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Downlink Scheduling with Guarantees on the
Probability of Short-Term Throughput

Na Chen and Scott Jordan, Member, IEEE

Abstract—We consider the problem of scheduling multiple
transmissions on the downlink of a wireless network with perfor-
mance guarantees in the form of the probabilities that short term
throughputs exceed user specified thresholds. Many interactive
data applications have some degree of a latency requirement, and
measure performance by throughput over a relatively short time
interval. We refer to the fraction of time such user throughput
reaches a predefined rate threshold or higher as tail probability.
The problem is formulated as maximizing the minimum ratio
of tail probability to the user specified probability threshold.
We present necessary and sufficient optimality conditions for the
case in which the time interval of interest is consistent with the
time scale of channel variation. An online algorithm is proposed
which can achieve the optimality. For the case in which the
time interval of interest is large compared to the time scale of
channel variation, we develop an online algorithm which attempts
to maximize the minimum normalized tail probability by taking
the advantage of channel variation over users and over time.
Simulation results demonstrate that the proposed algorithm can
achieve better performance than other algorithms such as the
proportional fair algorithm and the Max C/I algorithm.

Index Terms—Opportunistic scheduling, statistical perfor-
mance guarantees.

I. INTRODUCTION

WE consider a wireless scheduling problem with per-
formance guarantees in the form of the probabilities

that short term throughputs exceed user specified thresholds. It
has often been noted that for elastic data applications channel
variation over users and over time can be exploited to improve
the long-term system performance. Opportunistic algorithms
take advantage of channel variation and increase long-term
average throughput at the cost of unfairness among users.
Many opportunistic algorithms (see e.g. [1]–[5]) limit the
extent of this unfairness by providing lower-bound guarantees
on individual long-term performances.

While much research has been done for scheduling prob-
lems concerning performance guarantees on individual long-
term average throughput or related utility (see e.g. [1], [2],
[4], [5]), little work has addressed how to guarantee the
short-term average throughput seen by users. One algorithm
which focusses on short-term throughput is a variant of the
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proportional fair algorithm [6], in which the average served
data rate is updated by an exponentially weighted low-pass
filter; the algorithm provides no guarantees, but achieves good
average throughput over a time scale that is relatively large
compared to the time scale of channel fluctuation. Another
approach, wireless credit-based fair queuing [7] achieves
short-term fairness, defined as a probabilistic bound on the
difference between the weighted time in service of two users.
Other algorithms provide probabilistic guarantees on the delay
experienced by each packet, e.g. Largest Weighted Delay First
[8].

In contrast, in this paper we consider a performance guar-
antee on the probability that short-term throughput exceeds a
rate threshold specified by each user. Each user can request
that this probability exceed a specified level. The perfor-
mance guarantee thus concerns a tail probability of short-term
throughput, as opposed to the short-term guarantees on delay
considered in the literature. In addition, the guarantees can be
tailored to each user.

The rest of this paper is organized as follows. In Section
II, we introduce the system model, define the performance
requirements, and formulate the problem. In Section III, we
consider the case in which the channels fluctuate very slowly
compared to the time interval of interest to users; the necessary
and sufficient optimality conditions are presented, followed
by an optimal online algorithm. In Section IV, we develop
an algorithm for a more general case in which the channels
fluctuate quickly compared to the time interval of interest to
users.

II. PROBLEM DESCRIPTION

We consider the downlink in a single-cell CDMA system
consisting of a base station and a fixed number, M , of users.
The base station schedules transmissions in a time slots of
fixed duration on the order of the channel’s coherence time.
Users are assumed to have an infinite backlog of data. A user
is active when the base station is transmitting data to it. For
each time slot, the scheduler makes decisions of which users
are active, their transmit power levels and their transmission
rates. We assume that the channel gains of users are discrete-
time random processes, independent of each other, and that
they are estimated by the base station. Let xi(t) and si(t)
denote the transmission rate and transmit power, respectively,
of user i in time slot t, with:

xi(t) =
W

γ

si(t)hi(t)
I0 + N0

(1)

where W is the spreading bandwidth, γ is the required bit
energy-to-interference density ratio, I0 is the interference
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power, N0 is the background noise power, and hi(t) is the
channel gain of user i in time slot t. (Consideration of vari-
able interference power, non-orthogonal codes, and estimation
errors is beyond the scope of this paper.) The throughput
measured over tc time slots seen by user i in time slot t is
then given by mi(t; tc) =

∑t
τ=t−tc+1 xi(τ)/tc.

The fraction of time that mi(t; tc) exceeds a rate threshold
ri is given by:

Pi(ri; tc) = lim
T→∞

1
T

T∑
t=1

I(mi(t; tc) ≥ ri)

where I(·) is the indicator function. The performance require-
ments of users are in the form of Pi(ri; tc) ≥ qi, ∀i, where
ri and qi are specified by user i. We consider two resources,
the total transmit power Stot and the total channels (or codes)
Ntot:

M∑
i=1

si(t) ≤ Stot, ∀t (2)

M∑
i=1

I(xi(t) > 0) ≤ Ntot, ∀t (3)

The objective is to minimize the cost of the resources
consumed to satisfy the users’ performance requirements on
tail probabilities. Let Q denote a scheduling policy, which
determines resource allocation among users over time. Denote
z(Stot, Ntot) = mini Pi(ri; tc)/qi. The problem is:

(P1)max
Q

z(Stot, Ntot) s.t. (2) & (3)

We consider the special case tc = 1 in section III, and return
to the case tc > 1 in section IV.

III. THE CASE OF tc = 1

In this case, Pi(ri; tc) = P (xi(τ) ≥ ri). The optimal
transmission rate of a user is thus either ri or 0, and the
scheduler only need determine which users are active in each
time slot. Let D = (d1, d2, ..., dM ), where di = I(user i
active). Channel processes are assumed stationary and ergodic.
As a result, the scheduler makes decisions based on the
current channel state. In channel state H = (h1, h2, ..., hM ),
a decision vector D is feasible iff resource constraints are
satisfied:∑M

i=1
si(H ; ri)di ≤ Stot,

∑M

i=1
di ≤ Ntot (4)

where si(H ; ri) is the transmit power required to achieve ri

in channel state H , which can be obtained from (1).
Denote by DH the set of feasible decision vectors D such

that (4) holds, and denote by p(D|H) the probability that
the scheduler’s decision in channel state H is D. A policy is
feasible iff p(D|H) > 0 only for D ∈ DH . The tail probability
of user i is:

Pi(ri; 1) =
∑
H

∑
D∈DH

dip(D|H)p(H) (5)

Problem (P1) is equivalent to:

(P2) max
{p(D|H)}

z(Stot, Ntot)

s.t. Pi(ri; 1)/qi ≥ z(Stot, Ntot), ∀i (6)∑
D∈DH

p(D|H) = 1, ∀H (7)

To solve (P2), we first consider its dual problem, given by:

(P3) min
U,V

∑
H

vH

s.t. 1 −
∑M

i=1
ui ≤ 0, ui ≥ 0, ∀i

p(H)
∑M

i=1

uidi

qi
− vH ≤ 0, ∀D ∈ DH , H(8)

where U = {ui} and V = {vH} are the vectors of La-
grangian multipliers associated with constraints (6) and (7),
respectively.

Theorem 1 (Necessary Condition): If a policy Q∗ is opti-
mal, then in each channel state, Q∗ only chooses the feasible
decision vector D which maximizes

∑M
i=1 u∗

i di/qi, where U∗

is the set of optimal Lagrangian multipliers.
Proof: For a given U , (8) implies:

vH(U) = p(H) max
D∈DH

M∑
i=1

uidi

qi
(9)

Thus, (P3) is equivalent to a minimization problem over
U . Since the feasible region of U is non-empty and lower-
bounded, there must exist at least one optimal solution, U∗.
Moreover, optimality forces

∑M
i=1 u∗

i = 1. Let {p∗(D|H)}
denote an optimal solution to the primal problem (P2).
Using the complementary slackness theorem and substituting
vH(U∗) by (9) yields:

p∗(D|H)

(
M∑
i=1

u∗
i di

qi
− max

D∈DH

M∑
i=1

u∗
i di

qi

)
= 0

which implies that p∗(D|H) > 0 only if D is feasible and
maximizes

∑M
i=1 u∗

i di/qi. The theorem follows.
Theorem 2 (Sufficient Condition): If a policy Q∗ i) only

chooses the feasible decision vector D which maximizes∑M
i=1 u∗

i di/qi in each channel state, where U∗ is the op-
timal Lagrangian multiplier vector associated with (6), and
ii) can balance the achieved normalized tail probability
P ∗

i (ri; 1)/qi = P ∗
j (rj ; 1)/qj, ∀i, j, then Q∗ is an optimal

solution.
Proof: Suppose that Pi(ri; 1) is achieved by any given

feasible policy. The optimal Lagrangian multiplier vector U∗

satisfies u∗
i ≥ 0 ∀i and

∑M
i=1 u∗

i = 1. Thus:

z(Stot, Ntot) = min
i

{
Pi(ri; 1)

qi

}
≤

M∑
i=1

u∗
i

Pi(ri; 1)
qi

=
M∑
i=1

u∗
i

(∑
H

∑
D∈DH

di

qi
p(D|H)p(H)

)

=
∑
H

p(H)

( ∑
D∈DH

p(D|H)

(
M∑
i=1

u∗
i di

qi

))
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where the penultimate equality comes from (5). On the other
hand, with equal normalized tail probabilities, the objective
function value achieved by Q∗ is given by:

z∗(Stot, Ntot) =
M∑
i=1

u∗
i

P ∗
i (ri; 1)

qi

=
∑
H

p(H) max
D∈DH

{
M∑
i=1

u∗
i di

qi

}

Obviously z(Stot, Ntot) ≤ z∗(Stot, Ntot), which means that
any feasible policy cannot achieve a better objective function
value than Policy Q∗ does. The theorem follows.

We next proceed to an online algorithm which can
find the optimal Lagrangian multipliers U∗ as well as
achieve the optimal value z∗(Stot, Ntot). Theorem 2 pro-
vides a sufficient condition for a policy to be optimal.
However, in most cases, the optimal Lagrangian multi-
pliers are unknown. Define a set of functions on U as
fi(U) = P

Q(U)
i (ri; 1)/qi − ∑M

j=1 ujP
Q(U)
j (rj ; 1)/qj, ∀i,

where P
Q(U)
i (ri; 1) is the tail probability of user i achieved by

a policy, Q(U), which chooses a feasible decision vector that
maximizes

∑M
i=1 uidi/qi in each time slot. Break ties at ran-

dom. It is easily shown that the optimal Lagrangian multipliers
vector U∗ is the zero of the functions {fi(U)}. Moreover, the
feasible region of U∗ is {U :

∑M
i=1 ui = 1, ui ≥ 0, ∀i}. This

leads us to use the truncated Robbins-Monro (RM) algorithm
[9], which can find the zero of an unknown function with
the root region known. The basic idea of this method is to
replace fi(U) by a noise-corrupted observation in the root-
finding process. As U approaches U∗, fi(U) approaches zero,
which implies that normalized tail probabilities are balanced.
Hence, the corresponding policy Q(U) is optimal by Theorem
2.

Our algorithm includes two stages in each time slot. The
first stage is to determine the optimal decision vector D(t)
under Policy Q(U(t)), i.e., to solve the following problem:

(P4) max
D∈DH(t)

{
M∑
i=1

ui(t)di

qi

}

If we consider ui(t)/qi as the price that user i would be willing
to pay to transmit in time slot t, then the system’s objective can
be viewed as maximizing the total revenue. With constraints
on the total transmit power and on the total channels, (P4) is a
two-constraint 0-1 knapsack problem, which is NP-complete.
When the number of users is large, a greedy algorithm is an
appropriate solution method, since it can achieve a reasonable
approximation with a complexity of O(M):

1: Sort users in ascending order according to
(ui(t)/qi)/si(H(t); ri);

2: Assign the transmit power to users in order until the total
power or total channels run out.

Note that multiuser diversity is realized here, i.e., the users
with better channel conditions are more likely to be chosen
due to less transmit power required.

The second stage is to update U(t). We define the noise-

corrupted observation of fi(U(t)) as:

f̂i(U(t)) =
di(t)
qi

−
M∑

j=1

uj(t)dj(t)
qj

(10)

It can be shown that EH [fi(U(t))− f̂i(U(t))|U(t)] = 0 with
probability one. The second stage is:

3: ui(t + 1) = ui(t) − α(t)f̂i(U(t)), ∀i;
4: If ui(t + 1) > 1, then set ui(t + 1) = 1; if ui(t + 1) < 0,

then set ui(t + 1) = 0, ∀i;
5: Normalize

∑M
i=1 ui(t + 1) to 1 by setting ui(t + 1) =

ui(t + 1)/
∑M

i=1 ui(t + 1), ∀i.

Choosing a step size α(t) = 1/(t + 1) results in U(t)
converging to U∗ with probability one [9]. The update of U(t)
can be interpreted as the process of users adjusting their prices
to achieve fairness in normalized tail probabilities.

Finally, consider the minimum normalized tail probability
achieved by this algorithm. Define the minimum normal-
ized tail probability in time slot t as z(t; Stot, Ntot) =
mini{[

∑t
τ=1 di(τ)/qi]/t}. As discussed above, as t → ∞, the

corresponding policy approaches the optimal policy Q(U∗).
As a result, z(t; Stot, Ntot) approaches the optimal value
z∗(Stot, Ntot). Numerical results illustrating the convergence
properties of our algorithm as well as the feasible region of
(Stot, Ntot) can be found in [10].

IV. THE CASE OF tc > 1

We now consider the case tc > 1. In this case, the
throughput depends not only on the current transmission rate,
but also on the transmission rates in the last tc − 1 time slots.
In order to achieve good performance, the scheduler can no
longer be memoryless, but should consider the transmission
rates in past time slots when making the current scheduling
decision. Moreover, if the current channel condition of a user
is good relative to its own average channel quality, then the
scheduler could transmit to it at a high rate to take advantage
of channel fluctuation over time. Based on these observations,
we develop an online algorithm. Our approach is to set a goal
that all users achieve their target throughput ri over a sliding
window consisting of the last 0 ≤ Δt < tc time slots and the
current slot. The target rate for user i at time t is thus:

yi(t) = max[tcri −
t−1∑

τ=t−Δt

xi(τ), 0]

= max[tcri − Δtmi(t − 1; Δt), 0] (11)

where mi(t − 1; Δt) is the average throughput over the last
Δt time slots seen at t− 1. If Δt = 0, the target rate is tcri,
in which case users ignore the achieved rates in the preceding
time slots; the resulting algorithm is identical to the optimal
policy in the case of tc = 1 except that ri is replaced by tcri.
As Δt increases, the influence of transmission rates in the
preceding time slots increases; in particular, when Δt = tc−1,
the target rate is exactly the amount required to enable the
average throughput seen in the current time slot to meet the
rate threshold. We call this algorithm Maxmin normalized tail
probability (MMNTP):
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1: Calculate the target rate yi(t) using (11) and the transmit
power si(t) using (1);

2: Set the residual power equal to the total transmit power
and the residual channels equal to the total number of
channels;

3: Sort users in ascending order according to the value of
(ui(t)/qi)/(hi(t)/ri), and assign the first user a transmit
power of min{si(t), the residual power}.

4: Continue to assign the residual transmit power to the
following users until the total transmit power or the total
channels run out; if the residual power > 0 after all users
achieve their targets, assign the residual power to the user
with the best channel condition.

5: Update U(t) using the method in the case of tc = 1;
update mi(t − 1; Δt).

In addition to the use of (11), there are another two
distinctions between this algorithm and the optimal algorithm
for tc = 1. One is that in Step 4 the residual transmit power
is assigned to the user even though it is not enough to support
the required transmission rate. The other difference lies in Step
5. When the truncated Robbins Monro algorithm is used, the
noise-corrupted observation in (10) should change to:

f̂i(U(t)) =
I(mi(t; tc) ≥ ri)

qi
−

M∑
j=1

uj(t)I(mj(t; tc) ≥ rj)
qj

so that the normalized tail probabilities can be equalized.
We first investigate the effect of Δt on the performance.

We simulate a system with 5 homogeneous users (M = 5).
Users are equidistant from the base station and thus have
the same distance-based attenuation, h̄i = h̄ ∀i. The channel
processes are modeled by Rayleigh fading and assumed inde-
pendent over users and over time. User rates are normalized
by W/(γ(I0 + N0)), and the normalized rate thresholds
r̃i = 1.5Stoth̄i/M ∀i are identical for all users. User also
specify the tail probability thresholds, qi = 0.7 ∀i. Figure 1
shows that the minimum normalized tail probability achieved
by MMNTP for varying Δt under different values of tc. For a
given tc, the minimum normalized tail probability achieved by
MMNTP is unimodal in Δt/tc; the peak is marked by a big
cross. When Δt = 0, users require a transmission rate of tcri

with the ambition of making the average throughputs seen in
the next tc time slot meet the rate thresholds. This case can
take the most advantage of channel variation among users, but
may not be optimal without considering the transmission rates
in the preceding time slots. In contrast, when Δt = tc − 1,
users request a rate of tcrc − mi(t − 1; tc − 1) to make the
average throughput seen in the current slot meet the threshold.
This case takes the least advantage of channel variation among
users and ignores the effect of the current rate on average
throughputs seen in the following time slots. Both of these
extreme cases usually cannot achieve the optimal value; and
the optimal Δt lies between 0 and tc − 1 in most cases.

We now consider optimality in terms of minimum normal-
ized tail probability. To do so, we vary the number of users
M , set r̃i = Stoth̄/M ∀i and tc = M . It is easily shown
that in this symmetric case the optimal algorithm is Round-
Robin, which schedules each user to be transmitted once every
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tc time slots, and the resulting tail probability is 1 for all
users. It follows that the optimal normalized tail probability is
1/0.7 ≈ 1.43. We will compare the performance of MMNTP
with two well-known algorithms which do not consider short-
term performance: the proportional fair algorithm and the max
C/I algorithm which always assigns a time slot to the user
with the best channel condition. We also compare to a simple
forcing algorithm, called minimum tail probability first, which
assigns a time slot to the user with the minimum current
normalized tail probability. Figure 2 shows the minimum
normalized tail probabilities achieved by different algorithms
for different numbers of users. The red dashed line represents
the optimal value. For all values of M , MMNTP can achieve
optimality by setting Δt = tc − 1. This is because it takes
into account the transmission rates in the preceding time slots,
which results in users taking turns to require a transmission
rate of tcri. Hence, the algorithm achieves the same minimum
normalized tail probability as the Round-Robin algorithm. The
proportional fair algorithm can achieve good but suboptimal
performance in terms of minimal normalized tail probability
because it also considers the transmission rates in the past in
power allocation, which positively impacts the performance.
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Tail probability, of course, is only one performance mea-
sure. The proportional fair and max C/I algorithms are fo-
cussed on long-term average throughput, and so should not
necessarily be expected to achieve high minimum normal-
ized tail probabilities. Figure 3 shows the long-term aver-
age throughputs achieved by different algorithms. Max C/I
achieves the highest long-term average throughput as it takes
most advantage of multiuser diversity, with the proportional
fair algorithm not far behind. As expected, MMNTP achieves
a significantly lower average long-term throughput. This il-
lustrates the tradeoff between the minimum normalized tail
probability and the long-term average throughput.

Finally, we compare MMNTP to other algorithms under
varying tc. A 5-user system (M = 5) is simulated, and Δt
is set to 	tc/2
. Moreover, we set the maximum transmission
rate to tcri for user i to improve the achieved performance
by all algorithms. We next consider four scenarios. Scenario
1 is a completely symmetric case, which has been introduced
above. All users are set 400m away from the base station,
requiring the same rate thresholds, r̃i = 1.5Stoth̄/M ∀i
with h̄ being the distance-based attenuation at 400m, and
the same tail probability thresholds, qi = 0.7 ∀i. Scenario
2 changes equal tail probability thresholds in Scenario 1 to
uniformly distributed tail probability thresholds, i.e., qi ∼
U(0.5, 0.9). Scenario 3 changes the equal distance in Scenario
1 to uniformly distributed distance U(400, 800), and sets
r̃i = 0.8Stot

∑M
i=1 h̄i/M

2 ∀i with h̄i being the distance-based
attenuation experienced by user i to keep rate thresholds same
for users. Scenario 4 changes equal rate thresholds in Scenario
1 are changed to uniformly distributed rate thresholds, i.e.,
r̃i ∼ U(1, 1.8)× Stoth̄/M .

Figure 4 shows the minimum normalized tail probabilities
achieved by different algorithms with varying tc in Sce-
nario 1. For all algorithms, the minimum tail probabilities
monotonically increase with tc. This is reasonable because
a longer observation time provides the scheduler with a better
chance to exploit multiuser diversity and channel fluctuation.
In particular for MMNTP, as tc increases, the transmission
rates required by users in (11) increase accordingly. As a
result, users with better channel conditions can obtain a higher
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data rate if selected to transmit. Thus, multiuser diversity is
utilized more fully and the performance is improved. The
figure also shows that MMNTP outperforms other algorithms.
In this symmetric case, the Max C/I algorithm is in fact
MMNTP with Δt = 0; therefore, it is not surprising that
MMNTP outperforms Max C/I.

Figure 5 shows the minimum normalized tail probabilities
varying with tc in Scenario 2. In this case, MMNTP rapidly
approaches the upper bound of the minimum normalized tail
probability, which comes from the inverse of the maximum
tail probability threshold, i.e., 1/0.9 ≈ 1.11. In this asym-
metric environment, MMNTP significantly outperforms other
algorithms for all tc displayed in this figure; this is because it
can effectively balance the normalized tail probabilities among
users. The minimum tail probability first algorithm can also
balance the achieved normalized tail probabilities, but in an
aggressive manner which results in a poor performance.

The advantage of MMNTP is more notable when users
become more heterogeneous, as in Scenario 3 where the
differences in distance away from the base station lead to
significant differences between users. Figure 6 shows that
MMNTP achieves much better minimum normalized tail
probability than other algorithms do under this setting. The
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Max C/I algorithm and the proportional fair algorithm display
poor performance, even worse than the Min tail probability
first algorithm. This is because these two algorithms do not
balance the tail probabilities of users. As a result, the user
farthest away from the base station receives a very low
tail probability, which drags down the achieved performance.
Finally, as expected, MMNTP can achieve better minimum
normalized tail probabilities than other algorithms in Scenario
4 with heterogeneous rate thresholds (results not shown).

V. CONCLUSIONS

In this paper, we have studied a scheduling problem with
performance guarantees in the form of the probabilities that
short term throughputs exceed user specified thresholds. For
the case in which the time interval of interest is one time slot,
we presented necessary and sufficient optimality conditions.
The optimal policy can be considered to maximize total

system revenue while balancing the achieved normalized tail
probabilities of users. An online algorithm was proposed to
achieve the optimal value by dynamically adjusting weights,
which can be interpreted as the prices that users are willing
to pay for service satisfying their rate requirements. For the
case in which the time interval is more than one time slot, we
developed an algorithm which effectively combines efficiency
with fairness. Simulation results show that it achieves higher
minimum normalized tail probability at the expense of long-
term average throughput, with the differences becoming larger
in the case of heterogeneous users.
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