Title
LBNL perspective on inertial fusion energy

Permalink
https://escholarship.org/uc/item/24w041p4

Author
Bangerter, Roger O.

Publication Date
1995-12-17
December 17, 1995

Policy Subcommittee Meeting of the FEAC
Presented at the

Lawrence Berkeley National Laboratory
Roger Bangert

Energy

LBNL Perspective on Inertial Fusion

HIFAN 827
There are two fusion options.

- Challenges are different.

- Both are challenging in terms of science, technology, and economics. The DOE funds both options at about the same level.

- Both options will undoubtedly produce net energy.

- DOE Defense Programs

- DOE Energy Research

- Tokamaks

- Stellarators

- Other Alternatives

- Heavy Ions

- Lasers

- Light Ions

- Inertial
Development of target mass production techniques.

Chamber design, simulation, and experiments.

Driver technology development and cost validation.

Demonstration of essential beam physics and beam manipulations with driver-scale beams (construction of an accelerator facility).

Current dollars deliverables are:

To capitalize on target results from the National Ignition Facility in the year 2005, the Inertial Fusion Energy Program must grow to about $20M/yr in

verifications of good beam quality in full-scale beams.

Important program elements are cost reduction and experimental technology.

If leverages the worldwide investment in accelerator science and

If leverages the Defense ICF Program.

Heavy ion fusion has a low cost development
The incremental cost to develop IFE is relatively low. The potential payoff is very high.

- Chamber design and accelerator research.
- We are making excellent progress in target physics, target fabrication, and production.
- The combination of MFE and IFE provides a strong basis for fusion power.

Conclusion