Lawrence Berkeley National Laboratory
Recent Work

Title
MAINTENANCE OF HIGH PHOTOSYNTHETIC RATES IN MESOPHYLL CELLS ISOLATED FROM PAPAVER SOMNIFERUM

Permalink
https://escholarship.org/uc/item/26s9t15d

Author
Paul, John S.

Publication Date
1977-06-01
MAINTENANCE OF HIGH PHOTOSYNTHETIC RATES IN MESOPHYLL CELLS ISOLATED FROM PAPAVER SOMNIFERUM

John S. Paul and James A. Bassham

June 1977

Prepared for the U. S. Energy Research and Development Administration under Contract W-7405-ENG-48
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Running Title: Photosynthesis in Leaf-free Cells

Mailing Address:

John S. Paul
Laboratory of Chemical Biodynamics
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720
MAINTENANCE OF HIGH PHOTOSYNTHETIC RATES
IN MESOPHYLL CELLS ISOLATED FROM PAPAVER SOMNIFERUM
Manuscript received date:
John S. Paul and James A. Bassham
Laboratory of Chemical Biodynamics
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720
ABSTRACT

The establishment and maintenance of high rates of photosynthetic CO₂ incorporation in mesophyll cells of *Papaver somniferum* (opium poppy) depends on a regime of dark and light periods immediately following isolation, as well as carefully adjusted conditions of isolation. Analysis of the incorporation pattern of ¹⁴CO₂ by the isolated cells indicates an initial "stress-response" period of approximately 20 hr characterized by increased respiratory type metabolism and diminished photosynthesis. Under the favorable regime, this period is followed by rapid recovery and the reinstatement of a metabolic state strikingly similar to that of intact leaves in which the initial rate of CO₂ incorporation is between 110 and 175 μmoles CO₂ fixed per mg chlorophyll per hr. The photosynthetic viability of these cells can be maintained for up to 80 hr.
The separation of photosynthetically active cells from leaf tissue has seen notable successes only in recent years (2,4,7,12,14). The potential usefulness of such systems for studying plant cell metabolism is great since they offer the advantages of a microbiological system with the unique biochemistry of higher plants. In addition, such separated plant cells may eventually offer a means of obtaining autotrophic cells in liquid suspension cultures. Attainment of these cultures will necessarily depend upon the ability of researchers to maintain photosynthetic viability in isolated cells. This latter requirement has been difficult to achieve and reports to date have attained no better than 24 h of active light-driven CO₂ incorporation (2,4).

A further problem which has been noted in previous publications (2,7) is the dissimilarity of CO₂ incorporation products in isolated cells compared to the respective leaf tissue. The degree of dissimilarity may be partly related to the harshness of cell isolation conditions employed. For example, tobacco cells obtained after a 3 h digestion period (2) showed greater differences from respective leaf tissue than tobacco cells obtained after 1.5 h of digestion (4). In order to relate modulating influences on isolated cells to the whole leaf, it will be necessary to obtain control cells which exist in a metabolic state similar to that of the intact tissue.

By modifying the isolation procedures of previous investigators (4,7, 11) we have obtained mesophyll cells from *Papaver somniferum* (poppy) which meet some of the above criteria. Photosynthetic incorporation rates as well as product distribution have been monitored in these isolated cells for a 72 h period.
MATERIALS AND METHODS

Plant Material. P. somniferum plants were grown on Hoagland solution in a sandy-loam soil mixture. A growth chamber was used with a periodicity of 12 h light (22°C) and 12 h dark (20°C). Irradiance from incandescent and fluorescent bulbs was 400 µE·m⁻²·sec⁻¹ at plant level. While P. somniferum can be grown on a short day periodicity and lower temperature regime, we found that a minimum of 12 h light per day was necessary to obtain photosynthetically viable cells.

Cell isolation. Plants were selected in the early stages of maturation (8 to 10 weeks) for leaf material. Young, fully expanded leaves were normally used though older leaves could also be successfully employed for cell isolations. Using an apparatus consisting of 8 razor blades with spacers, leaves were cut into 1 mm wide strips and vacuum-infiltrated with digestion medium for 1 min (500 mm Hg). The vacuum was released slowly to prevent damage to cell ultrastructure. The digestive enzyme used, macerase (Calbiochem), has been successfully used by others (2,4,7,11,12,14). The rest of the digestion medium differs in significant aspects from that used by previous investigators and contained the following: 0.35 M Sorbitol, 0.2% methylcellulose, 10 mM cellobiose, 0.1% bovine serum albumin (BSA, Sigma fraction V), 20 mM succinic acid (pH 5.7), 1 mM KNO₃, 0.5 mM KH₂PO₄, 0.5 mM MgSO₄ and 1 mM EDTA. Sorbitol, which was used to maintain osmotic pressure, was only slightly hypertonic with respect to the plant cells. Methylcellulose was included to prevent clumping of the separated cells. Together with cellobiose, it also protected against degradative action of contaminating cellulas, a problem evident in a portion of the work of Outlaw et al. (7). BSA is a well-known protector of membrane integrity in organelle isolations; we have included it for the same reason.
Incubation in the digestion medium was carried out on a rotary shaker (80 rotations per min) for 60 min. At the end of the incubation period, cell yield could be increased approximately 4-fold by gently sucking up and releasing the leaf/digestion medium mixture 10 times through a wide-mouth pipette. The cells were filtered through a 100 μ nylon screen, collected by centrifugation at 100g (1 min) and washed twice with assay medium. The cells were finally resuspended in assay medium to a chlorophyll concentration approximating 50 μg/ml.

Assay medium contained 20 mM KNO$_3$, 0.5 mM KH$_2$PO$_4$, 2 mM EDTA, 1 mM MgSO$_4$, 1 mM MnCl$_2$, 1 mM CaCl$_2$, 25 μM Fe-Versenol (Dow Chemical Co., Midland, Mich.) and 0.5 ml/liter Arnon's A-4 (1). Though higher CO$_2$ incorporation rates could be attained at pH 7.0, we selected pH 8.0 because the viability of our cells was maintained longer at the latter pH. 0.3 M sorbitol was found to be isotonic with respect to the cells and was also found to enhance the longevity of cell viability over that of plasmolyzed cells in hypertonic medium.

Isolation of Sterile Cells. Most attempts at obtaining sterile suspensions of leaf cells from P. somniferum resulted in a significant loss of photosynthetic viability. Immersion of leaves in traditional plant cell tissue culture milieus (13) always caused severe losses in photosynthetic activity. Inclusion of cephaloridine (300 μg/ml) (4) had a bacteriostatic effect for up to 48 h but was not bactericidal. While gram positive bacteria can be easily dealt with through treatment with penicillin (500 μg/ml), antibiotics effective against gram negative bacteria always adversely affected the isolated cells. Thus streptomycin, gentamycin and tetracycline which all operate by inhibiting various aspects of procaryotic protein
synthesis were also inhibitory to the plant cells, presumably through their effect on organelle ribosomes. Polymyxin E, which damages bacterial membranes, also caused some damage to the isolated cells, though approximately 50% of the original activity could be retained.

The most effective treatment tried, which also resulted in little or no loss of photosynthetic viability, consisted of brief immersions of the leaves (1 min) in dilute solutions of benzalkonium chloride (1:500) just prior to sectioning. While such isolated cells did not always remain free of bacteria (possibly an indication of some sporal resistance), a period of 3 to 4 days generally elapsed before contamination could be detected.

Photosynthetic 14CO$_3^-$ Incorporation in Isolated Cells. 800 µl aliquots of the isolated cells were placed in serum stoppered micro-fernbach flasks and assayed at 22°C in a Plexiglas water bath illuminated from below with fluorescent lamps (450 µE·M$^{-2}$·sec$^{-1}$) (3). Cells were incubated in the assay medium described (pH 8.0) in the presence of 6 mM Na14CO$_3$ (14.7 µCi/µmole). This level of HCO$_3^-$ was equivalent to a CO$_2$ concentration of approximately 0.4% under the conditions of our assay (15). Samples were removed at 10 minute intervals for up to 60 min and activity terminated by addition of methanol (85% methanol final concentration). Incorporated 14CO$_2$ was determined by removing aliquots from the cell/methanol mixture, acidifying to remove H14CO$_3^-$ and counting by liquid scintillation.

Photosynthetic 14CO$_2$ Incorporation in Whole Leaves. In order to be able to compare the metabolism of isolated cells to their counterparts in intact leaves, we have also followed CO$_2$ incorporation in detached whole leaves of P. somniferum. A leaf was detached at the base of the petiole just prior to the measurements and placed in a Plexiglas chamber (the petiole being
inserted into a small reservoir of distilled water). The chamber was attached to a circulating reservoir of humidified air containing 550 ppm CO₂ (6.3 μCi/μmole). Light intensity and temperature were identical to those applied to the isolated leaf cells (450 μE·M⁻²·sec⁻¹; 22°C). After 30 min, the leaf was removed and plunged immediately into liquid nitrogen, ground and treated as previously described for alfalfa leaflets (10).

Analysis of Photosynthetic Products. Separation of the soluble products of photosynthesis was effected by descending paper chromatography and radioautography (3). 100 μl portions of each cell/methanol mixture were spotted on Whatman No. 1 paper and developed in 2-dimensions, first with a phenol-water-acetic acid solvent treated to ensure correct solvent acidity (9) and then in the second dimension with butanol-water-propionic acid (8). The insoluble fraction (obtained from chromatogram origins) was hydrolyzed with trifluoroacetic acid for 1 h at 100°C and an aliquot chromatographed 2-dimensionally for starch glucose analysis (5).
RESULTS

High rates of CO₂ fixation varying between 110 and 175 μmoles CO₂ per mg Chl per hr were obtained with isolated mesophyll cells from P. somniferum. Of greater significance, however, have been our successful efforts at maintaining these high rates of fixation for sustained periods of time (70-80 hours).

One of the most crucial parameters with respect to maintaining viability proved to be light/dark periodicity (Fig. 1). It was found necessary to include a dark adaptive period of at least 12 h before subjecting the isolated cell suspensions to light (Fig. 1a). Including even a brief light period in the hours immediately following cell isolation was detrimental to the long-term viability of the cells (Fig. 1b). Though a significant decrease in photosynthetic potential occurred during the first dark period, it was almost completely reversed within 10 hours after the introduction of light. In the absence of a light period, photosynthetic potential and cell viability continued to decline (Fig. 1c).

Coupled with light periodicity but of somewhat less importance was the effect of temperature regimes. Cells maintained at 8°C during the dark periods and at 22°C in the light exhibited a complete recovery and sustained viability while cells kept at a continuous temperature of 22°C did not recover as completely nor did they remain viable as long.

Chlorophyll concentrations remained fairly constant during most of the period of high photosynthetic rates. A decline in chlorophyll always preceded (and thus seemed to signal) an impending decline in incorporation rate and overall loss of cell viability. Thus with most cell preparations at sometime just prior to 70 hours following isolation, chlorophyll content began to decline and viability loss followed thereafter.
Microscopic Appearance of Cells. Isolated cells from *P. somniferum* were similar in appearance to those isolated from other organisms (2,7) with the exception that cell plasmolysis was absent in our cells due to the isotonicity of the resuspension medium (Fig. 2). In addition, we found that the more highly differentiated cells seemed to respond better to our medium and isolation conditions than did less differentiated cells originating from the meristematic region of the leaf.

Integrity of the plasmalemma of the isolated cells was demonstrated by measuring leakage of organic radioactive carbon into the medium. Less than 2% of the fixed carbon could be detected in the supernatent following a 30 min cell incubation with $H^{14}CO_3^-$.

Adaptive Response of Cells to Liquid Medium. In order to assess the response of the isolated cells' metabolism to the new environment, CO_2 incorporation patterns were followed by removing aliquots from the stock cell suspension at the times indicated in figure 1a and incubating them with $H^{14}CO_3^-$ in the light for 30 min (see Materials and Methods). The initial metabolic state of the isolated cells is best characterized as a "stress-response" period which lasted for approximately 20 hours. During this time a major portion of the fixed carbon flowed into Citric Acid Cycle intermediates as evidenced by the high levels of citrate and malate (Fig. 3). This information, taken together with a high incorporation into glutamine also observed during this period (Fig. 4), probably indicates an interval of increased respiratory activity. In contrast, while more carbon was flowing into respiratory intermediates, less was being deposited in the storage saccharides, sucrose and starch (Fig. 5).

The drop in net CO_2 incorporation (Fig. 1) corresponded exactly with the "stress-response" period delineated by the incorporation pattern. Similarly,
correlated closely with an equally impressive transition in the cells' metabolic state. During this "recovery" period, we found a marked decline in the levels of malate, citrate and glutamine to values remarkable consistent with those found in whole leaves incubated under similar conditions (see Materials and Methods). At the same time, flow of photosynthate into the storage saccharides increased to levels which were also consistent with values found in whole leaves.

After the cells' metabolic state had stabilized (approximately 30 h following isolation), light/dark transitions had no further effect on the cells' viability or short term incorporation patterns. Cells from this "post-recovery" period exhibited an overall distribution of labeled photosynthate which is comparable to that of the whole leaves (Table 1).
DISCUSSION

By carefully adjusting cell isolation conditions and by paying particular attention to physical as well as chemical parameters in the post-isolation time period, we have obtained high rates of photosynthetic \(\text{CO}_2 \) incorporation for sustained time periods in leaf-free cells. The cells remained viable for up to 80 hours before any significant decline in chlorophyll content or \(\text{CO}_2 \) incorporation could be detected. The facts that light had a detrimental effect on cell viability when applied to freshly isolated cells and that decline in chlorophyll always preceded loss of photosynthetic viability are indications that light absorption is of crucial importance in the viability maintenance of these isolated cells.

The nature of metabolic products observed in the interval following cell isolation is indicative of a "stress-response" period. The rigors of an enzymatic digestion coupled with the radical change in cellular environment are most probably the causal factors of this shift in metabolism. The apparent large pools of malate and citrate observed during this period are indicative of high respiratory rates. Similar increases in glutamine during this time could be symptomatic of an elevated oxidative deamination of amino acids; that is, during periods of high respiratory activity it is quite likely that amino acids are serving as part of the source of metabolic energy. Deamination would result in the release of \(\text{NH}_3 \), thus favoring the production of glutamine via glutamine synthetase (6).

A light induced recovery of the cells' photosynthetic viability followed the "stress-response" period and, at the same time, the \(\text{CO}_2 \) incorporation pattern returned to that observed in whole leaves of \textit{P. somniferum}. Thus, even in a radically different environment, after adjusting to the stressful
conditions of separation from the leaf, highly differentiated mesophyll cells continue to function as mesophyll cells, producing large quantities of carbohydrates (principally sucrose and starch) and incorporating carbon as they would in folio.

Since cells of increased longevity exhibit a metabolism which closely parallels that of the intact leaf, it follows that the effect of a potential modulator upon the isolated cells' metabolic state can be extrapolated to the intact system with a high degree of confidence. Isolated cells of sustained viability should therefore provide an excellent experimental system for the study of plant cell metabolism.
ACKNOWLEDGEMENTS

The authors wish to thank Karen C. Chisholm for expert technical assistance and Richard Schwarz for brilliant theoretical discussions and technical advice. This research was supported by the Division of Biomedical and Environmental Research of the U.S. Energy Research and Development Administration.
REFERENCES

Table 1. Comparison of CO₂ Incorporation in Isolated Cells with that in Whole Leaves of P. somniferum

Values are given as the percent of total \(^{14}\)CO₂ incorporation in a 30 min incubation period. Data for isolated cells was taken on fully recovered cells (45 h after isolation).

<table>
<thead>
<tr>
<th>Compound</th>
<th>Isolated Cells</th>
<th>Whole Leaves</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-P-Glycerate</td>
<td>1.4</td>
<td>0.8</td>
</tr>
<tr>
<td>Hexose monophosphates</td>
<td>1.4</td>
<td>1.0</td>
</tr>
<tr>
<td>Citrate</td>
<td>1.0</td>
<td>0.9</td>
</tr>
<tr>
<td>Malate</td>
<td>2.2</td>
<td>3.9</td>
</tr>
<tr>
<td>Glycerate</td>
<td>1.4</td>
<td>1.7</td>
</tr>
<tr>
<td>Maltose</td>
<td>0.7</td>
<td>0.5</td>
</tr>
<tr>
<td>Sucrose</td>
<td>33.4</td>
<td>29.5</td>
</tr>
<tr>
<td>Aspartate</td>
<td>0.9</td>
<td>1.5</td>
</tr>
<tr>
<td>Glutamate</td>
<td>0.6</td>
<td>0.3</td>
</tr>
<tr>
<td>Glutamine</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Alanine</td>
<td>1.3</td>
<td>1.8</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>Starch</td>
<td>45.0</td>
<td>44.0</td>
</tr>
</tbody>
</table>
LEGENDS TO FIGURES

Figure 1. Effect of varying light/dark periodicity on the photosynthetic viability of isolated cells. 800 µl aliquots were removed from the stock cell suspensions at the times indicated and incubated for 30 min in the light with H14CO\textsubscript{3}- as described in Materials and Methods. (la) •: 18 h initial dark period followed by intervals of 12 h light/12 h dark; (lb) ○: 5 h initial light period followed by dark/light periodicity as for la; (lc) ●: continuous dark period. Temperature regime: 22°C light/8°C dark.

Figure 2. Poppy cells at 30 h following isolation. Cells were suspended in isotonic medium (0.3 M sorbitol). Most cells in this picture are Class I, possessing an intact tonoplast and peripherally arranged chloroplasts. At least one cell (indicated) is of the Class II type, having a disrupted tonoplast.

Figure 3. Variation of the flow of carbon into malate and citrate with respect to hours following cell isolation. Treatment of cells was as in Fig. 1 with light/dark periodicity as for Fig. la. The rates of incorporation into malate (△) and citrate (□) in the intact leaf, incubated under equivalent conditions, are given in the right margin of the figure.

Figure 4. Variation of the flow of carbon into glutamine with respect to hours following cell isolation. Treatment of cells was as in Fig. 1 with light/dark periodicity as for Fig. la. The rate of incorporation into glutamine (△) in the intact leaf, incubated under equivalent conditions, is given in the right margin of the figure.
Figure 5. Variation of the flow of carbon into sucrose and starch. Treatment of the cells was as in Fig. 1 with light/dark periodicity as for Fig. 1a. The rates of incorporation into sucrose (■) and starch (□) in the intact leaf, incubated under equivalent conditions, are given in the right margin of the figure.
Fig. 1

μ moles CO₂ incorporated \cdot hr⁻¹ \cdot mg Chl⁻¹

Hours following isolation

XBL 775-4416
Fig. 3
Fig. 5
This report was done with support from the United States Energy Research and Development Administration. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the United States Energy Research and Development Administration.