Lawrence Berkeley National Laboratory
Recent Work

Title
Collective Effects in Isochronous Storage Rings

Permalink
https://escholarship.org/uc/item/25h4b6sq

Journal
AIP. American Institute of Physics Conference Proceedings, 377

Author
Chao, A.W.

Publication Date
1996
Submitted to Physical Review Letters

Collective Effects in Isochronous Storage Rings

A.W. Chao and K.-J. Kim

January 1996
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Collective Effects in Isochronous Storage Rings

A. W. Chao
Stanford Linear Accelerator
Stanford University
Stanford, CA 94305

K.-J. Kim
Center for Beam Physics
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

January 4, 1996

1 This work was supported by the U.S. Department of Energy under Contract No. DE-AC 03-76SF00515.

2 This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Division of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC 03-76SF00098.
Collective Effects in Isochronous Storage Rings

A. W. Chao

Stanford Linear Accelerator, Stanford University, Stanford, CA, 94305, USA

K.-J. Kim

Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

(January 4, 1996)

We have studied the collective instabilities in isochronous storage rings with a linac-type analysis. Simple criteria for avoiding the longitudinal and transverse instabilities are developed by employing a two particle model. Numerical examples show that these conditions do not impose serious performance restrictions for currently proposed isochronous storage rings.

I. INTRODUCTION

It has been suggested that ultra-short electron beam bunches can be stored in a quasi-isochronous storage ring whose momentum slip factor η is designed to be very small [1]. Since the peak current is high, the collective instabilities are one of the limiting factors in the operation of the quasi-isochronous storage rings.

In discussing the collective instabilities, we need to distinguish different regimes according to the relative magnitudes of the period of the synchrotron oscillation τ_{syn} and the radiation damping time τ_{rad}. These are given by [2]

\[\tau_{syn} = 2\pi \sqrt{\frac{2\pi R E_0}{\eta c e \omega_{rf} V_{rf}}} \]

where \(2\pi R \) is the storage ring circumference, \(E_0 \) is the design particle energy, \(c \) is the speed of light, \(e \) is the electron charge, \(\omega_{rf} \) and \(V_{rf} \) are the angular frequency and integrated voltage per revolution of the rf cavities, and

\[\tau_{rad} = \frac{4\pi}{c C_{rf} E_0^3 <C^2>} \]

1 Work supported by the U.S. Department of Energy under Contract No. DE-AC03-76SF00515.

2 Work supported by the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
where \(C_\gamma = 8.85 \times 10^{-8} \text{ m-GeV}^{-3} \), \(G = 1/\rho \), \(\rho \) is the bend radius, and the angular brackets imply taking the average over the ring circumference.

In the regime where

\[
\tau_{\text{syn}} \ll \tau_{\text{rad}},
\]

the instability mechanisms are the usual microwave instabilities, discussed extensively in the literature (for a review, see [3]). A storage ring for which the inequality (3) is satisfied will be referred to as the conventional storage ring in this paper.

The synchrotron oscillation period is proportional to \(1/\sqrt{\eta} \). When \(\eta \) becomes sufficiently small, therefore, we have the opposite regime

\[
\tau_{\text{syn}} \gg \tau_{\text{rad}}.
\]

In this regime the internal longitudinal motion of particles in the bunch can be neglected. A storage ring for which the inequality (4) is satisfied will be referred to as the isochronous storage ring in this paper. In an isochronous storage ring, the usual analysis of microwave instabilities breaks down. The instability mechanisms are now replaced by the linac collective effects and the analyses have also to be replaced.

In this note, we consider the collective instabilities in an isochronous storage ring for the case when the wake fields are short-ranged so that we have to worry only about single-bunch, single-turn wake fields. We further simplify the analysis by employing a two-particle model.

The damping time is different for the longitudinal and transverse oscillation. The radiation damping time \(\tau_{\text{rad}} \) in the above should therefore be interpreted as the energy damping time \(\tau_{\text{rad,E}} = \tau_{\text{rad}}/J_E \) in discussing the longitudinal synchrotron oscillation and as the betatron (horizontal or vertical) damping time \(\tau_{\text{rad,} \beta} = \tau_{\text{rad}}/J_\beta \) in discussing the transverse betatron oscillations. Here the quantities \(J_s \) are the damping partition numbers given by \(J_E \approx 2 \) and \(J_\beta \approx 1 \).

The longitudinal and transverse collective effects for isochronous storage rings are discussed in section II. Two numerical examples, one for a \(\Phi \)-factory and another for a FEL, are included in Section III.

II. ANALYSIS IN ISOCRONOUS STORAGE RING

We consider first the collective effects in an isochronous storage ring, where the inequality (4) is valid.

A. Head-Tail Energy Split

The main longitudinal collective effect in a linac, and in an isochronous storage ring, is to cause a head-tail energy split. We consider a two-particle
model. Let the bunch head and the bunch tail have longitudinal coordinates $z = \frac{1}{2} \ell_z$ and $z = -\frac{1}{2} \ell_z$ relative to the bunch center. The equation for the energy error of the bunch head is

$$\dot{\delta}_{\text{head}} = -\frac{2}{\tau_{\text{rad},E}} \delta_{\text{head}} + \frac{eV_{\text{rf}} \omega_{\text{rf}} \ell_z}{4\pi \epsilon_0 E_0}.$$

(5)

The energy distribution of the stored beam reaches an equilibrium by a balance between radiation damping and the energy gain from the rf cavities. The bunch head then has an equilibrium energy error

$$\delta_{\text{head}} = \frac{eV_{\text{rf}} \omega_{\text{rf}} \ell_z \tau_{\text{rad},E}}{8\pi \epsilon_0 E_0}.$$

(6)

Similarly, the equation for the bunch tail energy error is [3]

$$\dot{\delta}_{\text{tail}} = -\frac{2}{\tau_{\text{rad},E}} \delta_{\text{tail}} - \frac{eV_{\text{rf}} \omega_{\text{rf}} \ell_z}{4\pi \epsilon_0 E_0} - \frac{N r_0 c W_0'}{4\pi R \gamma}.$$

(7)

where N is the number of electrons in the bunch, r_0 is the electron classical radius, W_0' is the longitudinal wake function (created by the bunch head and seen by the bunch tail) integrated over the storage ring circumference, and γ is the Lorentz energy factor of the stored electrons. In equilibrium, we have

$$\delta_{\text{head}} = \frac{eV_{\text{rf}} \omega_{\text{rf}} \ell_z \tau_{\text{rad},E}}{8\pi \epsilon_0 E_0}$$

(8)

The head-tail energy split is therefore, using Eqs.(6) and (8),

$$\Delta \delta = \delta_{\text{head}} - \delta_{\text{tail}} = \Delta \delta_{\text{rf}} + \Delta \delta_{\text{z}},$$

(9)

where

$$\Delta \delta_{\text{rf}} = \frac{eV_{\text{rf}} \omega_{\text{rf}} \ell_z \tau_{\text{rad},E}}{4\pi \epsilon_0 E_0},$$

(10)

and

$$\Delta \delta_{\text{z}} = \frac{N r_0 c W_0' \tau_{\text{rad},E}}{8\pi R \gamma}.$$

(11)

The first term, $\Delta \delta_{\text{rf}}$, is independent of the wake fields, and is there to maintain an equilibrium energy distribution of the bunch. The second term, $\Delta \delta_{\text{z}}$, is wake dependent. In the design of the isochronous storage ring, one needs to make sure $\Delta \delta$ is within tolerance.

Equation(10) can be written as

$$\eta c \tau_{\text{rad},E} \Delta \delta_{\text{rf}} = 2\pi^2 (\tau_{\text{rad},E}/\tau_{\text{syn}})^2 \ell_z.$$

(12)

The LHS is the distance a particle with an energy error $\Delta \delta_{\text{rf}}$ travels in one damping time, which is much smaller than the bunch length ℓ_z in the present
case where Eq. (4) is valid. Thus the relative motion of the particles in the bunch can indeed be neglected. It remains however necessary to design the isochronous storage ring in such a way that $\Delta \delta_t$ is within the momentum aperture of the ring.

Assuming the longitudinal wake is due to a longitudinal impedance Z_0/n, then

$$W_0' \approx \frac{cR Z_0}{b^2 n}$$

(13)

where b is the storage ring beam pipe radius, and n is the impedance frequency in units of revolution frequency. The contribution to the head-tail energy split due to the wakefield then reads

$$\Delta \delta_Z \approx \frac{N \rho_0 \gamma \rho_{\text{rad}}}{2b^2 n} \frac{Z_0^||}{Z_0}$$

(14)

where $Z_0 = 377 \, \Omega$.

B. Beam Break-Up Instability

The main transverse collective effect in a linac is to cause a beam break-up instability. In the beam-break-up instability, the bunch head executes a simple betatron oscillation without being affected by the wake fields. The bunch tail sees the wake field left behind by the bunch head, and is driven resonantly by it. Using a two-particle model, the betatron oscillation of the bunch tail grows by a factor of \mathcal{T} per turn, where [3]

$$\mathcal{T} = -\frac{N \rho_0 W_1 \beta_Z}{4 \gamma}$$

(15)

with W_1 the transverse wake function integrated over the storage ring circumference, and β_Z the β-function at the location of the impedance.

For stability, the growth of the bunch tail must be suppressed by radiation damping. This leads to the stability criterion

$$\frac{T_0}{\tau_{\text{rad}, \beta}} > \mathcal{T}$$

(16)

where T_0 is the revolution period.

We assume the wake fields are produced by a transverse impedance Z_1^\perp. For a short bunch with $\ell_z \ll b$, the wake field seen by the bunch tail (which trails the bunch head by a distance ℓ_z) is proportional to ℓ_z. The transverse wake function W_1 seen by the bunch tail is approximately

$$W_1 \approx -\frac{c \ell_z}{b^2} Z_1^\perp$$

(17)
For our purpose, it is more convenient to relate Z_1^\perp to the longitudinal impedance Z_0^\parallel/n by the approximate relation

$$Z_1^\perp = \frac{2R Z_0^\parallel}{b^2} \frac{1}{n}$$ \hspace{1cm} (18)

Combining Eqs. (16), (17) and (18) then gives

$$\frac{Z_0^\parallel}{n} < \frac{\gamma b^4}{c N r_0 \beta_2 \ell_2 \tau_{\text{rad,}\beta}}$$ \hspace{1cm} (19)

It should be mentioned that the short length of the bunch helps reducing the beam break-up effect. This, as seen in Eq. (17), is due to the fact that the transverse wake field is smaller for short bunches.

III. NUMERICAL EXAMPLES

A. UCLA Φ Factory

A design of a high luminosity Φ factory based on a small value of η is described in [4]. The ring consists of four cells, each containing two 47 degree bending sections of $\rho = 0.425$ m and one -4 degree inverted bending section of $\rho = -1.7$ m. By controlling the dispersion in the inverted bending section, the momentum slip factor η is variable between -0.005 and 0.008. Other relevant parameters are $2\pi R = 32.7$ m, rf frequency=499 MHz, $eV_{rf} = 0.1$ MV, and $E_0 = 0.51$ GeV. With six bunches in the ring, each with $N = 1.33 \times 10^{11}$ electrons, and $\beta^* = \sigma_z = 0.4$ cm, where β^* is the beta function at the interaction point, the luminosity becomes 1.6×10^{33} /cm2/s.

We find $\tau_{\text{rad,}E} \approx 3.7$ ms. If the ring were conventional, one would calculate the energy spread according to

$$\sigma_5 = \sqrt{C_q \frac{<G^3>}{J_E <G^2>}}$$ \hspace{1cm} (20)

where $C_q = 3.84 \times 10^{-13}$ m. One then obtains $\sigma_5 = 6.7 \times 10^{-4}$. The momentum slip factor necessary for $\sigma_z = 0.4$ cm is, using the expression

$$\sigma_z = \frac{\eta c \tau_{\text{syn}}}{2\pi} \sigma_5 = \sqrt{\frac{2\pi R \eta c E_0}{e \omega_{rf} V_{rf}}} \sigma_5$$ \hspace{1cm} (21)

is found to be $\eta = 2.2 \times 10^{-3}$. Inserting this into Eq. (1), we obtain $\tau_{\text{syn}} = 56 \mu$s. Therefore the ring in this parameter regime is conventional although the bunch length σ_z is likely to be much shorter than the pipe radius b.

For a conventional ring with very short bunches, it is conceivable that one may obtain the microwave instability criterion by using the result for
an isochronous ring, Eq.(19), but with $\tau_{\text{rad},\beta}$ replaced by τ_{syn}. One then obtains the threshold of the transverse microwave instability given by

$$\frac{Z_0^\parallel}{n} < Z_0 \frac{\gamma^4 b^4}{cN_0 \beta z \sigma_z \tau_{\text{syn}}}$$

(22)

With similar substitution to Eq.(14), we obtain the contribution to the energy spread due to the impedance effect in a conventional storage ring:

$$\Delta \delta_Z \approx \frac{N \tau_{\text{syn}}}{2b^2 \gamma} \frac{1}{Z_0} \frac{Z_0^\parallel}{n}$$

(23)

We assume $Z_0^\parallel/n \approx 0.2\Omega$, which is the value obtained in the ALS. Taking $b = 2$ cm, we obtain from Eq.(23) that $\Delta \delta_Z = 4.2 \times 10^{-3}$. Thus the impedance contribution to the energy spread is about seven times larger than the natural energy spread, implying that the bunch length will be seven times longer than the zero current value of 0.4 cm. On the other hand, the RHS of Eq.(22) using $\sigma_z = 2.8$ cm is about 7 Ω; the transverse microwave effect is not important although strictly speaking, Eq.(22) no longer applies because σ_z is now comparable to b.

B. A Proposed Quasi-Isochronous Ring at ETL

An experimental ring, possibly for FEL application, to be built at Electrotechnical Laboratory in Japan was proposed recently [5]. The general idea of the ring is similar to that discussed in the above, each cell containing two 49 degree degree bending sections of $\rho = 1.5$ m and one -8 degree inverted bending section of $\rho = -10$ m. By controlling the dispersion in the inverted bending section, the momentum slip factor as small as $\eta = 2. \times 10^{-7}$ is contemplated. Other parameters are $2\pi R = 82.4$ m, rf frequency=502 MHz, $eV_{\text{rf}} = 1$ MV, and E_0 up to 1.5 GeV. If we use the formulae for conventional ring, one obtains $\sigma_z = 51\mu$m. However, we also obtain $\tau_{\text{syn}} = 5.1$ ms which is longer than $\tau_{\text{rad},E} \approx 1.25$ ms and $\tau_{\text{rad},\beta} \approx 2.5$ ms. Thus, the ring is in the isochronous regime in which case the short bunch length is not the result of the radiation damping. It must be injected from the beginning.

The energy acceptance of the ring is about 1%. Taking $\ell_z \approx 2\sigma_z$, we find from Eq.(10) that $\Delta \delta_E = 1.6 \times 10^{-3}$ is negligible. Assuming again that $b = 2$ cm and $Z_0^\parallel/n \approx 0.2\Omega$, we compute from Eq.(14) the number of electrons per bunch N corresponding to the case $\Delta \delta_Z$ equals the energy acceptance 1%, and find $N = 4.2 \times 10^{10}$. This would be more than what would be required for most applications. With this value of N, the inequality (24) becomes

$$0.2\Omega < 19.6\Omega/\beta_Z [m]$$

Since the average value of the horizontal or vertical β function of the ring is less than 20 m, this inequality is also easily satisfied, provided Z_0^\parallel/n is controlled to 0.2 Ω.
Acknowledgements

We thank D. Robin and H. Ohgaki for discussions on parameters of quasi-isochronous rings.

REFERENCES
