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We have fabricated arrays of 60-nm-size magnetic Fe nanodots over &-dizgmarea using
nanoporous alumina membranes as shadow masks. The size and size distribution of the nanodots
correlate very well with that of the membrane pores. By placing an antiferromagnetjcldyeff
underneath the Fe nanodots, an exchange anisotropy can be introduced into the §esteak. We

have observed an increase in the magnetic hysteresis loop squareness in biased nanodots, suggesting
that exchange bias may be used as a tunable source of anisotropy to stabilize the magnetization in
such nanodots. €002 American Institute of Physic§DOI: 10.1063/1.1526458

Magnetic nanostructures often exhibit interesting properbrane is then separated from the aluminum metal by etching
ties as the sample size becomes comparable to certain chamnd transferred onto a substrité.The subsequent material
acteristic length scales, such as the spin—flip diffusion lengtlileposition through the alumina mask and the final lift-off
and magnetic domain-wall width? Technologically, these lead to nanodot arrays.
nanostructures are driving the device miniaturizatierg., In this study, 300-nm-thick alumina membranes have
towards Thit/in? data acquisitioy as well as providing more been used, with a 60 nm pore size and &%0r? (~60
functionality® However, in practice, it becomes increasingly Ghit/in?) pore density. A scanning electron microscope
challenging to fabricate and characterize nanostructures wittSEM) image of the membrane transferred onto a MgO sub-
decreasing feature sizes, beyond the limit of conventionadtrate is shown in Fig. (b). Using this membrane as a
photolithography. Certain techniques have shown promise ishadow mask, a 15-nm-thick Fe layer is deposited by
mass-producing nanostructures cost effectively, such as exlectron-beanie-beam evaporation through the pores onto
treme ultraviolet lithography, ion irradiation, nanoimprint, the substrate. The membrane is subsequently removed in a
interferometry, nanotemplate, and self-assemiBiy* An-
other important issue is the thermal stability of these mag-
netic nanostructures, since the anisotropy energy that stabi-
lizes the magnetization scales with the volume. At very small
sizes, the magnetization direction is randomized by thermal
fluctuations, posing a fundamental “superparamagnetic
limit” to achievable magnetic recording denstfy.!’ Several
schemes have been proposed to postpone or circumvent the "
superparamagnetic limit:2*>-°n this work, we demon- (b) Mask
strate a porous alumina shadow mask technique to realize 4
nanomagnet arrays with a magnet size of about 60 nm over a
1 cn? area. We also show that exchange bias may be used as Deposition
an additional and tunable means of anisotropy for magneti-
zation stabilization in nanomagnets.

A schematic of the sample preparation process is shown _/
in Fig. 1(a). A porous alumina membrane is first prepared by Liftoff TR
anodic oxidation of aluminurfi?° The oxidized film consists @ () Nanodots

of packed columnar arrays of nanopores. The porous mem-

FIG. 1. (a) Schematic of the porous alumina shadow mask deposition tech-
nique. Top view, SEM images db) a porous alumina membrane afal
¥Electronic mail: kailiu@ucdavis.edu arrays of Fe nanodots after the fabrication process.

Alumina Mask

ALK N =1000m,

Ry = 100nm
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FIG. 2. Histograms of pore/dot size distribution (@f the nanoporous alu- H (O¢)

mina membrane angb) arrays of Fe nanodots. FIG. 3. Magnetic hysteresis loops of Fe nanodot arfé@snm wide, 15 nm

thick) on MgO (unbiased, open symbgland a 90-nm-thick FeHilm (ex-

0 ; PR - change biased, solid symbpkt 10 K, after field cooling in 5 kOe from 300
10% NaOH solution. This lift-off process leaves b?h'”‘?‘ FeK. The upper-left inset shows a section of the biased loop near zero field.
nanodot arrays over abba 1 cnf area, as shown in Fig. The lower-right inset shows the temperature dependence of the exchange
1(c). The pattern transfer from the mask to the nanodots igeld for the biased Fe nanodots.
also illustrated in Fig. 2. From the SEM imagéddgs. 1b)
and Xc)], by digitizing the areas of the pores in the alumina N .
mask and the Fe nanodots, we have determined the size d|l 0p shapes are the demagnetlgatlon field and, to a lesser

egree, magnetic dipolar interactions between the dds-

tribution of the pores and nanodots, respectivélin the _ :
P P n cause of the polycrystalline nature of the Fe film and nan-

alumina mask, the pores are fairly uniform in size, with an o : .
average diameter of 616 nm[Fig. 2@)]. In the Fe nanodots, odots, contributions from magnetocrystalline anisotropy are
| negligible. The increased coercivity in Fe nanodots is a well-

the size, along with the narrow size distribution, is wel . . 5
maintained through the lift-off process. The average diametef"0Wn Phenomenon for fine magnetic partictedhe small

of the dot is 588 nm[Fig. 2b)]. Indeed, the combination of dimension of the dots impedes the formation of multido-
a thin mask and a directional flux minimized any “shadow-Mains and the magnetization reversal proceeds primarily
ing” effect that could have compromised the structural integ-through rotation. The small remanent magnetization of the
rity. Fe nanodots is an indication of the reduced anisotropy en-

For comparison and consistency, three samples ha/@'dy relative to the thermal quctuatiqns, given that the simul-
been made on the same substrate in the following manner. J@neously made Fe nanodots and film on the same substrate
clean Mg@100) substrate is used and half of the area isShould have similar structural characteristics. The anisotropy
covered by a 90-nm-thick antiferromagnetic Fefyer €nergy (product of anisotropy constarmt and volumeV)
through e-beam evaporation, while the other half remain§lecreases as the nanodot becomes smaller, and the effects of
bare. The Fef, grown at 0.2 nm/s and 200 °C, is a twinned thermal fluctuation become significant, eventually leading to
quasiepitaxial layer along th@10) direction’®*?223The alu- superparamagnetism. Therefore, the remanent magnetization
mina membrane is then applied on top of both halves, excef@ squareness of the loop may be used as an indication of the
a bar-shaped region on the bare MgO. The subsequent depgermal stability of the nanomagnets.
sition of a 15-nm-thick Fe laydiat 0.1 nm/s and 150 9Gnd The exchange anisotropy in the ferromagnet/
the lift-off result in three types of samples on the same subantiferromagne{FM/AF) system is anotheexternalsource
strate: (1) 60-nm-size Fe nanodotd5 nm thick/MgO; (2) for magnetization stabilization. When a FM/AF bilayer is
60-nm-size Fe nanodotd5 nm/FeF, (90 nm/MgO, and(3)  field cooled across the AF & temperatureTy, an ex-
Fe film (15 nm/MgO. The exact growth conditions have change anisotropy is frozen in. The FM magnetic hysteresis
been reported in earlier studi€s?>#The Fe layer thus pre- loop is shifted from the origin by an amount known as the
pared is polycrystalline, and grows similarly on MgO and exchange fieldHg, which measures the exchange anisotropy
FeR. strength?® It is noteworthy that exchange bié&B) has been

The large area and high density of the nanodot arraygroposed theoretically to stabilize the magnetization in small
facilitate their characterization. In this study, all magneticparticles’’ Moreover, it has been shown experimentally that
measurements have been performed in the in-plane geometpgll-milled FM particles embedded in an AF matrix exhibit
using a superconducting quantum interference device magmproved squarenegt.
netometer. At 300 K, the uniform Fe film exhibits the usual For the sample with Fe nanodot arrays on top of an AF
square loop with a small coercivity of 25 Oe. The square- FeF, layer, the exchange anisotropy was introduced by field
ness of the loop, defined as the ratio of remanent magnetiz&ooling the bilayern a 5 kOe field from 300 K to below the
tion M over saturation magnetizatiofig, is 84%. In con- FeFk, Ty (~80 K). A resultant hysteresis loop at 10 K is
trast, the loop of the Fe nanodot arrays at 300 K is muctshown in Fig. 3, shifted from zero field to the left by 31 Oe
more sheared with a largdi- of 110 Oe and a smaller (better seen in the expanded vieirhe loop shift, or ex-

squareness of 15%. Primary contributions to the differenthange fieldHg, is easily measurable and it diminishes with
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increasing temperature, eventually vanishing at the,FgF  'See, e.g., D. D. Awschalom and S. von Malrdanotechnologyedited by
(Fig. 3, inset. Notice that the magnitude ¢ig is one order ZG- Timp (Springer, New York, 1998 Chap. 12.
of magnitude smaller than that in uniform Fe/Edﬁlayer J. |. Martin, J. Nogus, K. Liu, J. L. Vicent, and I. K. Schuller, J. Magn.

: 22,23 Thic i . Magn. Mater.(in press.
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