Dermal uptake of organic vapors commonly found in indoor air

Permalink
https://escholarship.org/uc/item/2578n8q0

Journal
Environmental Science and Technology, 48(2)

ISSN
0013-936X

Authors
Weschler, CJ
Nazaroff, WW

Publication Date
2014-01-21

DOI
10.1021/es405490a

Supplemental Material
https://escholarship.org/uc/item/2578n8q0#supplemental

Peer reviewed
Dermal Uptake of Organic Vapors Commonly Found in Indoor Air

Charles J. Weschler1,2* and William W Nazaroff3

1Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA
2International Centre for Indoor Environment and Energy, Technical University of Denmark, DK-2800 Lyngby, Denmark
3Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720-1710 USA

Keywords: Dermal absorption, exposure, percutaneous transport, permeability coefficient, transdermal permeation

Short Title: Transdermal uptake of indoor organics

* Corresponding Author:
Environmental and Occupational Health Sciences Institute
Rutgers University
Piscataway, NJ 08854, USA
Phone: (732) 445-2073
Email: waschler@umdnj.edu
Table of Contents Art
Abstract

Transdermal uptake directly from air is a potentially important yet largely overlooked pathway for human exposure to organic vapors indoors. We recently reported (Indoor Air 2012, 22, 356) that transdermal uptake directly from air could be comparable to or larger than intake via inhalation for many semivolatile organic compounds (SVOCs). Here, we extend that analysis to approximately eighty organic compounds that (a) occur commonly indoors and (b) are primarily in the gas-phase rather than being associated with particles. For some compounds, the modeled ratio of dermal-to-inhalation uptake is large. In this group are common parabens, lower molecular weight phthalates, o-phenylphenol, Texanol, ethylene glycol, and α-terpineol. For other compounds, estimated dermal uptakes are small compared to inhalation. Examples include aliphatic hydrocarbons, single ring aromatics, terpenes, chlorinated solvents, formaldehyde, and acrolein. Analysis of published experimental data for human subjects for twenty different organic compounds substantiates these model predictions. However, transdermal uptake rates from air have not been measured for the indoor organics that have the largest modeled ratios of dermal-to-inhalation uptake; for such compounds, the estimates reported here require experimental verification. In accounting for total exposure to indoor organic pollutants and in assessing potential health consequences of such exposures, it is important to consider direct transdermal absorption from air.
Introduction

Direct uptake of selected organic compounds from air through skin has been demonstrated in many studies conducted over the past half-century. The primary emphasis in these studies has been on occupational exposures. Experiments include cases in which the whole body of a human subject was exposed and other cases in which only an arm was exposed. Dutkiewicz and Piotrowski [1] reported that, “… a resting, fully relaxed person absorbs through the skin amounts (of aniline) comparable with those absorbed simultaneously through the respiratory tract.” Specifically, they estimated that dermal absorption of aniline vapors accounted for 47-64% of a resting person’s aggregate aniline intake. Piotrowski [2] more fully described experiments in which both naked and dressed men were exposed to nitrobenzene vapors in a chamber while breathing clean air. He concluded that “about half as much vapour was absorbed through the skin as through the lungs” and that “normal working clothes reduced the absorption by only 20 to 30%.” Subsequently, Piotrowski [3] conducted similar chamber experiments in which the entire bodies of seven men were exposed to phenol vapors; the dermal absorption rate averaged 70% of the inhalation rate. Kežić et al. [4] exposed only the forearm of five volunteers to vapors of either 2-methoxyethanol or 2-ethoxyethanol. Based on the urine concentrations of the metabolites of these glycol ethers, the authors estimated that — for whole body exposure — skin uptake would be approximately 120% of inhalation uptake for 2-methoxyethanol and 70% of inhalation uptake for 2-ethoxyethanol. Altogether, we have identified twenty studies published in peer-reviewed archival journals that have measured direct uptake of various organic vapors by human skin in either whole body or arm/hand experiments [1-20]. Most, but not all, of these studies have been reviewed by Rehal and Maibach [21] and by Rauma et al. [22].
In assessing human exposure to organic pollutants indoors, inhalation and ingestion of dust are routinely included as exposure pathways. The dermal pathway is frequently assumed to be negligible [23, 24]. When considered, the focus has commonly been on dermal uptake following contact transfer to the skin of a pollutant in dust, on particles and from contaminated surfaces [25-32]. Direct transdermal uptake from air is not routinely considered. Yet the studies outlined in the previous paragraph suggest that, for at least some indoor pollutants, direct dermal uptake from air may occur at rates that are comparable to or larger than inhalation intake. We recently published a critical review of the state of knowledge concerning indoor exposures to semivolatile organic compounds (SVOCs) via dermal pathways [33]. That assessment included predictive equations, based on idealized mass-transport considerations, to estimate the steady rate of transdermal uptake of an SVOC from the gas-phase. We concluded that air-to-skin transdermal uptake was potentially comparable to or larger than inhalation uptake for many SVOCs found indoors. The present paper extends that assessment to volatile organic compounds and includes almost eighty organic compounds that are (a) common in indoor environments and (b) found in air primarily in the gas-phase (rather than being associated with airborne particulate matter). A specific aim of this study is to identify those indoor, gas-phase organic pollutants for which dermal absorption via transport directly from air is potentially significant in relation to the more commonly assessed inhalation exposure. A second objective is to make quantitative comparisons between modeled and measured results for those twenty compounds for which the rate of transdermal permeation directly from the air has been measured in human experiments. The paper’s third objective is to examine the physical and chemical attributes that most influence the tendency of an airborne organic pollutant to be transported through air adjacent to the skin, across the stratum corneum and viable epidermis, and ultimately to the blood. Overall, the goals
of this assessment are to raise awareness of dermal uptake of organic vapors as a route of environmental exposure, to focus research attention on dermal absorption directly from air, and to facilitate inclusion of this pathway in future assessments of total exposure to organic environmental pollutants encountered indoors.

Methods

Transdermal permeability coefficient. The indoor air transdermal permeability coefficient, \(k_{p,g} \), is a mass-transfer coefficient that describes the rate of transport of an organic compound from bulk air through the boundary layer adjacent to the skin and then from air at the surface of the skin through the epidermis to the dermal capillaries. In the present paper, \(k_{p,g} \) is estimated for numerous gas-phase organic compounds using a procedure that we outlined previously [33]. Wilschut and ten Berge have reported an analogous approach [34].

The procedure begins with a deterministic model proposed by Mitragotri [35] to calculate the compound’s permeability coefficient through the stratum corneum when the vehicle in contact with the skin is water (\(k_{p,cw} \)). We then use a relationship developed by Bunge et al. [36] to estimate \(B \), the ratio of \(k_{p,cw} \) to the viable epidermis permeability coefficient (\(k_{p,ew} \)) for the compound in question (see equation S2). The parameter \(B \) is used to estimate the compound’s permeability coefficient through the stratum corneum/viable epidermis composite when the vehicle in contact with skin is water (\(k_{p,w} \)). The permeability coefficient through the stratum corneum/viable epidermis composite when the vehicle in contact with the skin is air (\(k_{p,b} \)) is calculated using Henry’s constant (\(H \), expressed in units of (mol/liter) atm\(^{-1} \); note that this convention is the inverse of that commonly used in the dermal literature):

\[
k_{p,b} = k_{p,w} \times (HRT)
\]
where \(R \) is the gas constant \((0.0821 \text{ atm liter mole}^{-1} \text{ K}^{-1})\) and \(T \) is the skin temperature \((305 \text{ K} = 32 \degree \text{C})\). Finally, \(k_{p,g} \) is calculated using a resistor-in-series model:

\[
1/k_{p,g} = 1/v_d + 1/k_{p,b}
\]

(2)

Here, \(v_d \) is the mass-transfer coefficient that describes the external transport of a compound from the gas-phase in the core of a room through the boundary layer adjacent to the skin. Throughout the work reported in this paper, we assume that \(v_d \sim 6 \text{ m h}^{-1} \) [33]. Further details are provided in section S1 of the Supporting Information. The key parameters in calculating \(k_{p,g} \) are the organic compound’s molecular weight (MW), octanol-water partition coefficient \((K_{ow})\), and Henry’s constant \((H)\). Once \(k_{p,g} \) has been estimated, the transdermal flux of an organic compound, \(J \), can be evaluated:

\[
J = C_g \times k_{p,g}
\]

(3)

Here, \(C_g \) is the compound’s gas-phase concentration.

Several assumptions are implicit in this procedure. The Mitragotri model used to calculate \(k_{p,cw} \) assumes a simplified one-component lipid system to obtain the required bilayer parameters, avoiding the complexities of the actual multicomponent system (comprising ceramides, fatty acids, cholesterol and various other species) that constitutes the lipid bilayer in the stratum corneum. In comparing predictions made with his model against experimental data, Mitragotri reported a mean error of 5% [35]. The model assumes that the organic permeant moves in a stationary frame of lipid molecules; this assumption breaks down for compounds with MW > 400 g/mol. With the exception of chlordane (MW = 410 g/mol), the indoor pollutants considered in this paper have MW’s less than 400 g/mol. The model assumes that clearance is fast and that the concentration of the permeant in the blood is close to zero. A distributed clearance model
[37] would be a better approximation, but computationally more complicated to a degree that is not justified by the expected improvement in predicted results. Finally, the procedure is based on a fully hydrated stratum corneum, whereas under typical indoor conditions the stratum corneum is only partially hydrated. The consequences of this assumption are examined in the Limitations subsection of the Discussion.

Dermal uptake and inhalation intake. Uptake of gas-phase organics via the dermal pathway, D, is estimated as the product of three terms — C_g, $k_{p,g}$ and the total body surface area (BSA):

$$D = C_g \times k_{p,g} \times BSA$$ \hspace{1cm} (4)

Based in part on the findings of Piotrowski [2], we assume that clothing presents negligible resistance to the transport of organic compounds from air to skin. We further assume that the flux through skin achieves steady state. More precisely, we assume that the time-averaged flux is well modeled as the product of the time-averaged airborne concentration multiplied by a mass-transfer coefficient derived for steady-flux conditions. Because of loss processes that may interfere with transdermal transport, such as desquamation, the dermal uptake from air estimated herein represents an upper limit.

Intake of gas-phase organics via inhalation, I, is estimated as the product of C_g and the volumetric breathing rate, Q_b:

$$I = C_g \times Q_b$$ \hspace{1cm} (5)

We assume here that 100% of what is inhaled is absorbed. Hence, the estimated inhalation intake is also an upper bound.
The ratio of dermal uptake to inhalation intake for gas-phase organics \((D/I)\) is then estimated as:

\[
D/I = k_{p,g} \times \text{BSA}/Q_b
\]

For the baseline values that we use for a typical adult, i.e. body surface area (BSA \(\sim 2\) m\(^2\)) and volumetric breathing rate \((Q_b \sim 0.5\) m\(^3\) h\(^{-1}\) while at rest), the dermal uptake to inhalation intake ratio, \(D/I\), is simply \(4 k_{p,g}\) when \(k_{p,g}\) is expressed in units of m/h. (Units for the parameters used in this paper can be found in the *Nomenclature* section of the *Supporting Information*.)

Because particles diffuse much more slowly than gases, the gas phase is expected to dominate over the particle phase for dermal absorption of airborne organics. Conversely, for inhalation exposure, the volumetric breathing rate is a limiting process for intake: both particle- and gas-phase organics are introduced into the respiratory tract at rates proportional to their respective airborne concentrations. Equation (5) only addresses inhalation intake of gas-phase organics. Hence, the \(D/I\) ratios estimated by equation (6) apply only to the gaseous portion of an airborne organic compound. This distinction is unimportant for the indoor pollutants considered in this paper, since they are present primarily in the gas-phase (\(> 97\%\); see Table S1). However, the reader is cautioned that equation (6) is inappropriate for organic compounds that have a meaningful fraction of their airborne concentration in the particle phase.

Fraction of indoor organic in the gas phase. The values listed in Table S1 for the fraction of an indoor organic pollutant in the gas-phase, \(f_g = C_g/(C_g + C_p)\), were estimated as follows:

\[
f_g = C_g/(C_g + C_p) = 1/(1 + (\text{TSP} \times K_p))
\]

where \(C_p\) is the airborne concentration of organic in the particle phase, TSP is the average mass concentration of airborne particles, and \(K_p\) is the particle/gas-phase partition coefficient for the
organic of interest [38]. We have estimated K_p based on the assumption that partitioning of organics into particles is governed primarily by absorption into the condensed-phase organic matter:

$$K_p = \frac{f_{om} \times K_{og}}{\rho_{part}}$$ \hspace{1cm} (8)

Here, f_{om} is the fraction of airborne particulate matter that is organic, K_{og} is the octanol/air partition coefficient and ρ_{part} is the airborne particle density [39]. For typical indoor conditions, we assume a temperature of 25 °C, TSP = 20 µg/m3, $f_{om} = 0.4$ and $\rho_{part} = 1 \times 10^6$ g/m3 (= 1 g/cm3).

Results

Estimated transdermal uptake of organic vapors. For thirty-three organic compounds with indoor sources, Table 1 lists relevant physical and chemical parameters and calculated overall transdermal permeability coefficients ($k_{p,g}$). Table S1 is an expanded version of Table 1, with data for approximately eighty indoor pollutants and additional columns listing the ratio of stratum corneum permeability to viable epidermis permeability (B), estimated ratios of dermal uptake to inhalation intake (D/I), and predicted fractions in the gas-phase (f_g) under typical indoor conditions. Although some of the indoor pollutants in Tables 1 and S1 may be classified as SVOCs, all exist primarily in the gas-phase: gas-phase partitioning is predicted to be greater than 97% in each case for typical indoor conditions. For the first 15 compounds listed in Table 1, $k_{p,g}$ exceeds 2.5 m/h, indicating that direct transdermal absorption of these compounds is anticipated to be an important exposure pathway relative to inhalation intake (the estimated dermal uptake to inhalation intake rate, D/I, exceeds a factor of 10). Noteworthy among these entries are several organic compounds that are frequently found indoors at concentrations larger
These include common parabens, lower molecular weight phthalates, synthetic musks and o-phenylphenol. For the 18 compounds in the lower portion of Table 1, $k_{p,g}$ is between 0.25 and 2.5 m/h, implying D/I values in the range 1-10. Among the ubiquitous indoor pollutants in this group are nonylphenol, Texanol, α-terpineol, 4-oxopentanal, chlorpyrifos, linalool, and 2-butoxyethanol. Table S1 includes indoor pollutants with $k_{p,g}$ less than 0.25 m/h. For compounds ($n = 20$) with $k_{p,g}$ values in the range 0.025-0.25 m/h (D/I ratios of 0.1-1), the dermal pathway is marginally important. This group includes PCB28, PCB52, chlordane, and some aliphatic alcohols (e.g., 1-octen-3-ol, butanol, hexanal and 3-octanol). For compounds ($n = 26$) in Table S1 with $k_{p,g}$ less than 0.025 m/h, the dermal pathway appears unimportant relative to inhalation. This group includes aliphatic hydrocarbons, single ring aromatics, one- or two-carbon chlorinated solvents, formaldehyde, terpenes and isoprene.

Empirical evidence supporting estimated transdermal uptakes. What is the basis for confidence that estimates of transdermal uptake parameters reported in Table 1 and Table S1 are approximately correct? For twenty of the listed compounds, published studies [1-20] have measured $k_{p,g}$ or the ratio of dermal uptake to inhalation uptake. Table 2 compares values estimated here with published measurement results. (Note: in the case of D/I, when estimated values are compared to measured values, we are assuming that metabolism is equivalent for the dermal and inhalation pathways once the compound enters the blood.) We have calculated the ratio “modeled-to-measured” for each compound in each study. The median value of this ratio is 0.7, i.e. within 30% of unity; the interquartile range is 0.3 to 1.2. With the exception of tetrachloroethylene, the modeled values of $k_{p,g}$ are within a factor of five of the measured values in each case, while modeled values of D/I lie within a factor of seven of measured results. For the 14 compounds with modeled dermal to inhalation ratios (D/I) greater than 0.1, the ratios of
“modeled-to-measured” results have a median value of 0.96 and range from 0.17 to 6.7. The eight of the values are larger than one and six are smaller. We have plotted log (measured) versus log (modeled) results for both $k_{p,g}$ (Figure S1) and D/I (Figure S2). The relationships are approximately linear, with $R^2 = 0.88$ for $k_{p,g}$ ($n = 17$; MW = 76-166 g/mol), and $R^2 = 0.84$ for D/I ($n = 27$; MW = 72-166 g/mol). Given anticipated subject-to-subject variation in the dermal uptake of organic vapors [5, 6] along with substantial uncertainties in the estimated properties of the compounds, these comparisons support a finding that the modeling approach provides reasonable estimates of transdermal uptake rates. An important caveat for interpreting these modeled-to-measured comparisons is that transdermal permeation from the gas-phase has not been experimentally studied for those compounds in Table 1 with the highest modeled $k_{p,g}$ values. Additional experimental studies are warranted to test the model predictions for compounds predicted to have high transdermal permeability coefficients. Although we are aware of no studies that have directly measured uptake of lower molecular weight phthalate vapors via dermal absorption from air, two studies [44,45] have measured transdermal uptake of diethyl phthalate (DEP) and di(n-butyl) phthalate (DnBP) when these compounds were contained in a cream (each at 2% by mass) that was directly applied to human skin at a surface coverage of 2 mg/cm2. Based on metabolites measured in blood [44], the reported maximum measured flux was 2000 µg m$^{-2}$ h$^{-1}$ for DEP and 52 µg m$^{-2}$ h$^{-1}$ for DnBP. Based on metabolites measured in urine [45], the maximum measured flux was 1500 µg m$^{-2}$ h$^{-1}$ for DEP and 450 µg m$^{-2}$ h$^{-1}$ for DnBP. For air saturated with DEP and DnBP vapors, we calculate that the maximum fluxes for direct dermal absorption are 4600 µg m$^{-2}$ h$^{-1}$ for DEP and 185 µg m$^{-2}$ h$^{-1}$ for DnBP (see Supporting Information (S2) for details). A comparison of these
modeled fluxes from air with the measured fluxes for absorption from a 2% cream indicates that
our estimated values of $k_{p,g}$ for DEP and DnBP are plausible.

Discussion

Attributes of organics likely to be dermally absorbed rapidly from air. The transdermal
dermally absorption coefficient, $k_{p,g}$, for an organic compound depends primarily on its molecular weight,
MW, and its stratum corneum/air partition coefficient, $K_{sc,g}$ [33]. Where a compound lies in a
plot of MW versus log ($K_{sc,g}$) can provide a rapid visual indication of the potential importance of
direct dermal uptake from air. Figure 1 summarizes such information for all of the compounds
in Table S1 with MWs less than 350 g/mol. Different symbols indicate the magnitude of $k_{p,g}$ on a
decal scale. For compounds with $k_{p,g}$ larger than 0.99 m/h (as denoted by purple diamonds),
the dermal intake may exceed inhalation intake by a factor of four or more. For compounds with
$k_{p,g}$ between 0.1 and 0.99 m/h (blue circles), the ratio of dermal to inhalation intake is estimated
to be between 0.4 and 4. For compounds with $k_{p,g}$ between 0.01 and 0.099 m/h (green triangles),
the dermal to inhalation intake ratio is estimated to lie in the range 0.04 and 0.4. For other
compounds (orange squares and red diamonds), dermal intake can normally be neglected when
estimating indoor exposures. In summary, transdermal uptake directly from air is progressively
more significant, relative to inhalation, for organic compounds with larger values of $K_{sc,g}$ and —
among compounds with similar $K_{sc,g}$ values — for those with smaller molecular weights.

In using the approach presented here to assess the potential importance of the dermal
pathway, one must also consider the exposure time necessary for a steady-state transdermal flux
model to reasonably approximate reality. The time that an individual spends in a given indoor
environment, the frequency of bathing (and its effectiveness in removing skin absorbed organic
contaminants), and the time scale for shedding the stratum corneum each pose a constraint on the
time available to achieve steady state. In general, for larger values of MW and $K_{sc,g}$, longer times are required to reach steady state (see Supporting Information S3 and Table S2). For compounds with MW larger than 225 g/mol and log ($K_{sc,g}$) larger than 7, an interval longer than a day appears necessary to legitimize the use of a steady-flux, two-resistor model to accurately represent transport from the gas-phase through the skin. For intervals shorter than the time needed to reach steady state, a transient model such as that presented in Gong et al. [46] should yield better estimates of the transdermal permeation of organic vapors. The time required to establish steady flux can be an important consideration for accurately modeling the air-mediated dermal uptake for many SVOCs; however, it is not a limitation for most VOCs.

Sensitivity to key parameters. The accuracy of the estimates for $k_{p,g}$ reported in Tables 1 and S1 depends not only on the fidelity of the transdermal permeation model but also on the accuracy of key input parameters, i.e., the octanol-water partition coefficient, K_{ow}, and Henry’s constant, H. In addition to limitations in model accuracy [35], determinations of these thermodynamic parameters may be prone to large errors. In the present study, these parameters have been calculated using the chemical property estimation software SPARC (v4.6). Using other software (e.g., EPA’s EpiSuite), the calculated values of K_{ow} and H for certain compounds differ from the SPARC values by an order of magnitude or more [47]. We have assessed the sensitivity of $k_{p,g}$ to an order-of-magnitude change in either direction in these key parameters. For the full complement of compounds addressed in this study (Table S1), the results are plotted in Figures S4 and S5, respectively showing sensitivity to K_{ow} and H. In the case of K_{ow}, substituting values that are an order of magnitude smaller or larger than the baseline value results, on average, in a factor of 0.3 or 3.7 change in $k_{p,g}$. The permeability coefficient is more sensitive to H. Substituting values for H that are an order of magnitude smaller or larger than the
baseline value results, on average, in a factor of 6.5 or 0.2 change in \(k_{p_g} \). Nevertheless, it is reassuring that for the organic compounds in Table 2, with the exception of tetrachloroethylene, the ratio of modeled-to-measured values of \(k_{p_g} \) spans a much narrower range, from 0.2 to 3.7, as compared to the measured \(k_{p_g} \) values, which span a factor of 3600. Furthermore, there is reasonable agreement between the estimates in Tables 1 and S1 and estimates for a subset of the same compounds \((n = 36)\) as predicted with ten Berge’s SkinPermMultiScen v1.1 model [48], for which the thermodynamic parameters were calculated using EpiSuite rather than SPARC (see Supporting Information (S4)).

Limitations. The basis for the analysis used in this paper is a model proposed by Mitragotri [35] to calculate an organic compound’s permeability coefficient through the stratum corneum when the vehicle in contact with skin is water. This model is most applicable to a fully hydrated stratum corneum. However, in the case of dermal absorption from indoor air, we anticipate that the stratum corneum will be only partially hydrated. There are procedures for calculating permeability coefficients when the stratum corneum is partially hydrated (e.g., Table 4 in [49]), but the calculations are more complicated than the relatively simple equation derived in Mitragotri’s model. For eighteen of the indoor pollutants considered in this paper, most with relatively large values of \(k_{p_g} \), Table S3 compares \(k_{p_g} \) values calculated using the procedure in the Methods section for fully hydrated stratum corneum with values calculated using the procedure outlined in Wang et al. [49] for partially hydrated stratum corneum. On average, the values calculated assuming a partially hydrated stratum corneum are about two thirds those calculated assuming a fully hydrated stratum corneum. This factor of 2/3 should be considered in the context of the more than five-order-of-magnitude range for \(k_{p_g} \) revealed in Table S1 – i.e., from 0.00001 to 6 m/h. For initial estimates of the relative contribution of dermal uptake of
organic pollutants from air compared to uptake via other exposure pathways, the procedure outlined in this paper should be adequate. However, the reader is cautioned that the procedure used in this paper to estimate dermal uptake from air is likely less accurate than estimates obtained by treating the stratum corneum as only partially hydrated.

The estimates for dermal uptake presented here do not account for the presence of enzymes in the skin that metabolize certain compounds. For example, di(n-butyl) phthalate is partially hydrolyzed by esterases during penetration through human skin [50]. The reader is cautioned to be mindful of the potential for pollutant metabolism in the skin; inclusion of this process is beyond the scope of the present assessment.

Still another factor to consider is ionization of absorbed organics [33]. Compounds that are acidic or basic (e.g., 2,4-D, pentachlorophenol and nicotine) can exist in both neutral and ionized forms in skin-surface films. Only the neutral form is expected to permeate skin rapidly. For relevant species, acidic or basic ionizing reactions can substantially increase the number of molecules that must be transported from the gas-phase to skin-surface films to achieve a steady balance between the neutral species at the skin surface and its gas-phase counterpart. A consequence of this larger capacity of skin-surface films is a correspondingly longer time to reach steady state for such compounds. Skin pH tends to be the range of 5 to 6 [51]; however, the extent to which small organic molecules ionize in skin-surface films is not well known. Given the potential importance of transdermal permeation as an exposure pathway for certain acidic or basic organic gases, the topic of species ionization in skin surface films warrants further study.

Implications. The compounds in Figure 1 have been identified in indoor air and settled dust [38-43] and most of them, or their metabolites, have been identified in human blood or urine [52]. When investigators attempt to connect the levels of an indoor pollutant measured in various
indoor media with the levels of that pollutant (or its metabolites) measured in blood or urine, the
focus has been on inhalation and dust ingestion. If the dermal pathway is considered, the
pollutant is commonly assumed to have reached the skin surface via contact with dust or
contaminated surfaces [25-32], rather than being transported to skin directly via the air. Yet for
roughly a third of the compounds in Figure 1 — including parabens, lower molecular weight
phthalate esters, terpene alcohols and Texanol — direct dermal uptake from air appears to occur
at rates that are comparable to or larger than inhalation intake. A primary intent in reporting this
work is to raise awareness, to promote further measurements, and to facilitate inclusion of
dermal uptake directly from air when researchers and practitioners assess an individual’s
total exposure to organic pollutants in indoor environments.

Acknowledgements

We thank John Kissel and Wil ten Berge for useful comments during a workshop on dermal
absorption at the 2012 meeting of the International Society of Exposure Science. WWN's efforts
on this research were funded in part by the Republic of Singapore’s National Research
Foundation through a grant to the Berkeley Education Alliance for Research in Singapore
(BEARS) for the Singapore-Berkeley Building Efficiency and Sustainability in the Tropics
(SinBerBEST) Program. BEARS has been established by the University of California, Berkeley
as a center for intellectual excellence in research and education in Singapore.

Supporting Information

S1 – Calculating transdermal permeability coefficients; S2 – Calculating maximum flux for DEP
and DnBP vapors; S3 – Time scale to achieve steady state; S4 – Comparison with SkinPerm
model predictions; S5 – Nomenclature (for primary paper and for supporting information); Table
S1 – For selected indoor pollutants, MW, K_{sc_g}, K_{ow}, K_{og}, H, B, k_{p_b}, k_{p_g}, D/I and f_g; Table S2 –
For selected indoor pollutants, MW, K_{og}, k_{p_b} and τ; Table S3 – Comparison of k_{p_g} calculated for fully and partially hydrated stratum corneum; Figure S1 – Measured versus modeled values for k_{p_g}; Figure S2 – Measured versus modeled values for D/I; Figure S3 – For selected indoor pollutants, log (K_{sc_g}) versus log (K_{og}); Figure S4 – Sensitivity of k_{p_g} to an order of magnitude change in K_{ow}; Figure S5 – Sensitivity of k_{p_g} to an order of magnitude change in H; Figure S6 – Comparisons between k_{p_g} estimated using the approach presented in the present paper and that presented by ten Berge (SkinPermMultiScen v1.1).

References

Figure Caption

Figure 1. Dependence of indoor air transdermal permeability coefficient, k_{p_g} on molecular weight (MW) and stratum corneum to gas-phase partitioning coefficient (K_{sc_g}) for numerous organic compounds commonly found in indoor air. Different symbols denote magnitude of k_{p_g} on a decade-by-decade scale (see legend). Abbreviations: 1,1,1-TCE – 1,1,1-trichloroethane; 2-BE – 2-butoxyethanol; 2-EE – 2-ethoxyethanol; 2,4-D – 2,4-dichlorophenoxyacetic acid; 4-OPA – 4-oxopentanal; BHT – butylated hydroxy toluene; DCB – dichlorobenzene; DEP – diethylphthalate; DiBP – di(isobutyl)phthalate; DMA – dimethylacetamide; DMF – dimethylformamide; DMP – dimethylphthalate; DnBP – di(n-butyl)phthalate; MEK – methyl ethyl ketone; NMP – n-methyl-2-pyrrolidone; PCB28 – 2,4,4′-trichlorobiphenyl; PCB52 – 2,2′,5,5′-tetrachlorobiphenyl; PCP – pentachlorophenol; PGME – 1-methoxypropan-2-ol; THF – tetrahydrofuran.
Table 1. For selected organics that are found indoors and exist primarily in the gas phase, relevant physical and chemical properties (MW, K_{ow}, H, $K_{sc,g}$) and overall permeability coefficients ($k_{p,g}$), with compounds rank ordered according to $k_{p,g}$.

<table>
<thead>
<tr>
<th>Compound</th>
<th>MW g/mol</th>
<th>log $(K_{ow})^a$</th>
<th>log $(H)^a$ (mol/liter atm)$^{-1}$</th>
<th>log $(K_{sc,g})^b$</th>
<th>$k_{p,g}$ m/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>diethanolamine</td>
<td>105</td>
<td>-2.5</td>
<td>8.68</td>
<td>8.2</td>
<td>6.0</td>
</tr>
<tr>
<td>2,4-Db</td>
<td>221</td>
<td>2.9</td>
<td>5.16</td>
<td>8.7</td>
<td>5.8</td>
</tr>
<tr>
<td>butyl paraben</td>
<td>194</td>
<td>3.4</td>
<td>4.10</td>
<td>8.0</td>
<td>5.4</td>
</tr>
<tr>
<td>propyl paraben</td>
<td>180</td>
<td>2.8</td>
<td>4.22</td>
<td>7.7</td>
<td>5.2</td>
</tr>
<tr>
<td>ethyl paraben</td>
<td>166</td>
<td>2.2</td>
<td>4.39</td>
<td>7.4</td>
<td>4.9</td>
</tr>
<tr>
<td>di(n-butyl) phthalate</td>
<td>278</td>
<td>4.6</td>
<td>3.61</td>
<td>8.4</td>
<td>4.8</td>
</tr>
<tr>
<td>methyl paraben</td>
<td>152</td>
<td>1.5</td>
<td>4.61</td>
<td>7.1</td>
<td>4.7</td>
</tr>
<tr>
<td>o-phenylphenol</td>
<td>170</td>
<td>3.5</td>
<td>3.42</td>
<td>7.4</td>
<td>4.6</td>
</tr>
<tr>
<td>di(isobutyl) phthalate</td>
<td>278</td>
<td>4.2</td>
<td>3.76</td>
<td>8.3</td>
<td>4.6</td>
</tr>
<tr>
<td>nicotineb</td>
<td>162</td>
<td>2.0</td>
<td>4.31</td>
<td>7.2</td>
<td>4.4</td>
</tr>
<tr>
<td>diethyl phthalate</td>
<td>222</td>
<td>2.6</td>
<td>4.06</td>
<td>7.3</td>
<td>3.4</td>
</tr>
<tr>
<td>diazinon</td>
<td>304</td>
<td>4.9</td>
<td>3.10</td>
<td>8.1</td>
<td>3.3</td>
</tr>
<tr>
<td>dimethyl phthalate</td>
<td>194</td>
<td>1.5</td>
<td>4.45</td>
<td>6.9</td>
<td>2.9</td>
</tr>
<tr>
<td>Galaxolide (HHCB)</td>
<td>258</td>
<td>4.6</td>
<td>2.85</td>
<td>7.6</td>
<td>2.8</td>
</tr>
<tr>
<td>Tonalide (AHTN)</td>
<td>258</td>
<td>5.0</td>
<td>2.58</td>
<td>7.7</td>
<td>2.6</td>
</tr>
<tr>
<td>monoethanolamine</td>
<td>61</td>
<td>-1.8</td>
<td>5.32</td>
<td>5.4</td>
<td>2.5</td>
</tr>
<tr>
<td>nonylphenol</td>
<td>220</td>
<td>6.2</td>
<td>2.00</td>
<td>8.0</td>
<td>2.3</td>
</tr>
<tr>
<td>Phantolide</td>
<td>244</td>
<td>4.8</td>
<td>2.35</td>
<td>7.3</td>
<td>1.8</td>
</tr>
<tr>
<td>pentachlorophenolb</td>
<td>266</td>
<td>4.9</td>
<td>2.30</td>
<td>7.3</td>
<td>1.6</td>
</tr>
<tr>
<td>Texanol</td>
<td>216</td>
<td>2.4</td>
<td>3.46</td>
<td>6.7</td>
<td>1.4</td>
</tr>
<tr>
<td>ethylene glycol</td>
<td>62</td>
<td>-1.4</td>
<td>4.62</td>
<td>5.0</td>
<td>1.2</td>
</tr>
<tr>
<td>hexyl cinnamal</td>
<td>216</td>
<td>5.0</td>
<td>1.86</td>
<td>6.9</td>
<td>1.2</td>
</tr>
<tr>
<td>n-methyl-2-pyrrolidine</td>
<td>99</td>
<td>0.063</td>
<td>3.97</td>
<td>5.4</td>
<td>1.2</td>
</tr>
<tr>
<td>α-terpineol</td>
<td>154</td>
<td>2.5</td>
<td>2.72</td>
<td>6.0</td>
<td>0.98</td>
</tr>
<tr>
<td>phenol</td>
<td>94</td>
<td>1.5</td>
<td>2.62</td>
<td>5.2</td>
<td>0.70</td>
</tr>
<tr>
<td>eugenol</td>
<td>164</td>
<td>3.2</td>
<td>2.12</td>
<td>5.9</td>
<td>0.60</td>
</tr>
<tr>
<td>4-oxopentanal</td>
<td>100</td>
<td>0.10</td>
<td>3.57</td>
<td>5.0</td>
<td>0.56</td>
</tr>
<tr>
<td>chlorpyrifos</td>
<td>351</td>
<td>6.4</td>
<td>1.39</td>
<td>7.5</td>
<td>0.41</td>
</tr>
<tr>
<td>linalool</td>
<td>154</td>
<td>3.2</td>
<td>1.85</td>
<td>5.6</td>
<td>0.40</td>
</tr>
<tr>
<td>BHT</td>
<td>220</td>
<td>4.7</td>
<td>1.44</td>
<td>6.3</td>
<td>0.38</td>
</tr>
<tr>
<td>2-butoxyethanol</td>
<td>118</td>
<td>1.1</td>
<td>2.78</td>
<td>5.0</td>
<td>0.33</td>
</tr>
<tr>
<td>dimethylacetamide</td>
<td>87</td>
<td>-0.18</td>
<td>3.37</td>
<td>4.6</td>
<td>0.32</td>
</tr>
<tr>
<td>p-tert-bucinal</td>
<td>204</td>
<td>4.0</td>
<td>1.52</td>
<td>5.9</td>
<td>0.26</td>
</tr>
</tbody>
</table>

a Computed for $T = 32 \degree C$. b Compound assumed nonionized. Abbreviations: 2,4-D – 2,4-dichlorophenoxyacetic acid; BHT – butylated hydroxy toluene
Table 2. Comparisons between modeled and measured values for either the transdermal permeability coefficient ($k_{p,g}$) or the ratio of dermal to inhalation intake (D/I).

<table>
<thead>
<tr>
<th>Compound</th>
<th>Modeled $k_{p,g}$ m/h</th>
<th>Measured $k_{p,g}$ m/h</th>
<th>Modeled/Measured $k_{p,g}$</th>
<th>Modeled D/I [-]</th>
<th>Measured D/I [-]</th>
<th>Modeled/Measured D/I [-]</th>
<th>Ref. *</th>
</tr>
</thead>
<tbody>
<tr>
<td>aniline</td>
<td>0.21</td>
<td>0.84</td>
<td>0.9-1.8</td>
<td>0.70^e</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2-butoxyethanol</td>
<td>0.33</td>
<td>1.3</td>
<td>2.4-3.8</td>
<td>0.42^b</td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>2-butoxyethanol</td>
<td>0.33</td>
<td>1.3</td>
<td>0.18-0.37</td>
<td>4.7^b</td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>dimethylacetamide</td>
<td>0.32</td>
<td>1.3</td>
<td>0.43</td>
<td>3.0</td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>dimethylacetamide</td>
<td>0.32</td>
<td>1.3</td>
<td>0.68^c</td>
<td>1.9</td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>dimethylformamide</td>
<td>0.081</td>
<td>0.33</td>
<td>0.16-0.64</td>
<td>0.83^b</td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>dimethylformamide</td>
<td>0.081</td>
<td>0.33</td>
<td>0.20</td>
<td>1.65</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>dimethylformamide</td>
<td>0.081</td>
<td>0.33</td>
<td>0.68^d</td>
<td>0.49</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>2-ethoxyethanol</td>
<td>0.19</td>
<td>0.19</td>
<td>1.0</td>
<td>0.72</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>furfural</td>
<td>0.14</td>
<td>0.56</td>
<td>0.2-0.3</td>
<td>2.2^e</td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>hexane</td>
<td>0.000029</td>
<td>0.00013</td>
<td>0.22</td>
<td>0.00012</td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>1-methoxy-2-propanol</td>
<td>0.13</td>
<td>0.54</td>
<td>0.044-0.11</td>
<td>7.0^b</td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>2-methoxyethanol</td>
<td>0.14</td>
<td>0.36</td>
<td>0.39</td>
<td>0.56</td>
<td>1.2</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>2-methoxyethanol</td>
<td>0.14</td>
<td>0.14-0.18</td>
<td>0.88^b</td>
<td>0.56</td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>methyl ethyl ketone</td>
<td>0.0075</td>
<td>0.030</td>
<td>0.032-0.040^e</td>
<td>0.83^b</td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>n-methyl-2-pyrrolidone</td>
<td>1.2</td>
<td>4.8</td>
<td>0.72</td>
<td>6.7</td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>nitrobenzene</td>
<td>0.033</td>
<td>0.13</td>
<td>0.50</td>
<td>0.26</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>phenol</td>
<td>0.70</td>
<td>0.19</td>
<td>3.7</td>
<td>2.8</td>
<td>0.70</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>styrene</td>
<td>0.0025</td>
<td>0.0037</td>
<td>0.68</td>
<td>0.010</td>
<td>0.019</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>styrene</td>
<td>0.0025</td>
<td>0.012</td>
<td>0.21</td>
<td>0.010</td>
<td>0.052</td>
<td></td>
<td>17</td>
</tr>
<tr>
<td>tetrachloroethylene</td>
<td>0.00008</td>
<td>0.0017</td>
<td>0.05</td>
<td>0.0003</td>
<td>0.011</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>tetrachloroethylene</td>
<td>0.00008</td>
<td>0.00054</td>
<td>0.15</td>
<td>0.0003</td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>tetrahydrofuran</td>
<td>0.0056</td>
<td>0.022</td>
<td>0.016-0.050^e</td>
<td>0.67^b</td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>toluene</td>
<td>0.0010</td>
<td>0.0019</td>
<td>0.53</td>
<td>0.0038</td>
<td>0.009</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>toluene</td>
<td>0.0010</td>
<td>0.0014</td>
<td>0.71</td>
<td>0.0038</td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>1,1,1-trichloroethane</td>
<td>0.00016</td>
<td>0.0001</td>
<td>1.6</td>
<td>0.00065</td>
<td>0.0008</td>
<td>0.81</td>
<td>16</td>
</tr>
<tr>
<td>1,1,1-trichloroethane</td>
<td>0.00016</td>
<td>0.00021</td>
<td>0.76</td>
<td>0.00065</td>
<td>0.001</td>
<td>2.6</td>
<td>18</td>
</tr>
<tr>
<td>1,1,1-trichloroethane</td>
<td>0.00016</td>
<td>0.00021</td>
<td>0.76</td>
<td>0.00065</td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>trichloroethylene</td>
<td>0.00009</td>
<td>0.00049</td>
<td>0.18</td>
<td>0.00036</td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>m-xylene</td>
<td>0.0014</td>
<td>0.0026</td>
<td>0.54</td>
<td>0.0056</td>
<td>0.013-0.014</td>
<td>0.47^b</td>
<td>16</td>
</tr>
<tr>
<td>xylene</td>
<td>0.0014</td>
<td>0.0056</td>
<td>0.013-0.026^g</td>
<td>0.32^b</td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>m-xylene</td>
<td>0.0014</td>
<td>0.0056</td>
<td>0.018</td>
<td>0.35</td>
<td></td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>m-xylene</td>
<td>0.0014</td>
<td>0.0012</td>
<td>1.2</td>
<td>0.0056</td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>m-xylene</td>
<td>0.0014</td>
<td>0.00062</td>
<td>2.3</td>
<td>0.0056</td>
<td></td>
<td></td>
<td>20</td>
</tr>
</tbody>
</table>

^a Cited studies exposed whole body or arm of humans to vapors of the listed chemicals. ^b Midpoints of the measured values are used to compute the ratio. ^c Ten subjects; range: 0.15-2.7; see Figure 2 of Nomiyama et al., 2000 [5]. ^d Thirteen subjects; range: 0.28-3.7; see Figure 2 of Nomiyama et al., 2001 [6]. ^e Uptake assessed by monitoring compound or metabolite in blood, breath and urine following exposure. Tabulated ranges are mean values for blood assessment, breath assessment and urine assessment. ^f Unspecified isomer(s).