Title
Causal Reasoning from Forces

Permalink
https://escholarship.org/uc/item/26h6k2qm

Journal

ISSN
1069-7977

Authors
Barbey, Aron
Wolff, Phillip

Publication Date
2006

Peer reviewed
Causal Reasoning from Forces

Aron Barbey (abarbey@emory.edu) and Phillip Wolff (pwolff@emory.edu)
Department of Psychology, Emory University
532 N. Kilgo Circle, Atlanta, GA 30322 USA

Everyday language suggests we use forces in causal reasoning. We say, for example, *The force of his argument cannot be denied*, or *Your argument doesn’t go through*, or *The social progressive argument has tremendous moral force*. Recent work in force dynamics suggests how these intuitions might be fleshed out computationally.

According to force dynamics, people represent causal relationships in terms of configurations of force (Talmy, 1988; Wolff & Zettergren, 2002). One force, \(F_A \), is associated with an affector, that is, the entity that acts on another entity. Another force, \(F_B \), is associated with a patient, the entity that is acted on by the affector. A third force, \(F_{BA} \), is the resultant produced from the addition of these forces. Various causal concepts entail different configurations of force. For example, as shown in Figure 1, in a CAUSE configuration \(F_A \) and \(F_B \) are in opposition and the resultant, \(F_{BA} \), is towards the endstate, \(E \).

The transitive dynamics model specifies how these configurations of force are combined to generate conclusions. Consider the inference problems in Figure 2.

The predictions of the model were tested in a replication of Goldvarg and Johnson-Laird’s (2001) Experiment 4. Participants reviewed sixteen syllogisms that involved psychological terms (e.g., obedience causes motivation, motivation causes eccentricity). Participants indicated what, if anything, followed. Table 1 shows the conclusion predicted by the transitive dynamics model along with the number of participants choosing that conclusion. As can be seen, the model predicted the modal response for all but one of the arguments, prevent-prevent. Here we believe participants’ modal response, “prevents,” was influenced by atmosphere of the argument. The results also replicated the findings of Goldvarg and Johnson-Laird (2001), except for three arguments, but it is for these three arguments that the predictions of our model differ from those of Goldvarg and Johnson-Laird’s. In sum, the results demonstrate how reasoning might be accomplished through chains of forces.

References