Lawrence Berkeley National Laboratory
Recent Work

Title
OPTIMIZATION OF DC SQUID VOLTMETER AND MAGNETOMETER CIRCUITS

Permalink
https://escholarship.org/uc/item/266823d0

Author
Clarke, J.

Publication Date
1979
OPTIMIZATION OF DC SQUID VOLTMETER AND MAGNETOMETER CIRCUITS

John Clarke, Claudia D. Tesche and R. P. Giffard

January 1979
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
OPTIMIZATION OF DC SQUID VOLTMETER AND MAGNETOMETER CIRCUITS

John Clarke* and Claudia D. Tesche

Department of Physics, University of California, and
Materials and Molecular Research Division
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

and

R. P. Giffard

Physics Department
Stanford University
Stanford, California 94305

ABSTRACT

We calculate the signal-to-noise ratio in a dc SQUID system as a function of source impedance taking into account the effects of current and voltage noise sources in the SQUID. The optimization of both tuned and untuned voltmeters and magnetometers is discussed and typical sensitivities are predicted using calculated noise spectra. The calculations are based on an ideal symmetric dc SQUID with $\beta = 2LI_o/\Phi_o = 1$ and moderate noise rounding ($\Gamma = 2\pi k_B T/I_o \Phi_o = 0.05$), where Φ_o is the flux quantum, T is the temperature, L is the SQUID inductance, and I_o is the critical current of each junction. The optimum noise temperatures of tuned and untuned voltmeters are found to be $2.8(\omega L/R)T$ and $3(\omega L/R)T(1 + 1.5 \alpha^2 + 0.7 \alpha^4)^{\frac{1}{2}}/\alpha^2$ respectively, where $\omega/2\pi$ is the signal frequency, assumed to be much less

*Guggenheim Fellow
than the Josephson frequency, and \(\alpha \) is the coupling coefficient between the SQUID and the voltmeter circuit. It is found that tuned and untuned magnetometers can be characterized by optimum effective signal energies given by \((16 \frac{k_B T B}{\alpha^2 R}) [1 + (1 + 1.5 \alpha^2 + 0.7 \alpha^4)^{\frac{1}{2}} + 0.75 \alpha^2] \) and \(2k_B T \frac{R_i B}{\omega^2 L_p} \) respectively, where \(B \) is the bandwidth, \(R_i \) is the resistance representing the losses in the tuned circuit at temperature \(T_i \), and \(L_p \) is the inductance of the pick-up coil.
1. INTRODUCTION

Several authors1-7 have developed sensitivity criteria for dc and rf SQUIDs used as voltmeters or magnetometers. In most applications, the SQUID is coupled to a superconducting input coil of inductance L_1 with a mutual inductance M_1. A widely used figure of merit for this configuration is the energy resolution per Hz referred to the input coil, $S_\phi/(2M_1^2/L_1)$, where S_ϕ is the spectral density of the total noise level at the SQUID output expressed as an equivalent magnetic flux noise applied to the SQUID. When a source circuit is connected to the input coil, the transformed source impedance may change the SQUID inductance, causing changes in the SQUID noise level and gain which in turn affect S_ϕ. The energy sensitivity computed for an isolated SQUID is only useful when the input circuit does not significantly affect the operation of the SQUID. This will always be the case if the input coil, L_1, is connected in series with a voltage source with resistance $R_1 \gg \omega L_1$, or with a pick-up coil of inductance $L_p \gg L_1$. These requirements are, however, not always satisfied by useful input circuits. In particular, it has recently been demonstrated that the sensitivity of SQUID systems can be increased by resonating the input circuit at the signal frequency.8,9 With such input circuits, the impedance of the SQUID can be significantly changed, and the noise level cannot be characterized by an energy sensitivity.

In general, the effect of the input circuit on the total output noise of a superconducting amplifier can be treated by associating two independent noise sources with the amplifier.10 It is physically
reasonable to characterize an isolated SQUID by means of a voltage noise at the output, and a circulating current noise in the SQUID loop. A reasonable approximation for the signal-to-noise ratio at the output of a SQUID coupled to a resonant input circuit can then be made by identifying these voltage and current noise levels as two noise sources associated with a noiseless linear amplifier, and computing the total signal and noise voltages at the output in the usual fashion. A detailed model of this operation of rf-biased SQUIDS, including independent noise sources, has been developed by Ehnholm, and compared with the performance of working devices. Various resonant input rf SQUID circuits have also been analyzed in detail.

Computer calculations of the voltage noise at the output of an isolated tunnel junction dc SQUID over a wide range of device parameters have been presented in an earlier paper. These calculations have recently been extended to yield the current noise under conditions which optimize the energy resolution. In the present paper, these results are used to predict the signal-to-noise ratio which can be obtained in tuned and untuned magnetometers and voltmeter circuits employing ideal dc SQUIDS. In order to obtain results which are representative of real devices, parameters appropriate to a typical optimized cylindrical tunnel junction dc SQUID have been adopted. The SQUID is assumed to have a self-inductance L of 1 nH, a shunt resistance per junction R of 1 Ω, and to be maintained at 4.2 K. If the input flux Φ_a is close to $(2n + 1)\Phi_0 / 4$, where n is an integer and Φ_0 is the flux quantum, changes in the output voltage, ΔV, of the current-biased SQUID are related to changes in Φ_a by a small-signal transfer function.
$V_\phi = \partial V/\partial \phi_a$. At the optimum bias current, $I_B \approx 1.6 I_o$, where I_o is the critical current per junction, the Josephson frequency, f_J, is approximately equal to $R/10 L \approx 10^8$ Hz, and V_ϕ is approximately equal to $R/L \approx 10^9$ S$^{-1}$. Throughout this paper it will be assumed that the signal input frequency is several orders of magnitude smaller than f_J.

The spectral density $S_V(f)$ of the noise voltage, $V_n(t)$, appearing across the isolated SQUID may be expressed in terms of a reduced spectrum, γ_V, defined by

$$S_V(f) = 2\gamma_V k_B TR,$$

where the parallel shunt resistance of the SQUID is $R/2$. The noise current $J_N(t)$ circulating in the SQUID has a spectral density

$$S_J(f) = 2\gamma_J k_B T/R.$$

Any correlation between $V_n(t)$ and $J_N(t)$ may be represented in general by a cross spectrum $S_{VJ}(f)$ and a complex correlation coefficient γ_{VJ} given by

$$S_{VJ}(f) = 2\gamma_{VJ} k_B T.$$

For the SQUID parameters discussed above, the reduced spectral densities given by digital simulation14,15 are $\gamma_V \approx 8$, and $\gamma_J \approx 5.5$. The correlation is found to be real and given by $\gamma_{VJ} \approx 6$. These values are appropriate for signal frequencies well below f_J. Existing SQUIDs show values of γ_V which are larger by a factor of approximately 2 than those calculated.17 The parameters γ_J and γ_{VJ} have not been measured.

At sufficiently low temperatures and sufficiently high values of R/L we expect the Johnson noise in the resistive shunts to become small.
compared with the shot noise in the tunnel junctions. This shot noise sets an ultimate limit on the SQUID resolution, with the reasonable assumption that the noise of the preamplifier connected to the SQUID can be made negligible. It is obviously of interest to estimate the various figures of merit in the shot noise limit. Unfortunately, no exact calculation for the shot noise in a current-biased shunted Josephson junction is presently available. As an order-of-magnitude estimate we assume that, in the shot noise limit for bias currents near $2I_o$, the spectral densities S_V, S_J, and S_{VJ} can be obtained by replacing $2k_B T$ with $eI_o R$ in Eqs. (1) to (3) respectively, and keeping the ratios γ_J/γ_V and γ_{VJ}/γ_V constant.

In almost all applications, negative feedback is applied to the SQUID or the input circuit to obtain a linear overall response. The theory of such feedback circuits has been discussed elsewhere and will not be further treated here. It is important to note, however, that correctly applied negative feedback does not change the signal-to-noise ratio in a system although it can be used to change the overall frequency response.

In Section 2 of this paper, we develop a model for a dc SQUID coupled to a generalized resonant input circuit, and derive the signal-to-noise ratio of the system. In Sections 3 and 4 we use this result to calculate figures of merit for voltmeters and magnetometers.
2. MODEL FOR DC SQUID COUPLED TO INPUT CIRCUIT

Figure 1 shows a dc SQUID of self-inductance \(L \) inductively coupled to an input circuit consisting of a voltage source, \(E_1(t) \), in series with an impedance \(Z_i \). The SQUID input coil has self inductance \(L_i \) and mutual inductance \(M_1 \) to the SQUID, so that the coupling coefficient \(\alpha \) is given by \(M_1 = \alpha(L_{11})^{1/2} \). A small input current, \(I_1(t) \), in the input circuit generates a flux, \(M_1 I_1(t) \), in the SQUID, producing a change \(V(t) = V_\phi M_1 I_1(t) \) in the output voltage across the SQUID. It will be assumed that the parameter \(V_\phi \) is independent of the impedance presented to the SQUID by the input circuit.

An equivalent circuit for this configuration is shown in Fig. 2. The important device parameters are those relating small changes in the input variables \(I_1 \) and \(\phi_1 \), to changes in the output variables \(I \) and \(V \). Here, \(\phi_1 \) is the input flux defined through the relation \(V_1 = j\omega \phi_1 \), where \(V_1 \) is the voltage across the input coil. The relationships between \(\Delta I_1 \), \(\Delta \phi_1 \), \(\Delta I \), and \(\Delta V \) may be conveniently expressed in the form

\[
\begin{pmatrix}
\Delta \phi_1 \\
\Delta V
\end{pmatrix} =
\begin{pmatrix}
t_{11} & t_{12} \\
t_{21} & t_{22}
\end{pmatrix}
\begin{pmatrix}
\Delta I_1 \\
\Delta I
\end{pmatrix}.
\] (4)

The \(t_{ij} \) can be evaluated approximately as follows. The coefficient \(t_{11} = (\partial \phi_1 / \partial I_1) \) is the effective inductance of the input coil, modified by the coupling to the SQUID. A straightforward circuit analysis shows that

\[
t_{11} \approx L_i[1 - \alpha^2/(1 - 4j R_0/\omega L)]
\]

\[
\approx L_i - j\alpha^2 \omega LL_i/4R_D
\] (5a)
at frequencies $\omega << R_D/L$. In Eq. (5a), $2R_D \approx R$ is the dynamic resistance of each junction. The coefficient $t_{12} = (\partial \phi / \partial I)_I$ is exceedingly small in the dc SQUID, that is, a change in the output current has a negligible effect on the input circuit. Thus, unlike the rf SQUID, the dc SQUID is a non-reciprocal device, and

$$t_{12} \approx 0 . \quad (5b)$$

We take \bar{V} to be the time-averaged voltage at the SQUID output. The coefficient $t_{21} = (\partial \bar{V} / \partial I)_I$ is the forward transfer impedance Z_f:

$$t_{21} = Z_f = M_1 \bar{V} . \quad (5c)$$

while $t_{22} = (\partial \bar{V} / \partial I)_I$ is the dynamic resistance of the SQUID:

$$t_{22} = R_D \approx R/2 . \quad (5d)$$

for frequencies much less than f_J. In practice, the output signal is chopped by means of a modulation signal, and matched to a room temperature amplifier by a resonant transformer at 4.2 K, producing an output voltage change $\Delta V_o = A \Delta V$, where A is the overall voltage gain of the amplifier and transformer. Under these conditions, the amplifier noise can be made negligible.

To characterize the noise sources shown in Fig. 2, it is convenient to define the following parameters:

$$Z_i = R_i + jX_i \quad \text{is the source impedance.}$$

$$Z_T \approx Z_i + j\omega L_i + \omega^2 M_i^2 / 4R_D \quad \text{is the total input impedance,}$$

where $\omega^2 M_i^2 / 4R_D$ is the contribution of the SQUID in the limit $\omega L << R_D$.
\[E_N(t) = M_1 \frac{dJ_N(t)}{dt} \] is the equivalent noise voltage source induced in the input circuit by \(J_N(t) \). \(E_N(t) \) has a spectral density \(S_E(f) = \omega^2 M_1^2 S_J(f) \).

\(V_N'(t) \) is the voltage noise across the SQUID in the presence of the input circuit, with spectral density \(S_{V'}(f) = 2\gamma' k_B T_R \). \(V_N'(t) \) is, in general, different from \(V_N(t) \), the open input circuit value.

\(S_A(f) = 4k_B T_A R_D \approx 2k_B T_R \) is the spectral density of the equivalent voltage noise of the amplifier connected to SQUID, where \(T_A \) is the effective noise temperature.

The amplifier is assumed not to load the circuit, and the amplifier current noise is assumed negligible.

We now derive the signal-to-noise ratio for the circuit. The signal \(E_s(t) \) produces a voltage at the amplifier output with a mean square value

\[\langle V_o^2 \rangle = A^2 Z_f^2 \langle E_s^2 \rangle / |Z_T|^2 = A^2 M_1^2 \phi \langle E_s^2 \rangle / |Z_T|^2. \quad (6) \]

To calculate the noise at the SQUID output, we see from the equivalent circuit that we have made the following approximation:

\[V_N'(t) = V_N(t) + M_1 (dJ_N/dt)Z_f / |Z_T|. \quad (7) \]

Calculating the spectral density of \(V_N'(t) \) from Eq. (7), and comparing it with \(S_{V'}(f) = \gamma' 2k_B T_R \), we find

\[\gamma' = \gamma + 2\gamma \alpha^2 \omega L_1 V_1 (\xi + \omega L_1) / |Z_T|^2 R \]

\[+ \gamma \alpha^2 \omega^2 L_1^2 V_1 \phi^2 / |Z_T|^2 R^2, \quad (8) \]
where it has been assumed that, as demonstrated by the digital model, \(\gamma_{VJ} \) is a real quantity. The noise at the amplifier output in terms of parameters for the isolated SQUID has a spectral density

\[
S_N(f) = A^2 2k_B R \left[\gamma_{VT} + T_A + 2\gamma_{VJ} T a \omega L_i V_\phi (X_i + \omega L_i) / |Z_T|^2 \right]
+ \gamma_{JT} a^4 \omega^2 L^2 L_i^2 \frac{V_\phi^2}{|Z_T|^2 R^2} \ . \tag{9}
\]

Dividing Eq. (6) by Eq. (9), we find the signal-to-noise ratio at a frequency \(f \)

\[
\frac{<V_o^2>}{S_N(f)B} = \frac{\alpha^2 L_i V_\phi^2 <E_\perp^2>}{2k_B |Z_T|^2 \ R_B} \left[\gamma_{VT} + T_A + 2\gamma_{VJ} T a \omega L_i (X_i + \omega L_i) V_\phi / |Z_T|^2 R \right]
+ \gamma_{JT} a^4 \omega^2 L^2 L_i^2 \frac{V_\phi^2}{|Z_T|^2 R^2} \right]^{-1} . \tag{10}
\]

where \(B \) is the bandwidth.

In the following sections, we apply this result to various input circuits.

3. VOLTMETERS

It is convenient to write Eq. (10) in terms of a noise temperature, \(T_N \), defined by setting \(<V_o^2>/S_N(f)B = 1 \) with \(<E_\perp^2> = 4k_B T_N R_i B \). The value of \(B \) must be small enough to ensure uniformity of the signal-to-noise ratio within the chosen bandwidth. We find

\[
T_N = \frac{\omega^2 R L_i}{2\alpha^2 L_i V_\phi^2} \left[\frac{(\gamma_{VT} + T_A) |Z_T|^2}{(\omega L_i)^2} + \frac{2\alpha^2 \gamma_{VJ} V_\phi L T}{R} \left[1 + \frac{X_i}{\omega L_i} \right] \right]
+ \frac{\alpha^2 \gamma_{JT} L_i^2 V_\phi^2 T}{R^2} \ . \tag{11}
\]
3.1. Resistive Source with Tuned Input

As an example, we assume that the source is resistive, and that the input is tuned with a capacitor, \(C_i \), so that \(Z_i = R_i - j/\omega C_i \) (see Fig. 3a). We further assume that the losses in \(L_i \) and \(C_i \) are negligible compared with the dissipation in \(R_i \) and that \(T_A \ll \gamma_V T \), as is the case for a SQUID operated in the He\(^4\) temperature range since \(T_A \approx 1 \) K and \(\gamma_V \approx 8 \). Equation (11) becomes

\[
T_N = \frac{\omega^2 R_i L_i T}{2\alpha^2 L_i R_i V_f^2} \left\{ \gamma_V \left[\left(\frac{R_i}{\omega L_i} + \frac{\alpha^2 \omega L}{4R_D} \right)^2 + \left(1 - \frac{1}{\omega^2 L_i C_i} \right)^2 \right] + \frac{2\alpha^2 \gamma_{VJ} L V_f}{R} \left(1 - \frac{1}{\omega^2 L_i C_i} \right) + \frac{\alpha^4 \gamma_L^2 V_f^2}{R^2} \right\}. \tag{12}
\]

We optimize \(T_N \) with respect to \(C_i \) by setting \(\partial T_N / \partial C_i = 0 \), to find

\[
\frac{1}{\omega C_i^{(\text{opt})}} = \omega L_i \left(1 + \frac{\alpha^2 \gamma_{VJ} L V_f}{\gamma_V R} \right), \tag{13}
\]

and

\[
T_N^{(\text{opt} C_i)} = \frac{\omega^2 R_i L_i T}{2\alpha^2 L_i R_i V_f^2} \left\{ \gamma_V \left[\left(\frac{R_i}{\omega L_i} + \frac{\alpha^2 \omega L}{4R_D} \right)^2 + \frac{\alpha^4 \gamma_L^2 V_f^2}{\gamma_V R^2} \right] \left(\gamma_V \gamma_J - \gamma_{VJ}^2 \right) \right\}. \tag{14}
\]

We now optimize Eq. (11) with respect to \(R_i \) by setting \(\partial T_N / \partial R_i = 0 \). The optimization is independent of \(C_i \) and gives

\[
R_i^{(\text{opt})} = \alpha^2 \omega L_i \left[\left(\frac{\omega L}{4R_D} \right)^2 + \frac{L^2 V_f^2}{R^2 \gamma_V^2} \left(\gamma_V \gamma_J - \gamma_{VJ}^2 \right) \right]^{\frac{1}{2}}, \tag{15}
\]
Equations (15) and (16) imply that mutually correlated components of $V_N(t)$ and $J_N(t)$ do not contribute to the optimized noise level. The non-zero of γ_{VJ} reduces the value of $R_i^{(\text{opt})}$, and thus lowers $T_N^{(\text{opt} C_i, R_i)}$ below the value $T_N \approx T(\omega^2 \gamma_J / \gamma_V)^{\frac{1}{2}}$ that would be expected in the absence of correlations in the limit $\omega \ll R_D / L$. The value of $T_N^{(\text{opt} C_i, R_i)}$ is independent of the value of the input coupling coefficient α, but it will be found that the bandwidth over which it is maintained is not.

It is important to realize that the optimized value of C_i in Eq. (13) is for a fixed frequency, so that the optimum noise temperature given by Eq. (16) applies to narrow-band measurements close to this frequency. To obtain the optimum performance at a different frequency, one must re-optimize T_N. In practice, one is forced to optimize C_i for one particular frequency, but may need to know the performance of the given system at other frequencies. A useful way of demonstrating this behavior is to fix C_i for a particular frequency, $\omega_o = [L_1 C_i (1 + \alpha^2 \gamma_{VJ} / \gamma_V)]^{-\frac{1}{2}}$ (from Eq. (13), with $\psi = R/L$), and to regard R_i as a parameter. In Fig. 4 we have plotted the dimensionless reduced noise temperature $T_N^{(\text{opt} C_i)} V_\phi / \omega O T$ (from Eq. (14)) in the limit $\omega \ll R_D / L$ vs. reduced frequency ω / ω_o for various values of $Q = \omega_o L_1 / R_i$, using the SQUID parameters used in the Introduction. The value of Q that optimizes the noise temperature at ω_o is, from Eq. (15), $Q^{(\text{opt})} = \omega_o L_1 / R_i^{(\text{opt})}$.
\(\gamma_\nu/\alpha^2(\gamma_\nu\gamma_J - \gamma_{\nu J}^2)^{1/2} \approx 5.6 \) for a typical value \(\alpha^2 = 0.5 \). For larger values of \(R_i \) (lower Q), the optimum noise temperature is higher but the bandwidth is larger than for \(R_i^{(opt)} \), while for smaller values of \(R_i \) (higher Q), the optimum noise temperature is again higher while the bandwidth is smaller than for \(R_i^{(opt)} \).

We can now make a numerical estimate of the optimized noise temperature using the values of \(\gamma_\nu, \gamma_J, \) and \(\gamma_{\nu J} \) quoted above. In most practical low-frequency applications, the term \(\omega L/4R_D \) in Eqs. (15) and (16) is negligible, since it is of order \(\omega/\omega_J \ll 1 \). We find \(1/\omega C_i^{(opt)} \approx (1 + 0.75\alpha^2)\omega L_i, R_i^{(opt)} \approx 0.35\alpha^2\omega L_i, \) and \(T_N^{(opt C_i, R_i)} \approx 2.8(\omega L/R)T \approx 1.8(\omega/\omega_J)T \), for temperatures close to 4.2 K. If we take \(L_i = 10^{-4} \) H, \(\omega/2\pi = 10^4 \) Hz, \(T = 4.2 \) K, and \(\alpha = 0.5 \), we find \(C_i^{(opt)} \approx 1.8 \mu F, R_i^{(opt)} \approx 1.1 \Omega, T_N^{(opt C_i, R_i)} \approx 0.74 \) mK, and \(Q^{(opt)} = \omega L_i/R_i^{(opt)} \approx 5.6 \).

If the operating frequency is much lower than \(10^4 \) Hz, the value of the capacitance may become inconveniently large with \(L_i = 10^{-4} \) H. In practice it may be possible to use larger than usual values of \(L_i \) since the resulting decrease in coupling coefficient does not degrade the noise temperature on resonance. A larger bandwidth might be obtained however by the use of a transformer between the resonance source circuit and the SQUID. The analysis of this configuration is a straightforward extension of that given above.

The optimized noise temperature of the dc SQUID, \(1.8(\omega/\omega_J)T \), is only a factor of 1.8 greater than expected for an ideal parametric up-converter with an input frequency of \(\omega_J \). This result suggests that the operation of the dc SQUID is analogous to that of a parametric converter pumped
at the Josephson frequency followed by a homodyne detector of noise temperature 1.8 T.

Finally, we can obtain an estimate in the shot noise limit by replacing $2k_B T$ with eI_R. We find $T_{NS}^{\text{opt}}(C_1,R_1) \sim 2.2 \frac{\hbar \omega}{k_B}$, where we have set $\beta = 1$.

3.2. Resistive Source Without Tuning

The untuned voltmeter (see Fig. 3b) is the circuit most often used. We set $1/\omega C_i = 0$ in Eq. (12), and optimize with respect to R_1 to obtain

$$R_1^{\text{(opt)}} = \omega L_1 \left[1 + \left(\frac{\alpha^2 \omega L}{4R_D} \right)^2 + \frac{2\alpha^2 \gamma_{VJ} V_{\phi} L}{\gamma_{V^R}} + \frac{\alpha^4 \gamma_{J^2} \phi^2 R^2}{\gamma_{V^L}} \right]^{1/2}.$$ \hspace{1cm} (17)

The optimized noise temperature is

$$T_{N}^{\text{(opt)}}(R_1) = \frac{\gamma_V \omega R T}{\alpha^2 L \sqrt{V_{\phi}^2}} \left[\frac{R_1^{\text{(opt)}}}{\omega L_1} + \frac{\alpha^2 \omega L}{4R_D} \right].$$ \hspace{1cm} (18)

In the limit $\omega/\omega_J \ll 1$, for the parameters given in the Introduction, we find $R_1^{\text{(opt)}} \approx \omega L_1 (1 + 1.5\alpha^2 + 0.7\alpha^4)^{1/2}$, and $T_{N}^{\text{(opt)}}(R_1) \approx 8(\omega L/R)T(1 + 1.5\alpha^2 + 0.7\alpha^4)^{1/2}/\alpha^2$. Notice that the optimized noise temperature diverges as α becomes small, whereas it is independent of α for the tuned voltmeter. If we take $\alpha^2 = 0.5$, $\omega/2\pi = 10^4$ Hz, $L_1 = 10^{-4}$ H, and $T = 4.2$ K, we find $R_1^{\text{(opt)}} \approx 9 \Omega$ and $T_{N}^{\text{(opt)}}(R_1) \approx 5.9$ mK, a factor of about 8 greater than for the tuned case. However, for the untuned case, it is straightforward to work at low frequencies, and in this limit the noise temperature is so far below the bath temperature that there is probably little need for a tuned circuit.
The value for T_N given by Eq. (18) applies only at the frequency chosen for the optimization of R_I. Once R_I has been fixed, the frequency dependence of T_N can easily be seen from Eq. (12). When $\omega \ll R_I/L_I$, $T_N \approx y_{1V} R_I LT/2a^2 R L_I$, and is independent of frequency. When $\omega \gg R_I/L_I$, $T_N \approx (\omega^2 L_I T/2a^2 R R_I) (y_{1V} + 2a^2 y_{1J} + a^4 y_{1J})$, and thus increases as ω^2. Apart from numerical factors involving the y's, these two limiting results have the same form as those found by previous authors.18,3,5

The shot noise limit for the optimized case is $T_{NS}^{(opt R_I)} \sim (2\pi \hbar \omega/k_B a^2)(1 + 1.5a^2 + 0.7a^4)^{1/2} \approx 17 \hbar \omega/k_B$ for $a^2 = 0.5$.

4. MAGNETOMETERS

We consider the case of a magnetometer consisting of a superconducting pickup coil of inductance L_p connected in series with the coupling coil. In typical SQUID applications, the pickup coil is very much smaller than the wavelength corresponding to the frequency of the signal, and its radiation resistance is therefore completely negligible. For such a source, the concept of a noise temperature referred to the source is inappropriate, and it is more useful to calculate the sensitivity in terms of the mean square signal voltage $<E_i^2>$ induced in the pickup coil. It is convenient to focus on an effective signal energy $U_o = <E_i^2>/2\omega^2 L_p$. For a pickup coil of cross sectional area S in a perpendicular magnetic field of rms amplitude \tilde{B} at frequency ω, the effective signal energy is given by

$$<E_i^2>/2\omega^2 L_p = \tilde{B}^2 S^{3/2} / (2\xi_U)$$

(19)

where ξ is a dimensionless factor of order unity determined by the
shape of the coil. For a given shape, Eq. (19) shows that U_o is propor-
tional to the coil volume. A similar treatment may be applied to gradient
pick-up coils, and systems for measuring other physical quantities.

4.1. Untuned Magnetometers

The sensitivity is found by substituting the value of $<E^2>$ given
by Eq. (19) into Eq. (10) with

$$Z_T = \omega L_1 \left[(\alpha^2 \omega L/4R_D) + j(1 + L_p/L_1) \right].$$

Setting $<V_o^2>/S_N(f)B = 1$, we obtain an expression for the signal
energy required for unity signal-to-noise ratio:

$$U_o = \frac{k_B T R L_1 B}{\alpha^2 V^2 \Phi L_p} \left\{ \gamma_V \left(\frac{\alpha^2 \omega L}{4R_D} \right)^2 + \left(1 + \frac{L_p}{L_1} \right)^2 \right\} + \frac{2\gamma_V \alpha^2 l + L_p/L_1} {R}.$$

We now minimize U_o with respect to L_1, assuming L_p and α^2 to be
fixed, and obtain

$$L_1^{(opt)} = L_p \left[1 + \frac{2\alpha^2 \gamma_V L_1 \Phi}{\gamma_V R} + \frac{\alpha^2 \gamma V L \Phi^2}{\gamma V R^2} + \left(\frac{\alpha^2 \omega L}{4R_D} \right)^2 \right]^{-\frac{1}{2}} \tag{21}$$

and

$$U_o^{(opt L_1)} = \frac{2k_B T R B}{\alpha^2 V \Phi^2} \left(1 + \frac{L_p}{L_1^{(opt)}} + \frac{\alpha^2 \gamma V L \Phi}{\gamma_V R} \right). \tag{22}$$

In the limit $\omega/\omega_j << 1$, for the parameters given in the Introduction
we find $L_1^{(opt)} \approx L_p (1 + 1.5\alpha^2 + 0.7\alpha^4)^{-\frac{1}{2}}$, and $U_o^{(opt L_1)} \approx (16k_B T L B/\alpha^2 R) [1 + (1 + 1.5\alpha^2 + 0.7\alpha^4)^{-1} + 0.75\alpha^2]$. These two results are independent
of frequency, and $U_o^{(opt L_1)}$ is independent of the separate values of L_p.

and \(L_i^{(\text{opt})} \) depending only on their ratio. \(U_o^{(\text{opt} L_i)} \) diverges as \(\alpha \to 0 \), as does the optimized noise temperature in the case of the untuned voltmeter. For \(\alpha^2 = 0.5 \) and the usual values of the SQUID parameters, we find \(L_i^{(\text{opt})}/L_p \approx 0.72 \), and \(U_o^{(\text{opt} L_i)} \approx 9 \ k_B T(B/f) \approx 5 \times 10^{-30} \ (B/\text{1 Hz}) \).

It is clear from these results that since only the ratio of \(L_i \) and \(L_p \) appears in Eq. (22), the magnetic field sensitivity is improved by increasing \(s_3^{3/2}/\xi \), keeping \(L_p \) fixed. Since one can, in principle, make the coil volume arbitrarily large, the ultimate sensitivity appears to be fundamentally limited only by dewar size assuming that spurious noise sources can be made negligible. For example, with a solenoidal pick-up coil of length 0.2 m and radius 0.05 m, we find \(B^{(\text{opt} L_i)} \approx 2 \times 10^{-16} \ (B/\text{1 Hz})^{1/2} \) T.

In the shot noise limit, the estimated signal energy becomes \(U_{0S}^{(\text{opt} L_i)} \approx 11 \ h B \), giving, for the example above, a magnetic field sensitivity \(B_S^{(\text{opt} L_i)} \approx 7 \times 10^{-18} \ (B/\text{1 Hz})^{3/2} \) T.

4.2. Tuned Magnetometer

We now consider the case in which the input circuit is tuned by a capacitance \(C_i \) in series with \(L_i \) and \(L_p \), as shown in Fig. 3(d). We introduce a series resistance \(R_i \) at \(T_i \) to represent the dissipation in the circuit. This arrangement differs from the tuned voltmeter circuit only by the addition of the inductance \(L_p \). The total noise at the amplifier output has a spectral density \(S_{NT}(f) \) given by

\[
S_{NT}(f) = 4 k_B \left(T_i + T_N^x \right) R_i A^2 Z_f^2 / |Z_T|^2 .
\]

(23)
S_{NT}(f) includes a contribution \(4k_B T_i R_i A^2 Z_f^2 / |Z_T|^2 \) from \(R_i \) which is assumed to be at temperature \(T_i \), and a contribution \(4k_B T_N^* R_i A^2 Z_f^2 / |Z_T|^2 \) from the SQUID noise, where it can be shown by analysis similar to that in Section 3.1 that

\[
T_N^* = \frac{\omega^2 R_i L^*_i T}{2 \alpha^2 L R_i V_\Phi^2} \left\{ \gamma_V \left[\frac{R_i}{\omega L_i} + \frac{\alpha^2 \omega L}{4 R_D} \right]^2 + \left(1 + \frac{L_p}{L_i} - \frac{1}{\omega^2 L_i C_i} \right)^2 \right\} + \frac{2 \alpha^2 y_\lambda L V_\Phi^2}{R} \left(1 + \frac{L_p}{L_i} - \frac{1}{\omega^2 L_i C_i} \right) + \frac{\alpha^2 y_\lambda L^2 V_\Phi^2}{R^2} \right\}. \tag{24}
\]

Equation (24) differs from Eq. (12) only by the inclusion of the terms in \(L_p \).

The mean square signal at the output of the amplifier is

\[
<V_o^2> = 2 \omega^2 U_o L_p A^2 Z_f^2 / |Z_T|^2.
\]

Setting \(<V_o^2>/S_{NT}(f)B = 1 \), we find that the effective signal energy required for detection in a narrow bandwidth \(B \) is given by

\[
U_o = \frac{2k_B R_i B}{\omega^2 L_p} (T_i + T_N^*) \quad . \tag{25}
\]

At this point one may proceed to optimize \(U_o \). However, for typical systems where \(\omega \ll \omega_f \), \(T_N^* \) is always negligible compared with \(T_i \), as was found for the tuned voltmeter in section 3.1. Thus, we can write immediately

\[
U_o = \frac{2k_B T_i R_i B}{\omega^2 L_p} = \frac{2k_B T_i B (1 + L_i/L_p)}{Q \omega}, \tag{26}
\]

where \(Q = \omega(L_i + L_p)/R_i \). Equation (26) is thus independent of the SQUID.
parameters and of α. Equation (26) may be found immediately by comparing
the mean square Johnson noise current in the input circuit, $4k_B T_i R_i B / |Z_T|^2$,
with the mean square signal current, $2\omega^2 U^2 L_p / |Z_T|^2$. The response of
the circuit peaks at the resonant frequency, $\omega = [(L_i + L_p) C_i]^{-\frac{1}{2}}$, and
has a bandwidth $\omega/Q = R_i / (L_i + L_p)$. However, Eq. (26) remains true
provided $T_N^* << T_i$, that is, over a bandwidth that is usually very much
wider than ω/Q. The overall frequency response may thus be broadened
considerably without degrading the energy resolution by the application
of negative feedback from the output of the amplifier chain to the input
circuit.\(^9\)

It is of interest to compare the narrow-band energy sensitivity
given by Eq. (26) with that for the optimized untuned circuit with $\alpha = 0.5$,
$U^2_{opt L_1} \approx 9 k_B T (B/f_j)$. The tuned circuit has a higher sensitivity
provided that

$$\frac{U^2_{opt L_1}}{U^2_{opt L_1}} < 1.$$ \hspace{1cm} (27)

If we take $\omega_j/\omega = 10^4$ ($\omega/2\pi \approx 10^4$ Hz) and assume $L_i \approx L_p$, Eq. (27) requires
$Q > 700$, and a bandwidth $\omega/2\pi Q \approx 14$ Hz. Thus, to obtain an order of
magnitude improvement in energy sensitivity over the untuned magnetometer,
the tuned magnetometer would have a bandwidth of ~ 1 Hz in the absence
of feedback. For most applications, it would therefore be highly
desirable to apply feedback to increase the bandwidth. It is also
evident that the ratio in Eq. (27) decreases as $1/\omega$ at constant Q.
Thus, the tuned magnetometer becomes increasingly attractive compared
with the untuned magnetometer as the frequency is increased. Note,
however, that for large Q input circuits operated at high frequency, the SQUID noise temperature \(T^*_N \) may be comparable to or even exceed the input resistance temperature \(T_1 \). For example, for \(T = T_1 \), \(Q = 1000 \), \(L_1 = L_p \), and \(\omega_0 = 2 \times 10^6 \) s\(^{-1} \), we have \(T^*_N(\omega_0) = T_1 \), and for \(\omega_1 \neq \omega_0 \), \(T^*_N(\omega) > T_1 \). In Fig. 5 we plot the reduced noise temperature \(T^*_N(\omega)(R/\omega_0 L)/T \) versus the reduced frequency \((\omega/\omega_0) \) for \(Q_T = \omega_0 (L_1 + L_p)/R_1 = 1000 \) for various values of \(r = L_1/(L_1 + L_p) \).

Again, we have used the approximation \(V_\phi = R/L \).

6. CONCLUSIONS

We have described the optimization of SQUID voltmeters and magnetometers taking into account voltage and current noise sources characteristic of ideal dc SQUIDS. Since the performance of real devices is quite close to ideal, we expect that the results will be broadly applicable in practice with small corrections to the values of \(\gamma_V \), \(\gamma_J \), and \(\gamma_{VJ} \).

At frequencies below a few kHz we find that voltmeters may be characterized by a noise temperature, \(T_N \), which is so much smaller than the ambient temperature that the voltage measurement is always limited by Johnson noise in the input circuit. In this frequency range, there seems little need to use the tuned voltmeter, especially as the large values of capacitance and inductance involved would make these elements rather cumbersome. However at higher frequencies, \(T_N \propto \omega \), and the noise temperature of the untuned voltmeter may become comparable with the ambient temperature. In this limit the lower noise temperature offered by the tuned voltmeter may be significant.
In the same way, the untuned magnetometer is preferable to the tuned magnetometer at low frequencies. However, at frequencies above a few hundred Hz, the tuned magnetometer offers a clear improvement in sensitivity, provided that feedback is used properly to improve the frequency response. It seems likely that the tuned magnetometer will become widely used in future applications where high sensitivity in a relatively restricted bandwidth is required.

Acknowledgments

This work was supported by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy, and by the U.S. Office of Naval Research. One of us (J.C.) gratefully acknowledges the hospitality of the Institute für Theorie der Kondensierten Materie, University of Karlsruhe, West Germany, during the preparation of this manuscript.
REFERENCES

REFERENCES (con'td)

Figure Captions

Fig. 1. dc SQUID coupled to generalized input circuit.

Fig. 2. Equivalent circuit for Fig. 1 showing signal and noise voltages. The area within the box represents the SQUID.

Fig. 3. (a) Tuned voltmeter, (b) untuned voltmeter, (c) untuned magnetometer, (d) tuned magnetometer.

Fig. 4. Dimensionless noise temperature versus reduced frequency ω/ω_o for tuned voltmeter with $\gamma_V = 8$, $\gamma_J = 5.5$, $\gamma_{VJ} = 6$, and $\alpha^2 = 0.5$.

Fig. 5. Dimensionless noise temperature versus reduced frequency ω/ω_o for the tuned magnetometer with $\gamma_V = 8$, $\gamma_J = 5.5$, $\gamma_{VJ} = 6$, and $\alpha^2 = 0.5$ for several values of $r = L_1/(L_1 + L_p)$.

Figure 1
Figure 3
Reduced Noise Temperature, \(T_N^{(opt C_i)} \times (R/\omega_0 L)/T \)

Reduced Frequency, \(\omega / \omega_0 \)

\[Q_0 = \frac{\omega_0 L_i}{R_i^{(opt)}} \]

Figure 4
Figure 5
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.