
glucose is a tightly regulated process that 
heavily depends on many pathways in the 

beta cell, including glycolysis, the TCA 
cycle, oxidative phosphorlation, 
cytoplasmic ATP translocation, and the 
protein biosynthetic apparatus.  In this 
study, we uncovered a number of novel 
kinetics that had not been previously 
described in the literature.  First, we 
found that IR increased the fractional 
synthesis of cytoskeletal, glycolytic, 
mitochondrial, and ribosomal proteins in 
comparison with controls, and that the 
transition to diabetes resulted in the 
selective decrease in ribosomal proteins.  
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Figure 3.  Altered Glucose Homeostasis in Insulin Resistant and Diabetic Rats.  (A) Blood glucose 
values following an oral glucose gavage (1mg/g body weight); 16 week ZDF rats show significantly elevated 
circulating glucose at all time points vs. ZLC controls and 7 week ZDF rats are not different than ZLC controls.  
(B) Insulin concentrations in response to an oral glucose gavage show that both 7 and 16 week old ZDF rats are 
hyperinsulinemic at all time points vs. ZLC controls.  (C) 2H2O production following an oral glucose gavage 
containing 6,6-2H-glucose shows suppressed glycolytic disposal of glucose in 7 week and 16 week ZDF animals 
vs. ZLC controls.  (D) Insulin sensitivity is significantly reduced in 7 week and 16 week animals vs. ZLC 
controls.  Significance was calculated by one-way ANOVA vs. ZLC animals (*, p<0.05; **, p<0.01; ***, 
p<0.001).   
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IR increased the absolute synthesis rates 
of 88% (15/17 proteins), distributed 
throughout many cellular compartments 
and signaling pathways. 
 
Next, we found that diabetes selectively 
decreased fractional synthesis of 
ribosomal proteins, and did not 
significantly change the fractional 
synthesis of glycolytic, TCA cycle, oxphos, 
or cytoskeletal proteins from their 
expression levels in the IR state.  In 
addition, we found that diabetes 
decreased the absolute synthesis rate of 
39% (7/18 proteins), involved in many 
pathways throughout the cell.   
By combining 2H2O labeling and 
exogenously labeled standards (SILAM) 
with high-resolution LC/MS analysis of 
tryptic peptides, we were able to quantify 
both fractional and absolute protein 
replacement rates in vivo in insulin 
resistant and diabetic islets for the first 
time.  Others have applied quantitative 
proteomics to the measurement of protein 
abundance in both insulin resistant and 
diabetic islets using label-free 
quantitation and iTRAQ, in order to 
describe the identities as well as the 
relative expression levels of beta cell-
specific proteins20,18,22,48,49.  In this study, 
we have used a new quantitative approach 
wherein absolute protein synthesis and 
breakdown rates are measured in vivo in 
hundreds of proteins across the islet 
proteome simultaneously.  The technique 
is operationally simple, involving the 
administration of 2H2O for specific 
durations, followed by a rigorous solution 
to the major technical barrier that has 

long confounded the measurement of 
isotopically labeled peptides, namely the 
direct measurement of isotopic 
enrichment in the true in vivo precursor 
pool by use of mass isotopomer patterns 
inherent to the peptides themselves 
(MIDA).  We recently showed that using 
this technique we can measure protein 
turnover in humans34 and in mice50, and 
others have shown similar approaches in 
vivo51.  Using both exogenously labeled 
proteins from labeled INS-1E cells in 
culture (13C6-Lysine and 13C6-Leucine), in 
combination with metabolically labeled 
proteins (2H2O), we were able to measure 
the synthesis and breakdown rates of 
hundreds of islet-specific proteins for the 
first time.   
We also found that the protein with the 
highest absolute synthesis due to IR was 
also the protein with the lowest absolute 
synthesis due to diabetes (Hmgb1).  This 
protein may serve as a biomarker for IR 
and diabetes, given that its absolute 
synthetic is inversely related to islet cell 
proliferation in both states42.  High-
mobility-group box-1 protein is an 
activator of Toll-like receptors (TLR) and 
the receptor for advanced glycation end 
products (RAGE).  Hmgb1, TLR and 
RAGE form a triplex that mediates 
inflammation, promoting the production 
and secretion of pro-inflammatory 
cytokines in diabetes43.  Hmgb1 plays a 
critical role in mediating islet cell injury, 
and activation of Hmgb1 triggers NF-kB 
activity, resulting in a pro-inflammatory 
state that has been associated with both 
type 1 diabetes and type 2 diabetes44. 
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The literature confirms that the 
expression and abundance of islet cell 
proteins is highly dependent on the 
glucose concentration in the circulating 
milieu.  In an elegantly designed study, 
Martens et. al found that primary rat islet 
cells exposed to 7.5mM glucose increased 
the expression of glycolytic and ribosomal 
proteins without significant alteration to 
TCA cycle, beta oxidation, or oxidative 
phosphorlyation (oxphos) mitochondrial 
proteins48.  In agreement with our study, 
they found that many 40S and 60S 
ribosomal proteins were more abundant 
in response to elevated glucose, as well as 
the glycolytic enzymes Eno1, Eno2, Eno3, 
Pgam1, Pgk1, Gapdh, Mdh1, and Tpi1.  
Interestingly, they found that elevated 
glucose did not significantly alter the 
molar abundance of TCA cycle enzymes 
Mdh2, Idh2, Aco2, or subunits of the 
oxphos F0-F1 ATPase complex ATP5a1, 
ATP5b, ATP5c1, ATP5d, ATP5o.  We 
found that Atp5o fractional synthesis was 
1.6-fold increased due to IR, however 
ATP5a1 and ATP5h synthesis was 
unchanged.   

Waanders et. al found that single primary 
mouse islets cultured in 16.7mM glucose 
for 24 hours increased the abundance of 
proteins involved in glycolysis, TCA cycle, 
and ATP translocation20.  In addition, 
hyperglycemic conditions resulted in a 
1.7-fold increase in Mn2+-superoxide 
dismutase (Sod1), in agreement with our 
measurement of a 1.4-fold increase in 
Sod1 fractional synthesis in response to 
IR.  Lu et. al also found that the 
expression of Sod2 was decreased in 
response do diabetes, suggesting that 
increased production of antioxidant 
defense proteins in response to oxidative 
stress may be a critical determinant in 
preventing the transition to diabetes52,53.  
We found that the synthesis of Sod1 did 
not decrease following the transition to 
islet failure and diabetes, suggesting that 
the ability of the beta cells to 
constitutively upregulate other 
antioxidant enzymes including the 
mitochondrial Sod2 may tightly control 
the transition from insulin resistance to 
diabetes.   
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Figure 4.  Immunohistochemical Staining of Islets.  (A) Pancreatic sections were stained for insulin 
in order to determine the beta cell content and morphopogical islet cell changes in response to insulin 
resistance and diabetes.  In comparison with ZLC islets (top), insulin resistant prediabetic ZDF islets 
(middle) are larger and show increased staining intensity, suggesting hyperproliferation and increased 
insulin content.  ZDF diabetic islets (bottom) show an irregular shape and reduced staining intensity vs. 
ZLC control islets.  (B) Normalized fluorescence intensity in comparison with ZLC control rats.  Significance 
was calculated by one-way ANOVA vs. ZLC animals (*, p<0.05; **, p<0.01; ***, p<0.001). 
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In addition, Waanders et. al found that 
hyperglycemic conditions resulted in 
reduced insulin content per islet, most 
likely resulting from constitutive insulin 
secretion.  Our findings agree with these 
results; Park7 (DJ-1) was increased 2-fold 
in response to hyperglycemic conditions 
in vitro, and increased in synthetic rate by 
1.28-fold in vivo.  Park7 is a protein that 
has been implicated in Parkinson’s 
disease, and mutations in Park7 cause 
mitochondrial dysfunction that a also 
associated with excessive oxidative 
stress54.  Together, these findings suggest 
that acute hyperglycemic conditions affect 
the islet cell proteome by upregulation of 
proteins involved in integral pathways of 
GSIS. 
Lu et. al demonstrated that diabetic MKR 
mice harboring a mutation in the IGF-1 
gene in skeletal muscle show gross 
functional impairments in mitochondria, 
including a smaller number of 
hyperplastic mitochondria, reduced 
insulin granule content, reduced 
mitochondrial oxygen consumption, and 
reduced membrane hyperpolarization22.  

At the protein level, Lu et. al found that 
95% of identified mitochondrial proteins 
were decreased in diabetic MKR mice, 
including proteins involved in the TCA 
cycle, fatty acid metabolism, and oxidative 
phosphorylation18,22.  These proteins 
include members of the NADH 
dehydrogenase complex (Ndufa9), 
cytochrome b-c1 complex (Uqcrh), 
cytochrome c oxidase complex (mt-Co2, 
Cox4i1, Cox5a), ATP synthase complex 
(Atp5j2), and the ADP/ATP translocase 
(Slc25a5).  Our analysis revealed that 
mitochondrial proteins were increased in 
fractional synthesis due to insulin 
resistance (100%, 9/9 proteins) and that 
this effect persisted following the 
transition to diabetes (78%, 7/9 proteins).  
We identified members of the electron 
transport chain (Etfa, Atp5a1, Atp5h, 
Atp5o), the phosphate carrier protein 
Slc25a3, the beta-oxidation enzyme Hadh, 
the mitochondrial oxidoreductase Prdx1, a 
ketone body synthesis enzyme (Acat1), 
and a membrane channel protein Vdac1. 
The discrepancy between these results 
and those of Lu et. al reveal a fundamental 
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Figure 5.  Insulin Resistance Promotes Islet Hyperproliferation.  (A) Islet cells were isolated by 
hand following pancreatic perfusion under microscopic visualization, and were clearly distinguishable from 
acinar and ductal tissue.  (B) Cell proliferation analysis following 2H2O labeling revealed that insulin 
resistance results in a 2.8-fold increase in islet cell proliferation vs. ZLC.  Diabetes results in a 30% decrease 
in islet cell proliferation vs. ZLC controls.  Significance was calculated by one-way ANOVA vs. ZLC animals 
(*, p<0.05; **, p<0.01; ***, p<0.001). 
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difference between quantitative 
(abundance) and dynamic proteomics 
(synthesis) in that increased protein 
synthetic rates, when matched by 
increased protein degradation rates, do 
not affect the size of the resultant protein 
pool.  Instead, 2H2O labeling combined 
with SILAM exposes (a) the rate at which 
proteins are being synthesized, by the 
measurement of 2H incorporation into 
amino acids in proteins (2H2O labeling), 
and (b) the resultant effect on relative 
molar abundance (SILAM).  Together, 
these metrics can be combined to 
calculate the absolute synthesis rate of 
identified peptides, providing a holistic 
picture of the regulation of hundreds of 
proteins simultaneously.  These integral 
components of proteostasis are masked by 
the measurement of molar abundance by 
itself50.  Given the results of Lu et. al, our 
measurement of increased fractional 
synthesis of mitochondrial proteins 
suggests that degradation rates are also 
increased in order to maintain protein 
pool size.  In addition, these results also 
suggest that islet proteome dynamics may 
show differential effects in various animal 
models of T2D, and may highly depend on 
species and strain.   
Contrary to our findings, Lu et. al found 
that islet dysfunction in the diabetic state 
was characterized by an increased molar 
abundance of proteins involved in protein 
biosynthesis and folding, including 
eukaryotic initiation factors (EIFs) and 
elongation factors (eEIFs).  Our analysis 
showed that more than 92% of ribosomal 
proteins (23/25) were decreased in 
fractional synthetic rate, suggesting that 
islet failure is associated not only with an 
inability to manufacture and secrete an 
adequate quantity of insulin, but is 
characterized by a global dysfunction of 

the protein biosynthetic apparatus as a 
network of coordinated enzymes.  The 
findings of Lu et. al also highlight the 
possibility of significantly increased 
ribosomal protein degradation in the 
diabetic state, reducing the molar 
abundance of the resultant protein pool.    
Diabetic MKR islets also demonstrated 
increased abundance of ER stress proteins 
and protein-folding proteins, in 
accordance with our findings.  We found 
that protein-folding proteins, including 
Hyou1, Ppib, Pdi6 were increased in 
fractional synthesis, whereas only Pdia3 
was decreased.  In addition, we found an 
increase in the synthesis of the ER stress 
response protein Erp29.  Proteins of this 
family are involved in the formation of 
disulfide bonds, and mediate protein 
folding by functioning as oxidoreductases 
within the ER49,55,56.   
Lu et. al also found that 46% of 
differentially regulated islet proteins show 
discordant mRNA expression levels, 
suggesting that (a) the measurement of 
transcript abundance is a poor indicator 
of proteome alterations57,58, and (b) that 
much of the activity within the islet 
proteome may be regulated at the post-
translational level.   
Insulin resistance promotes islet 
hyperplasia, resulting in enlarged islets18 
and increased cell proliferation33.  We 
found that IR stimulated a 2.8-fold 
increase in islet cell proliferation, 
consistent with literature findings.  
Increased islet cell mass can occur via a 
number of mechanisms, which include 
replication of preexisting islet cells, 
neogenesis of islet cell precursors59–61, and 
inhibition of islet cell apoptosis62.  It still 
remains unclear which of these 
mechanisms results in increased islet cell 
mass in response to IR, however the net 
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Figure 6.  Insulin Resistance Increases Global Protein Fractional Synthesis.  (A) Insulin resistance 

increased the fractional synthetic rate of 97% of identified proteins vs. ZLC controls.  Proteins involved in the 

regulation of (B) mitochondrial metabolism (n=9), (C) glycolysis (n=10), (D) the endoplasmic reticulum (n=8), (E) 

cytoskeletal remodeling (n=7), and (G) the ribosome (n=26) showed increased fractional synthesis vs. ZLC 

controls. (F) Box plot indicating the interquartile range (IQR) for FSRs; bars extend from 5% to 95% of the data; 

outliers shown as individual points.  Ribonuclear proteins were the most affected by insulin resistance.  
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 effect results in 2 to 5-fold elevations in 
islet cell mass and insulin production63.   
Diabetes however, resulted in a 30% 
reduction in the rate of islet cell 
proliferation as compared with control 
animals.  Whether decreased cell 
proliferation is a cause or an effect of 
diabetes remains to be definitively 
determined, however the decline in cell 
synthesis closely matches the decline in 
ribosomal protein synthesis, suggesting 
that impaired GSIS is coordinately linked 
with the rate of islet cell replication.  
Studies show that islet proliferation in ZF 
rats far exceeds those of ZLC rats in 
response to IR, suggesting that resistance 
to T2D originates from an ability to 
increase islet mass via either preexisting 
islet cell proliferation or by islet 
neogenesis64–66,6,67–69.  
In agreement with these findings, we 
found that cytoskeletal remodeling 
proteins were strongly increased by IR, 
providing a link between dynamic protein 
synthesis and islet hyperplasia.  Three 
members of the tropomyosin family of 
proteins showed increased FSR in 
response to insulin resistance (Tpm1, 
Tpm2, Tpm3), as were cofilin-1 (Cfl1) and 
tubulin beta 3 chain (Tubb3).  Diabetes 
reduced the FSR of Tpm1 and Tpm2 
despite the fact that they remained 
elevated in comparison with controls 
animals.   
An inherent limitation of this study is that 
protein degradation rates are difficult to 
determine in a tissue whose mass is 
increasing over time.  At steady state, the 
calculation of protein degradation rates is 
easily performed, as we showed recently50.  
Given that insulin resistance promoted a 
2.8-fold increase in islet cell proliferation, 
calculation of protein degradation rates 

can only be inferred from fractional and 
SILAM data. 
In conclusion, we measured fractional and 
absolute synthesis rates of cytoskeletal, 
glycolytic, mitochondrial, ER, and 
ribosomal proteins, the principal 
pathways responsible for glucose 
stimulated insulin secretion (GSIS).  We 
found that insulin resistance increased the 
fractional synthesis rates (FSR) of 97% of 
all measured islet proteins, and the 
subsequent transition to diabetes resulted 
in the selective impairment of ribosomal 
protein synthesis.  Absolute synthesis 
rates followed the same trend.  Taken 
together, these data suggest that the rapid 
rate of islet cell proliferation due to 
insulin resistance is accompanied by 
increased fractional and absolute 
synthesis of critical GSIS components, 
and that the failure of islet cells in 
diabetes results mainly in impaired 
ribosomal pathway flux, independent of 
alterations in mitochondrial protein 
metabolism.   
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Figure 7.  Diabetes Selectively Reduces Ribosomal Protein Fractional Synthesis.  (A) In diabetic 
animals, the fractional synthetic rate was increased in 44% (35/80), and decreased in 24% (24/80) of identified 
proteins vs. ZLC controls.  Proteins involved in the regulation of (B) mitochondrial metabolism (n=9), (C) 
glycolysis (n=9), (D) the endoplasmic reticulum (n=9), and (E) cytoskeletal remodeling (n=4) showed increased 
FSR vs. ZLC controls.  (G) Ribosomal protein FSR was increased in 2/25 proteins and decreased in 23/25 
proteins.  (F) Box plot indicating the interquartile range (IQR) for FSRs; bars extend from 5% to 95% of the data; 
outliers shown as individual points. 
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Supplemental Tables and Figures 

 

Gene 

Symbol 
Protein Name 

ZDFp 

Kinetics 

(%/day) 

ZLC 

Kinetics 

(%/day) 

ZDFp 

SILAM 

ZLC 

SILAM 

ZDFp 

Abs 

(%/day) 

ZLC 

Abs 

(%/day) 

ZDFp/ZLC 

Abs 

Hmgb1 
High mobility group 

protein B1 
0.153 0.109 1.524 1.332 0.175 0.109 1.606 

Uchl1 

Ubiquitin carboxyl-

terminal hydrolase 

isozyme L1 

0.189 0.132 1.416 1.291 0.207 0.132 1.576 

Hnrnpa2b1 

Heterogeneous nuclear 

ribonucleoproteins 

A2/B1 

0.200 0.146 2.265 2.032 0.223 0.146 1.527 

Mdh2 
Malate dehydrogenase, 

mitochondrial 
0.133 0.107 1.271 1.061 0.159 0.107 1.494 

Atp5h 
ATP synthase subunit d, 

mitochondrial 
0.138 0.126 0.984 0.724 0.187 0.126 1.488 

Hnrnpc 
Heterogeneous nuclear 

ribonucleoprotein C 
0.117 0.096 1.482 1.284 0.135 0.096 1.409 

Park7 Protein DJ-1 0.138 0.123 0.440 0.385 0.158 0.123 1.281 

Cdc37 
Hsp90 co-chaperone 

Cdc37 
0.343 0.241 1.021 1.162 0.302 0.241 1.249 

Tubb3 Tubulin beta-3 chain 0.116 0.086 1.098 1.207 0.106 0.086 1.237 

Prdx1 Peroxiredoxin-1 0.244 0.168 1.345 1.590 0.207 0.168 1.232 

Rps17 
40S ribosomal protein 

S17 
0.095 0.097 0.823 0.657 0.118 0.097 1.219 

Eno2 Gamma-enolase 0.129 0.103 0.925 0.955 0.125 0.103 1.216 

Acat1 

Acetyl-CoA 

acetyltransferase, 

mitochondrial 

0.118 0.098 0.185 0.190 0.115 0.098 1.167 

Ywhab 
14-3-3 protein 

beta/alpha 
0.229 0.170 0.982 1.152 0.196 0.170 1.148 

Tagln2 Transgelin-2 0.297 0.230 0.660 0.745 0.263 0.230 1.142 

M6pr 

Cation-dependent 

mannose-6-phosphate 

receptor 

0.327 0.287 1.075 1.120 0.314 0.287 1.093 

Nme1 
Nucleoside diphosphate 

kinase A 
0.144 0.121 1.250 1.355 0.132 0.121 1.092 

Ywhaz 14-3-3 protein zeta/delta 0.160 0.141 1.007 1.062 0.152 0.141 1.077 

Ube2n 
Ubiquitin-conjugating 

enzyme E2 N 
0.192 0.167 0.740 0.800 0.177 0.167 1.065 



Page 165 

 

Chapter 4: The Effect of Insulin Resistance and Diabetes  

On Islet Cell Protein Dynamics 

Gene 

Symbol 
Protein Name 

ZDFp 

Kinetics 

(%/day) 

ZLC 

Kinetics 

(%/day) 

ZDFp 

SILAM 

ZLC 

SILAM 

ZDFp 

Abs 

(%/day) 

ZLC 

Abs 

(%/day) 

ZDFp/ZLC 

Abs 

Nsfl1c NSFL1 cofactor p47 0.214 0.175 1.872 2.189 0.183 0.175 1.045 

Gapdhs 

glyceraldehyde-3-

phosphate 

dehydrogenase, 

spermatogenic 

0.134 0.086 1.441 2.251 0.086 0.086 1.001 

Cyb5a Cytochrome b5 0.201 0.154 0.640 0.840 0.153 0.154 0.998 

Eif4a2 
Eukaryotic initiation 

factor 4A-II 
0.268 0.196 0.754 1.073 0.196 0.196 0.998 

Etfa 

Electron transfer 

flavoprotein subunit 

alpha, mitochondrial 

0.153 0.135 0.585 0.665 0.134 0.135 0.996 

Eno1 Alpha-enolase 0.146 0.125 1.034 1.285 0.117 0.125 0.935 

Atp5a1 
ATP synthase subunit 

alpha, mitochondrial 
0.131 0.120 1.245 1.483 0.110 0.120 0.914 

Rps3a 
40S ribosomal protein 

S3a 
0.100 0.099 0.755 0.835 0.091 0.099 0.914 

Dctn2 Dynactin subunit 2 0.204 0.250 1.011 1.040 0.198 0.250 0.790 

Pdia3 

protein disulfide 

isomerase family A, 

member 3 

0.195 0.216 0.603 0.900 0.131 0.216 0.606 

 

Table S1.  Proteome Wide Normalized Absolute Synthesis Rates In Response to Insulin 

Resistance.  Absolute synthesis rates were calculated for proteins that were identified by (a) kinetics in 

ZDFp and ZLC animals, and by (b) calculation of the heavy:light ratio from either the TPP suite of 

software tools or using the in-house algorithm for the identification and quantitation of SILAM peptide 

pairs.   
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Gene 

Symbol 
Protein Name 

ZDFd 

Kinetics 

(%/day) 

ZLC 

Kinetics 

(%/day) 

ZDFd 

SILAM 

ZLC 

SILAM 

ZDFd 

Abs 

(%/day) 

ZLC 

Abs 

(%/day) 

ZDFd/ZLC 

Abs 

Hnrnpa3 
Heterogeneous nuclear 

ribonucleoprotein A3 
0.281 0.159 1.370 1.011 0.381 0.159 2.390 

Atp5a1 
ATP synthase subunit 

alpha, mitochondrial 
0.135 0.120 2.349 1.483 0.214 0.120 1.777 

Vdac1 
Voltage-dependent anion-

selective channel protein 1 
0.135 0.119 1.339 0.963 0.189 0.119 1.587 

Ywhab 14-3-3 protein beta/alpha 0.202 0.170 1.368 1.152 0.240 0.170 1.409 

Ywhaq 14-3-3 protein theta 0.206 0.196 1.765 1.340 0.272 0.196 1.388 

Ybx1 
Nuclease-sensitive 

element-binding protein 1 
0.204 0.173 2.401 2.038 0.240 0.173 1.386 

Mdh2 
Malate dehydrogenase, 

mitochondrial 
0.110 0.107 1.277 1.028 0.136 0.107 1.278 

Aldoa 
Fructose-bisphosphate 

aldolase A 
0.243 0.220 1.235 1.189 0.253 0.220 1.149 

Pebp1 
Phosphatidylethanolamine-

binding protein 1 
0.181 0.189 1.403 1.168 0.216 0.189 1.141 

Nme1 
Nucleoside diphosphate 

kinase A 
0.1202 0.1202 1.21 1.355 0.120 0.107 1.120 

Ywhag 14-3-3 protein gamma 0.163 0.166 1.078 0.960 0.183 0.166 1.103 

Ywhaz 14-3-3 protein zeta/delta 0.127 0.141 1.220 1.062 0.146 0.141 1.032 

Cdc37 
Hsp90 co-chaperone 

Cdc37 
0.183 0.212 1.338 1.162 0.211 0.212 0.997 

Prdx4 Peroxiredoxin-4 0.434 0.434 0.61 0.585 0.434 0.453 0.959 

Gapdh 
Glyceraldehyde-3-

phosphate dehydrogenase 
0.114 0.093 1.483 1.920 0.088 0.093 0.940 

Park7 Protein DJ-1 0.1167 0.1167 0.41 0.385 0.117 0.124 0.939 

Gapdhs 

Glyceraldehyde-3-

phosphate 

dehydrogenase, testis-

specific 

0.103 0.086 1.748 2.251 0.080 0.086 0.931 

Cyb5a Cytochrome b5 0.1878 0.1878 0.915 0.84 0.188 0.205 0.918 

Nucb2 Nucleobindin-2 0.5687 0.5687 0.625 0.57 0.569 0.624 0.912 

Pdia3 
protein disulfide isomerase 

family A, member 3 
0.192 0.204 0.856 0.900 0.183 0.204 0.898 

Eif4a2 
Eukaryotic initiation factor 

4A-II 
0.156 0.196 1.410 1.281 0.172 0.196 0.877 

Cfl1 Cofilin-1 0.245 0.262 1.386 1.497 0.226 0.262 0.865 

Ube2n Ubiquitin-conjugating 0.1561 0.1561 0.925 0.8 0.156 0.180 0.865 
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Gene 

Symbol 
Protein Name 

ZDFd 

Kinetics 

(%/day) 

ZLC 

Kinetics 

(%/day) 

ZDFd 

SILAM 

ZLC 

SILAM 

ZDFd 

Abs 

(%/day) 

ZLC 

Abs 

(%/day) 

ZDFd/ZLC 

Abs 

enzyme E2 N 

Eno1 Alpha-enolase 0.136 0.125 1.026 1.285 0.108 0.125 0.863 

Prdx1 Peroxiredoxin-1 0.209 0.188 1.020 1.374 0.159 0.188 0.841 

Hmgb1 
High mobility group protein 

B1 
0.082 0.109 1.282 1.332 0.079 0.109 0.723 

 

Table S2.  Proteome Wide Normalized Absolute Synthesis Rates In Response to Diabets.  

Absolute synthesis rates were calculated for proteins that were identified by (a) kinetics in ZDFd and ZLC 

animals, and by (b) calculation of the heavy:light ratio from either the TPP suite of software tools or using 

the in-house algorithm for the identification and quantitation of SILAM peptide pairs.   

 

 
Figure S1. One-Phase Exponential Protein Curve Fit Reveals Protein Synthetic Rate.  

Proteins common to a particular analysis (ZLC-ZDFp or ZLC-ZDFd) are fit with a one-phase exponential 

association according to the equation f=1-e(-kt) with a Ymax=1.  Proteins were removed from analysis if 

any of the following criteria were determined to be true: (a) peptide signal intensity less than 30,000 

counts, (b) RMS error for unlabeled peptide mass isotopomer abundance measurements greater than 

1.5% compared with natural abundance, (c) observation of the parent protein in less than 2 rats per 

experimental group, (d) a coefficient of variation of the one-phase exponential association curve fit 

greater than 30%, and (e) an r2 curve fit value less than 0.7.  The rate constant (k) was determined for 

each fit, and used for subsequent downstream calculations. 
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Figure S2. Body Water Enrichments Over Time. Animals in each group were labeled with an 

intraperitoneal injection of 100% 2H2O (0.35mL/10g body weight), and were provided 8% 2H2O drinking 

water for the remainder of the study to maintain target body 2H2O enrichments of approximately 5%.  

Actual body 2H2O enrichments of each animal are used to determine the theoretical peptide enrichments 

in the calculation of FSR.   

 

 

 

 

Figure S3. Common Proteins Used In Each Analysis. (A) Proteins common to ZLC and ZDFp 

animals were used for the analysis of the effect of insulin resistance on the dynamic islet proteome.  (B) 

Proteins common to ZLC and ZDFd animals were used for the analysis of the effect of diabetes on the 

dynamic islet proteome.   

 

 




