Title
Power and optimism: interpreting ambiguous information

Permalink
https://escholarship.org/uc/item/2765h110

Author
Cobb, Lindsey Erin

Publication Date
2011

Peer reviewed|Thesis/dissertation
Power and Optimism: Interpreting Ambiguous Information

A Thesis submitted in partial satisfaction of the requirements for the degree Master of Science

in

Management

by

Lindsey Erin Cobb

Committee in charge:
Professor Pamela K. Smith, Chair
Professor Karsten T. Hansen
Professor Craig R. M. McKenzie

2011
The Thesis of Lindsey Erin Cobb is approved and it is acceptable in quality and form for publication on microfilm and electronically:

__

__

__

Chair

University of California, San Diego

2011
DEDICATION

In recognition of my son, Weston Morris Cobb, for allowing me to write this thesis during the first three months of his life.
TABLE OF CONTENTS

Signature Page ... iii
Dedication .. iv
Table of Contents ... v
List of Tables ... vi
Acknowledgements ... vii
Abstract of the Thesis .. viii
Power and Optimism: Interpreting Ambiguous Information ... 1
Appendix A: Positive Conversations .. 28
Appendix B: Negative Conversations .. 30
Appendix C: Ambiguous Conversations ... 32
Appendix D: Power Mindset Manipulation ... 34
References .. 35
LIST OF TABLES

Table 1: Pretest paired samples t-test results (Valence Scores)... 9
Table 2: Pretest paired samples t-test results (Clarity Scores)... 10
Table 3: Experiment 1 Mood Check Summary ... 15
Table 4: Experiment 1 Correlations between Mood Measures and Valence Scores 16
Table 5: Experiment 2 Conversation Scores across Conditions ... 21
ACKNOWLEDGEMENTS

I would like to acknowledge and thank my advisor, Dr. Pamela K. Smith, for her inspiration, patience, and guidance throughout this process.
ABSTRACT OF THE THESIS

Power and Optimism: Interpreting Ambiguous Information

by

Lindsey Erin Cobb

Master of Science in Management

University of California, San Diego, 2011

Professor Pamela K. Smith, Chair

Interpreting ambiguous statements is a common and inescapable aspect of everyday life. Previous research suggests that elevated power leads to the optimistic interpretation of ambiguous information while diminished power leads to the pessimistic interpretation of ambiguous information. However, empirical evidence does not speak to situations that are (1) absent of rewards or punishments and (2) operate at a high cognitive level. The current investigation attempts to address this empirical gap by directly measuring the effect power has on the interpretation of ambiguous conversations.

Initially, a Pretest was conducted in order to ensure a selection of short conversations was both neutral and ambiguous. These conversations were later used in Experiments 1 and 2. In Experiment 1, power-primed participants were instructed to rate the valence of the most ambiguous conversations from the Pretest. In Experiment 2, power-primed
participants appended the ambiguous conversations with their own words while independent judges rated the conversations for valence. Power did not have an effect on the valences of the conversations in either experiment. The paper concludes with a discussion of the potential limitations of the experiments as well as recommendations for future research.
POWER AND OPTIMISM: INTERPRETING AMBIGUOUS INFORMATION

Interpreting ambiguous statements is a common and inescapable aspect of everyday life. Sometimes people are intentionally vague, disguising their true thoughts, perhaps to shield others from hurt feelings. Other times these ambiguities are purely innocent and unintentional. Regardless, we all spend a significant amount of time and effort attempting to decipher the comments of others. This raises an important question: What factors influence our attempts to “read between the lines?” Power is a likely culprit as it plays a significant role in our day-to-day interactions. Power influences our behavior (Keltner, Gruenfeld, & Anderson, 2003), shapes our cognition (Smith & Trope, 2006), and affects our emotional experience (Langer & Keltner, 2008). Occasionally, we are painfully aware of a given power dynamic and its impact on us. Other times, the consequences of power are nonconscious, yet persist to subsequent, unrelated situations (Smith & Galinsky, 2010).

Although it is generally agreed that power is a pervasive force in our lives (Cartwright, 1959; A. P. Fiske, 1992; Mazur, 1985), questions remain as to how power molds our perspective of the world. Existing literature suggests that elevated power leads to the expectation of positive outcomes, which I will generally refer to as “optimism” throughout this paper (Scheier & Carver, 1985). It follows that a high power individual, when faced with an ambiguous statement, will assume that the statement has positive meaning or that the speaker has positive intentions. Empirical evidence does not directly support this notion, however, because interpreting an ambiguous statement (1) does not always involve rewards or punishments and (2) occurs at a high level of cognition. In this
investigation, I attempt to resolve this issue by directly exploring power’s impact on the interpretation of ambiguous statements.

What is Power?

Although power is easy to conceptualize, it is difficult to singularly define. Thankfully, several researchers have previously agreed on a definition that I shall employ here. Power is defined as the capacity to control others’ outcomes (S. T. Fiske, 1993; Overbeck & Park, 2001; Smith & Trope, 2006). This can be achieved by selectively allocating resources – whether material or social in nature – or administering punishments to others (Keltner et al., 2003). Therefore, power is both relative and contextual. A parent can have a high level of power relative to their child when at home, but a low level of power relative to their manager when at work.

While power can naturally be assessed in terms of rewards and punishments directed toward others (Emerson, 1962; Thibaut & Kelley, 1959), it may also be assessed in terms of the rewards and punishments one experiences. Elevated power is associated with increased resources (and thus rewards) that range from the material (e.g., money) to the social (e.g., higher esteem). Relative to those with low power, high power individuals are also less encumbered by the consequences of their actions and are held to fewer social stipulations due to their increased control over the environment (Weber, 1947). Conversely, those who lack power have access to fewer resources and are more sensitive to possible social constraints within their environment because their outcomes are ultimately controlled by other people (S. T. Fiske, 1993). As a result, different levels of power can lead to entirely different behavior.
Approach/Inhibition Theory of Power

Two systems are thought to regulate behavioral activity – the behavioral activation system (BAS) and the behavioral inhibition system (BIS) (Gray, 1981; Gray 1982). The BAS and BIS are separate, independent systems that heighten an individual’s sensitivity to rewards and threats, respectively (Carver & White, 1994; Gray, 1991; DePue, 1995). Signals of reward, opportunity, and escape from punishment trigger the BAS. Once activated, the BAS prompts an individual to partake in goal-directed activities. Signals of punishment, threat, and uncertainty trigger the BIS. Once activated, the BIS motivates a person to inhibit behavior that could lead to punishment.

The approach/inhibition theory of power proposed by Keltner et al. (2003) is a prevailing model in the current literature that links power to the BAS and the BIS. Because elevated power is associated with increased rewards and unconstrained behavior, it is thought to activate the BAS. Similarly, diminished power activates the BIS because it is associated with a lack of resources and a higher awareness of social constraints. Independent research supports the notion that power is associated with BAS/BIS activation on both a conscious and nonconscious level. Participants in high power conditions have been shown to demonstrate a variety of approach-related behaviors ranging from turning off an annoying fan (Galinsky, Gruenfeld, & Magee, 2003) to sitting near a fictitious student doing an unrelated task (Smith & Bargh, 2008). On the other hand, subjects in low power conditions have displayed behavior consistent with inhibition-related behavior such as exercising restraint in expressing their true attitudes (Anderson & Berdahl, 2002).
The approach/inhibition theory of power serves as a vehicle to describe a variety of ways that power can influence affect, cognition, and behavior. One such prediction is that people with high power have the tendency to see rewards and opportunities in ambiguous acts while those with diminished power are more likely to perceive the same acts as threatening or punishing (Keltner et al., 2003). Previous studies that investigate risk perceptions and risk-taking behavior provide empirical evidence supporting this proposition. Participants in high power conditions had more optimistic perceptions of their future, believed the world was less dangerous, indicated a higher willingness to engage in unprotected sex, and were more risk-seeking in negotiations than participants in low power conditions (Anderson & Galinsky, 2006). This pattern suggests that power plays a crucial role in decision-making by influencing the perceived likelihood or outcome of a given risk. In other words, elevated power is associated with optimistic thinking, at least when risks are involved.

Another line of research has explored the effect of power on decision-making in riskless choice scenarios. Human beings commonly display loss aversion, which is simply the tendency to place a relatively higher value on a potential loss than a normatively equivalent potential gain (Kahneman & Tversky, 1984). However, recent research in this area demonstrates that high power individuals downplay the impact of a potential loss and are therefore less loss averse than their low power counterparts (Inesi, 2010). Once again, this research suggests that high power is associated with optimistic interpretations because it beneficially colors the way individuals perceive outcomes and their associated probabilities of occurrence. However, the research surveyed thus far has only involved situations with inherent rewards and/or punishments. The question remains
whether elevated power is associated with optimism in situations absent of rewards or punishments.

Approach/Inhibition and Optimism

There exist other theoretical paths that connect the BAS (BIS) to optimism (pessimism) beyond the propensity to attend to rewards (punishments). For instance, previous research has revealed a relationship between BAS activation and positive affect (Ashby, Isen, & Turken, 1999; Davidson, 1992) which in turn is related to optimism (Lyubormirsky, King, & Diener, 2005; Marshall, Wortman, Camille, Kusulas, Hervig, & Vickers, 1992). Likewise, BIS activation is demonstrably related to negative affect (Carver & White, 1994) which in turn is related to pessimism (Marshall et al., 1992). Assimilating these concepts suggests that the BAS is connected to optimism while the BIS is connected to pessimism.

There is also empirical evidence linking the behavioral systems to optimism/pessimism in situations lacking rewards or punishments, although not necessarily via affect. Gomez and Gomez (2002) directly explored the relationship between the two behavioral systems and the processing of positive, neutral, and negative stimuli. Participants with heightened BAS sensitivity (measured via the BIS/BAS scales; Carver & White, 1994) were more likely to form a positive word during a word fragment completion task, correctly identify a positive word during a word recognition task, and remember a positive word during a word recall task. Conversely, participants with heightened BIS sensitivity performed better on tasks when negative words were involved. Therefore, one may conclude that positive information is more accessible and easily processed when the BAS is activated whereas negative information is more accessible.
and easily processed when the BIS is activated. This supports the notion that when faced with ambiguous information, the valence of its interpretation will depend upon the behavioral system in play.

Power and Optimism

Since power is associated with the behavioral systems and the behavioral systems dictate how one interprets ambiguous information, it follows that power should also influence how one interprets ambiguous information. Specifically, individuals with elevated power should perceive ambiguous information more positively than those with diminished power. As discussed earlier, elevated power can cause optimistic risk perceptions and decreased loss aversion (Anderson & Galinsky, 2006; Inesi, 2010). However, these lines of research do not address situations that lack potential rewards or punishments. Another set of studies covers this gap by demonstrating that high power leads to greater accessibility of positive concepts while low power leads to greater accessibility of negative concepts (Smith, 2005). During a lexical decision task, participants in the high power condition were quicker to identify positive words while low power subjects were quicker to identify negative words. In addition, high power participants were more likely to form a positively valenced word out of an ambiguous word fragment while low power participants were more likely to form a negatively valenced word. Note that these two studies did not involve rewards or punishments.

Smith’s research (2005) provides compelling evidence supporting the central theory of this paper – that power affects how people construe ambiguous information, regardless of the immediate presence of potential rewards or punishments. However, lexical decision and word fragment completion tasks test the theory at a low cognitive
level. I attempt to reinforce this notion through two studies that extend beyond this context. Specifically, I investigate power’s role in the interpretation of conversations that could easily be seen in a positive or a negative light.

Pretest

The goal of this investigation was to directly test how power influences the interpretation of ambiguous conversations. Therefore, a pretest was conducted to ensure that the conversations presented in Experiment 1 and Experiment 2 were indeed ambiguous. In order for a conversation to be considered ambiguous, it should not necessarily be viewed as positive or negative. However, this is not the only requirement since a comment that is neutral in nature is not necessarily ambiguous. For instance, “the shirt is green,” is a neutral, yet unambiguous remark. Therefore, each conversation was tested for both valence and clarity. Accordingly, the pretest was split into two surveys: the Valence Survey and the Clarity Survey. Although both surveys were used for validity purposes, the Clarity Survey was also used to identify the very conversations to be used in the subsequent studies. The five most ambiguous conversations were used in Experiment 1 while the four most ambiguous conversations were used in Experiment 2.

Pretest: Methods

Participants. Sixty participants were recruited through Amazon Mechanical Turk, an increasingly popular tool used for enlisting people to perform various online tasks (Paolacci, Chandler, & Ipeirotis, 2010). Most participants received only one survey (25 Valence; 26 Clarity) while nine received both. Ten responses (3 Valence; 7 Clarity) were dropped from the study because they were incomplete or were completed in less than five minutes – an amount of time insufficient to thoughtfully answer each question in the
survey. This resulted in the consideration of 31 responses (10 male, 21 female) for the Valence Survey and 28 (10 male, 18 female) for the Clarity Survey. In regards to race, 80% of the respondents were White, 7% were Black, 2% were Asian, 2% were Hispanic or Latino, and the remaining were of another ethnicity. The average age was 34.09 years (SD = 12.23). Each respondent was compensated ten cents for their participation.

Valence Survey. First, participants were asked to answer some demographic questions about themselves. Then, they were asked to read a list of 30 short conversations in random order. Of the 30 conversations, 10 were positive, 10 were negative, and 10 were presumably ambiguous (see Appendices A-C for a full list). After each conversation, participants were asked to rate how positive/negative a speaker was in regard to a given subject matter on a scale from -3 (extremely negative) to 3 (extremely positive). Later, these responses were averaged to determine the Valence Score for each conversation.

Clarity Survey. The Clarity Survey was conducted much like the Valence Survey. The same demographic survey was presented along with the same 30 conversations (see Appendices A-C). The only exception was that participants were asked to rate how clear a speaker was in regard to a given subject matter on a scale from 1 (not at all clear) to 4 (very clear) for each conversation. For example, participants were asked “How clear was Joe regarding the game?” when they encountered Conversation 1 (from Appendix C). Later, these responses were averaged to determine the Clarity Score for each conversation. The conversations with the lowest Clarity Scores were used in the subsequent studies.
Pretest: Results and Discussion

Valence Survey. First, I evaluated the conversations on the positivity/negativity dimension. The ambiguous conversations chosen for the purposes of this paper were relatively neutral when compared to both the positive and negative conversations. The Valence Scores for the ten ambiguous conversations ranged from -0.71 to 1.61, which fit squarely between the range of average scores for the ten positive conversations (1.87 to 2.84) and the ten negative conversations (-2.74 to -1.23).

Paired samples t-tests were conducted to compare the average Valence Score of the ambiguous conversations (M = 0.45, SD = 0.46) to the average Valence Score of both the positive conversations (M = 2.33, SD = 0.43) and the negative conversations (M = -2.28, SD = 0.35). Similarly, the average Valence Score of the top five (M = -0.65, SD = 0.56) and the top four ambiguous conversations\(^1\) (M = -0.29, SD = 0.59) were compared to the average Valence Scores of both the positive conversations and the negative conversations. As indicated in Table 1 (below), all six tests revealed significant differences between the ambiguous conversation scores and the positive/negative conversation scores. Gender and native language did not influence the Valence Scores for any of the conversations, \(p_s > 0.21\).

Table 1: Pretest paired samples t-test results (Valence Scores)

<table>
<thead>
<tr>
<th></th>
<th>Average of all ten positive conversation scores</th>
<th>Average of all ten negative conversation scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average of all ten ambiguous conversation scores</td>
<td>(t(30) = -21.48, \ p < 0.001)</td>
<td>(t(30) = 27.44, \ p < .001)</td>
</tr>
<tr>
<td>Average of top 5 ambiguous conversation scores</td>
<td>(t(30) = -20.11, \ p < 0.001)</td>
<td>(t(30) = 20.95, \ p < .001)</td>
</tr>
<tr>
<td>Average of top 4 ambiguous conversation scores</td>
<td>(t(30) = -21.01, \ p < 0.001)</td>
<td>(t(30) = 17.15, \ p < .001)</td>
</tr>
</tbody>
</table>

\(^1\) The top five and the top four ambiguous conversations are those with the five and four lowest Clarity Scores, respectively.
Clarity Survey. Next, all conversations were evaluated on the ambiguity/clarity dimension. The Clarity Scores for the ambiguous conversations ranged from 1.64 to 2.79 while those for the positive and negative conversations (combined) ranged from 2.96 to 3.96. Paired samples t-tests were conducted comparing the average Clarity Score of the ambiguous conversations (M = 2.12, SD = 0.49) to the Clarity Scores of both the positive conversations (M = 3.33, SD = 0.39) and the negative conversations (M = 3.66, SD = 0.28). Next, the average Clarity Scores of the top five (M = 1.86, SD = 0.59) and the top four ambiguous conversation scoresii (M = 1.79, SD = 0.62) were also compared to the average Clarity Score of both the positive conversations and the negative conversations. As indicated in Table 2 (below), all three tests revealed significant differences between the ambiguous conversation scores and the positive/negative conversation scores. Gender and native language did not influence the Clarity Scores for any of the conversations, ps > 0.26.

<table>
<thead>
<tr>
<th></th>
<th>Average of all ten positive conversation scores</th>
<th>Average of all ten negative conversation scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average of all ten ambiguous conversation scores</td>
<td>t(27) = -12.78, p < 0.001</td>
<td>t(27) = -14.96, p < 0.001</td>
</tr>
<tr>
<td>Average of top 5 ambiguous conversation scores</td>
<td>t(27) = -12.42, p < 0.001</td>
<td>t(27) = -14.48, p < 0.001</td>
</tr>
<tr>
<td>Average of top 4 ambiguous conversation scores</td>
<td>t(27) = -12.99, p < 0.001</td>
<td>t(27) = -14.64, p < 0.001</td>
</tr>
</tbody>
</table>

Summary. In conclusion, responses to both the Valence Scale and the Clarity Scale were consistent with initial expectations. Not only were the ambiguous conversations under investigation demonstrated to be neutral, they were also rated as highly ambiguous. Therefore, I felt confident that their use would be appropriate in

ii Again, the top five and top four ambiguous conversations are those with the lowest Clarity Scores.
Experiment 1 and Experiment 2 even though they had not been vetted in previous literature.

Experiment 1

The aim of Experiment 1 was to investigate how power influences the interpretation of ambiguous comments. How does one manipulate power in an experimental setting? Although different power levels can be activated in one task, their effects may nonconsciously carry over to subsequent, unrelated tasks (Smith and Galinsky, 2010). Therefore, a simple mindset priming task, such as Galinsky et al.’s (2003) procedure, is an easily executable and effective way to manipulate power in experiments. That said, there is one factor that typically must be accounted for when manipulating power – mood. Previous work links elevated power with positive mood and reduced power with negative mood (Keltner et al., 2003). Additionally, positive mood is associated with optimistic thinking and negative mood with pessimistic thinking (Lyubormirsky, King, & Diener, 2005; Marshal et al., 1992). For these reasons, mood could serve as an alternative explanation for any results that stem from the current experiment and should be addressed accordingly.

Empirical data from previous literature suggests that high power should lead to a more optimistic interpretation of information while low power should lead to a more pessimistic interpretation of information. However, the existing data is either derived from scenarios with clear rewards or punishments (Anderson & Galinsky, 2006) or from low-level cognitive tasks (Smith, 2005). In this experiment, participants were instructed to rate the valence of five ambiguous comments embedded in hypothetical, extraneous conversations that were pulled directly from the Pretest (see Appendix C, Conversations
Therefore, any differences in interpretation between the different power conditions should not be attributable to the subjects seeking rewards or punishments in an ambiguous situation.

Experiment 1: Methods

Participants. As with the Pretest, participants were recruited through Amazon Mechanical Turk. In total, 182 subjects were recruited. However, 16 were dropped because they took the Pretest, 16 because they were suspicious of the experiment’s goal, 6 because they completed the survey in too little time, and 5 because their treatment essay was one sentence or less. Lastly, 14 subjects were dropped because they failed an instructional manipulation check (IMC). IMCs are used in experiments to detect when participants do not carefully follow directions (Oppenheimer, Meyvis, & Davidenko, 2009). In this particular experiment, participants were asked to guess the purpose of the experiment in a free-form response. In the same question, participants were also asked to write the word “lunch” at the end of their response.iii

In conclusion, 125 responses (41 male, 84 female) were considered for further analysis.iv Of these participants, 74% were White, 9% were Hispanic or Latino, 7% were Black, and the remaining were of another ethnicity. The average age was 33.70 years (SD = 11.59). Each subject was compensated fifteen cents for their participation.

Power Mindset Manipulation. For Experiment 1, I directly adopted Galinsky et al.’s (2003) power mindset manipulation. Participants were randomly assigned to one of

iii This question was presented at the end of the experiment, before the demographic questions.
iv Of the participants that were dropped, 41% were from the control condition, 32% were from the low power condition, and 27% were from the high power condition.
three conditions: high power (N = 35), low power (N = 46), and control (N = 44).

Subjects assigned to the high power condition were asked to write (for three minutes) about a time in which they had power over another person, whereas subjects assigned to the low power condition were asked to write about a time in which a person had power over them (see Appendix D for exact wording). For the control condition, participants were asked to write about the last time they went to the grocery store (Gruenfeld, Inesi, Magee, & Galinsky, 2008). As a manipulation check, participants were then asked how “in charge” they felt in the situation referenced in their essay on a scale from 0 (not at all) to 8 (very much).

Mood Check. Again, I adopted an approach used in prior research (Smith and Trope, 2006) and measured mood by asking the participants 13 mood questions immediately after the power manipulation. The first question instructed the subjects to rate how they felt overall at the moment on a scale of -5 (very bad) to 5 (very good). The next twelve, presented in random order, asked subjects to “indicate the extent to which you feel [happy, content, joyful, sad, disappointed, depressed, calm, relieved, relaxed, nervous, worried, and tense] right now” on a scale from 0 (not at all) to 8 (very much).

Ambiguous Conversations. Participants were then asked to read (in random order) the five most ambiguous conversations from the Pretest and rate how positive or negative a speaker was regarding a given subject matter on a scale from -3 (extremely negative) to 3 (extremely positive). After the subjects completed this section of the survey, they were asked to answer basic demographic questions.

\(^{7}\) I included a control condition because I wanted to investigate the effects of both (1) high power relative to low power and (2) power (high or low) relative to a baseline.
Experiment 1: Results and Discussion

Power Mindset Manipulation. According to the Brown-Forsythe test, reports of feeling “in charge” differed significantly between conditions, $F(2, 98.20) = 87.82$, $p < .001$. Consistent with expectations, a post hoc test with a Games-Howell correction revealed that subjects in the high power condition ($M = 6.49$, $SD = 1.38$) reported feeling more “in charge” than participants in the control condition ($M = 5.18$, $SD = 2.63$), $p < .02$. Conversely, participants in the low power condition ($M = 1.09$, $SD = 1.67$), reported feeling less “in charge” than those in the control condition, $p < .001$.

Mood Check. Overall mood did differ between groups. Although neither the high power nor the low power scores differed significantly from the control group, an LSD post hoc test revealed that they did differ significantly from each other (see Table 3). Consistent with previous research (Smith & Trope, 2006), four composite indices – positive, negative, approach-related, and avoidance-related affect – were developed to analyze responses to the remaining 12 mood questions. The positive affect index was calculated by averaging the responses to the happy, content, joyful, calm, relieved, and relaxed questions. The negative affect index was calculated by averaging the responses to the sad, disappointed, depressed, nervous, worried, and tense questions. The approach-related affect index was calculated by averaging the happy, content, and joyful scores with the reverse scores of the sad, disappointed, and depressed questions. Similarly, the avoidance-related affect index was calculated by averaging the calm, relieved, and relaxed scores with the reverse scores of the nervous, worried, and tense questions. Each

vi The data failed the Levene test for homogeneity of variances, $F(2, 122) = 10.48$, $p < .001$, so the Brown-Forsythe test was used here. Since the variances were assumed to be unequal, I used the Games-Howell test to make post hoc comparisons.
of the four measures of mood proved to be significantly different between conditions. Post hoc tests reveal that in each case, the high power group had significantly different responses than the low power group, although neither group differed significantly from the control group. High power participants reported feeling more positive affect, less negative affect, more approach-related affect, and more avoidance-related affect than their low power counterparts.

Table 3: Experiment 1 Mood Check Summary

<table>
<thead>
<tr>
<th></th>
<th>Omnibus</th>
<th>High Power</th>
<th>Control</th>
<th>Low Power</th>
<th>High vs. Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>F(2, 122) = 7.53</td>
<td>M = 2.37</td>
<td>M = 1.36</td>
<td>M = 0.57</td>
<td>LSD</td>
</tr>
<tr>
<td></td>
<td>p = .001</td>
<td>SD = 1.66</td>
<td>SD = 2.23</td>
<td>SD = 2.20</td>
<td>p < .001</td>
</tr>
<tr>
<td>Positive affect</td>
<td>F(2, 111.69) = 4.37</td>
<td>M = 4.88</td>
<td>M = 4.34</td>
<td>M = 3.87</td>
<td>Games-Howell</td>
</tr>
<tr>
<td></td>
<td>p = 0.02</td>
<td>SD = 1.31</td>
<td>SD = 1.27</td>
<td>SD = 1.91</td>
<td>p = 0.02</td>
</tr>
<tr>
<td>Negative affect</td>
<td>F(2, 122) = 4.19</td>
<td>M = 1.60</td>
<td>M = 2.06</td>
<td>M = 2.71</td>
<td>LSD</td>
</tr>
<tr>
<td></td>
<td>p = 0.02</td>
<td>SD = 1.61</td>
<td>SD = 1.89</td>
<td>SD = 2.17</td>
<td>p = 0.01</td>
</tr>
<tr>
<td>Approach-related affect</td>
<td>F(2, 116.41) = 4.66</td>
<td>M = 5.70</td>
<td>M = 5.27</td>
<td>M = 4.62</td>
<td>Games-Howell</td>
</tr>
<tr>
<td></td>
<td>p = 0.01</td>
<td>SD = 1.24</td>
<td>SD = 1.59</td>
<td>SD = 1.97</td>
<td>p = 0.01</td>
</tr>
<tr>
<td>Avoidance-related affect</td>
<td>F(2, 117.73) = 5.07</td>
<td>M = 5.57</td>
<td>M = 5.01</td>
<td>M = 4.54</td>
<td>Games-Howell</td>
</tr>
<tr>
<td></td>
<td>p = 0.01</td>
<td>SD = 1.25</td>
<td>SD = 1.34</td>
<td>SD = 1.73</td>
<td>p = 0.01</td>
</tr>
</tbody>
</table>

Ambiguous Conversations. A Valence Score was calculated for each participant by averaging their responses across conversations. First of all, gender and native language did not influence the Valence Scores, *p*s > 0.37. More importantly, power priming did *not* impact these scores, *F*(2, 122) = 2.25, *p* = 0.11. Although there were no statistically significant differences between the groups, both the high power (M = -0.11, SD = 0.73) and the low power subjects (M = -0.12, SD = 0.65) interpreted the conversations more positively on average than those in the control group (M = -0.39, SD

vii The positive, approach-related, and avoidance-related affect indices failed the Levene test for variance homogeneity. Therefore, the Brown-Forsythe test was used to compare the means in these cases, and a Games-Howell post hoc test was used for further comparisons. Otherwise, a one-way between subjects ANOVA was conducted with an LSD post hoc test.

eight The positive, approach-related, and avoidance-related affect indices failed the Levene test for variance homogeneity. Therefore, the Brown-Forsythe test was used to compare the means in these cases, and a Games-Howell post hoc test was used for further comparisons. Otherwise, a one-way between subjects ANOVA was conducted with an LSD post hoc test.
= 0.67). Nonetheless, each group interpreted the conversations slightly negatively.

Thirdly, since mood differed between conditions, I also investigated the correlations between the five mood measures and the Valence Scores. None of the comparisons turned out to be significant, ruling out the notion that mood impacted the interpretation of the ambiguous conversations.

Table 4: Experiment 1 Correlations between Mood Measures and Valence Scores

<table>
<thead>
<tr>
<th></th>
<th>Overall</th>
<th>Positive</th>
<th>Negative</th>
<th>Approach-Related</th>
<th>Avoidance Related</th>
</tr>
</thead>
<tbody>
<tr>
<td>R(125)</td>
<td>0.11</td>
<td>0.10</td>
<td>-0.08</td>
<td>0.07</td>
<td>0.12</td>
</tr>
<tr>
<td>p = 0.25</td>
<td>p = 0.29</td>
<td>p = 0.39</td>
<td>p = 0.41</td>
<td>p = 0.19</td>
<td></td>
</tr>
</tbody>
</table>

Summary. Although the power manipulations appeared to be effective, the data did not provide evidence of power impacting the interpretation of ambiguous statements. However, mood did vary across condition. As mentioned earlier, previous research suggests that mood can impact the interpretation of ambiguous information. The data from this experiment did not confirm these effects.

Experiment 2

Experiment 1 attempted to evidence the link between power and optimism by having power-primed subjects interpret ambiguous statements made by other people in the context of short conversations. While Experiment 1 failed to find a link between power and optimism, one obvious explanation involved a combination of the interpretation scale and sample size. While the interpretation scale theoretically had a range of 7 (-3 to +3), in practice the scale was highly truncated as the “ambiguous conversations” presented to subjects had already been independently vetted as highly ambiguous (and neutral). While the theoretical link between power and optimism should
still be evidenced in this situation, it may well require a larger sample size to achieve statistical significance.ix

Experiment 2 was designed to address the above shortcomings of Experiment 1 in two ways. First, it increased the potential effect size by increasing the range of realistic responses. Instead of only rating conversations that hover around the center of the Valence Scale, participants in Experiment 2 were asked to (a) interpret an ambiguous sentence fragment embedded in a short conversation, and then (b) complete the sentence according to their interpretation of the ambiguous sentence fragment. Theoretically, the power primed subjects in Experiment 2 should complete the sentences in a way consistent with their interpretation of the ambiguous sentence fragments (e.g. a positive interpretation of the sentence fragment should be evidenced by the subject completing the sentence in a positive fashion). Independent judges later rated the valences of the appended conversations. This manipulation should increase the potential effect size (relative to that in Experiment 1) because the amended conversations should more extensively cover the positive/negative continuum.

Second, Experiment 2 eliminated the control condition which increased the number of participants in the remaining conditions. The purpose of the control condition in Experiment 1 was to have participants go through the same exercise with similar specificity as the other conditions (i.e., write an essay about a situation in the past), but without priming the participants to do anything in particular. Though this control manipulation has been used successfully in the past (Gruenfeld et al., 2008), it may have unintentionally primed participants with another concept and compromised the design of

ix The observed power for Experiment 1 was only 45%.
Experiment 1. For instance, writing about the last grocery store trip is more objective and concrete than writing about the last time you had power over someone else. This may prime a more concrete way of thinking, which in turn could lead participants to feel less powerful than they would have felt otherwise (Smith, Wigboldus, & Dijksterhuis, 2008). Perhaps this is why, on average, participants in Experiment 1’s control condition reported lower Valence Scores than those in both power conditions. Experiment 2 addressed this complication by eliminating the control group completely, although at the expense of being able to extract less insight from potential results.

Experiment 2: Methods

Participants. 144 undergraduates at University of California, San Diego were initially recruited to participate in this experiment in exchange for course credit. Eight participants were not considered for further analysis because they wrote a sentence or less for their treatment essay.\(^3\) Therefore, 136 participants (70 male, 69 female) remained. Of these participants, 60% were Asian, 27% were White, 6% were Hispanic or Latino, and the remaining were of another ethnicity. The average age was 20.99 years (SD = 5.56).

Power Mindset Manipulation. Power was manipulated in a similar fashion in Experiment 2 as it was for Experiment 1 with two exceptions. First, as noted above, there was no control condition. Second, when participants were asked to write about a situation in which they had power over someone (or someone had power over them), they were given five (instead of three minutes) to respond. The same manipulation check used in Experiment 1 was also employed here.

\(^3\) Three of the participants were from the low power condition while five were from the high power condition.
Mood Check. Participants in Experiment 2 were asked the same mood questions as those in Experiment 1. Hence, five mood measures were gathered for further analysis: overall, positive, negative, approach-related, and avoidance-related affect.

Ambiguous Conversations. Four conversations were used for this experiment – those from the Pretest that had the lowest Clarity Scores (see Appendix C, conversations 1-4). Instead of having participants rate the valence of ambiguous conversations as in Experiment 1, participants in Experiment 2 were asked to “finish” the conversations by adding their own comments. Specifically, a blank line was added to the end of each conversation immediately following an ambiguous comment. Subjects were asked to “fill in the blank to indicate how [they] think [the speaker] would continue his or her response.” After the conversations were completed, the subjects answered some basic demographic questions.

Later, all of the appended conversations were carefully reviewed, and some were rejected for further analysis because they were inappropriate (e.g., discussing a field goal in the context of a baseball game). This resulted in 130 versions of Conversation 1, 119 versions of Conversation 2, 125 versions of Conversation 3, and 127 versions of Conversation 4 (see Appendix C to see original versions of each conversation).

Valence Scores. Twenty judges (9 male, 11 female) were recruited via Amazon Mechanical Turk to rate the valence of the modified conversations. Much like

\(^{xi} \) Conversation 5 (from Appendix C) was not used for this experiment because it involved a speaker commenting on the hairstyle of the person to which they were talking. Since most people do not make outwardly negative remarks to other people regarding their looks, the majority of participants would likely finish the conversation in a positive way. Therefore, including this conversation would have undermined one of the purposes of conducting Experiment 2 – increasing the potential effect size.

\(^{xii} \) Of these participants, 75% were white, 10% were Hispanic or Latino, 10% were Asian, and 5% were Black. The average age was 33.80 (SD = 11.08).
Experiment 1, judges were presented with the conversations in random order and asked to rate how positive/negative a speaker was regarding a given subject matter on a scale from -3 (extremely negative) to 3 (extremely positive). Five judges rated all of the different versions of Conversation 1, another five rated the different versions of Conversation 2, another five rated the different versions of Conversation 3, and the last five rated the different versions of Conversation 4. Judges who rated the appended conversations of one type did not rate the appended conversations of another type. Judges were compensated $4.00 for their participation.

Experiment 2: Results and Discussion

Power Mindset Manipulation. As expected, participants in the high power condition (M = 6.22, SD = 1.60) reported feeling more “in charge” than participants in the low power condition (M = 2.59, SD = 2.38), F(1, 123.01) = 111.99, p < 0.001.\(^{\text{xiii}}\)

Mood Check. Overall mood differed between the high power group (M = 1.68, SD = 1.80) and the low power group (M = 0.76, SD = 2.41), F(1, 129.37) = 6.48, p = 0.01.\(^{\text{xiv}}\) However, power priming did not affect the positive, negative, approach-related, and avoidance-related affect indices.

Valence Scores. The Valence Scores proved to be highly reliable. Cronbach’s alphas for the Conversations 1-4 (Appendix C) were 0.93, 0.92, 0.92, and 0.97 respectively. The ratings were averaged across judges for each conversation type, resulting in up to four Valence Scores for each participant. Gender did not influence the Valence Scores, ps > 0.46. With the exception of Conversation 2, F(1, 117) = 4.25, p =

\(^{\text{xiii}}\) The data failed the Levene test for homogeneity of variances, F(1, 137) = 13.97, p < .001. However, the Brown-Forsythe test demonstrated statistical significance between the two groups.\(^{\text{xiv}}\) The data failed the Levene test for homogeneity of variances, F(1, 137) = 13.97, p = 0.02. However, the Brown-Forsythe test demonstrated statistical significance between the two groups.
0.04, neither did native language, ps > 0.27. A one-way between subjects ANOVA was conducted to compare the effect of power priming on Valence Scores. There were no significant differences between conditions to report (see Table 5).xv

<table>
<thead>
<tr>
<th>Table 5: Experiment 2 Conversation Scores across Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Power</td>
</tr>
<tr>
<td>Conversation 1</td>
</tr>
<tr>
<td>Conversation 2</td>
</tr>
<tr>
<td>Conversation 3</td>
</tr>
<tr>
<td>Conversation 4</td>
</tr>
<tr>
<td>Average of 1-4</td>
</tr>
</tbody>
</table>

Summary. Experiment 2 did not provide evidence that power influences the interpretation of ambiguous statements even though the manipulation was successful. Another interesting finding was that the priming exercises impacted the mood of the participants in Experiment 1, but they did not in Experiment 2 (except for overall mood). These two observations naturally warrant a deeper investigation into (1) how the two experiments differ from each other and (2) what sets these experiments apart from those conducted in previous research.

General Discussion

Unfortunately, the two experiments outlined in the current investigation raise more questions than they answer. The experiments presented in this paper were originally designed to investigate the link between power and optimism in situations that both (a) lack rewards or punishments, and (b) involve performing higher-level cognitive tasks. Prior research has established a link between high power and the optimistic interpretation of stimuli in a variety of situations; this body of research is significant, strongly suggesting that this link will persist in the environments created by the experiments.

xv A repeated measures test failed to demonstrate any significant differences between groups.
presented in this paper. However, these experiments provided no evidence establishing a relationship between power and the processing of ambiguous statements (or “conversations”). For the remainder of this paper, I explore different reasons why this could be the case.

Manipulating Power. Previous research has employed a variety of methods in manipulating power. For example, several have resorted to the same mindset manipulation used in the current paper (Galinsky et al., 2003). Some have used a word fragment completion task to activate concepts of elevated power (Bargh, Raymond, Pryor, & Strack, 1995). Others have used scales to assess an individual’s sense of power (Anderson & Galinsky, 2006). Still others create situations in which some participants are assigned positions of high or low power. The latter type was used in Smith’s (2005) research, discussed earlier in the current paper.

One of Smith’s (2005) experiments has some interesting similarities to Experiment 2. Participants were instructed to complete word fragments that could be used to form either positive or negative words (e.g., fragment: G_OOM, positive word: GROOM, negative word: GLOOM). Smith found that high power participants completed the words more positively than low power participants and that this difference was not mediated by mood. Why would power impact how subjects complete ambiguous words, but not ambiguous comments? One reason could be the power manipulation. Smith had high power participants sit in a professor’s chair while low power participants sat in a guest chair within the same office. Perhaps this physical manipulation would have had a stronger effect than the mindset manipulation task. It would be interesting to see if the
results from Experiments 1 and 2 would vary if repeated using different power manipulations.

Self-Monitoring. Self-monitoring could be another reason Experiment 2 produced null results while Smith’s 2005 word fragment completion task did not. Self-monitoring involves the engagement of expressive control. High self-monitors “monitor their expressive behavior and accordingly regulate their self-presentation for the sake of desired public appearances” (Gangestad & Snyder, 2000, p. 530). On the other hand, low self-monitors are less concerned about the situational appropriateness of their expressive behavior and act more in accordance with their true attitudes and emotions. Naturally, some situations afford more opportunity to self-monitor than others. Completing conversations – where one has to worry about grammar, completeness, clarity, post-hoc impressions, etc. – afford more opportunity to self-monitor than completing word fragments. Also, there are significantly more ways to finish a conversation than a word fragment. The presence of increased options may encourage subjects to more seriously consider the impressions their responses may leave.

Previous research links diminished power with increased self-monitoring. Low power individuals are more likely to inhibit postural constriction (Ellyson & Dovidio, 1985), speech (Holtgraves & Lasky, 1999; Hosman, 1989), emotional displays (Keltner, Young, Heerey, Oemig, & Monarch, 1998), and the expression of ideas in a group setting (Moreland & Levine, 1989). It is possible that the low power participants in Experiment 2 also demonstrated more self-monitoring than their high power counterparts. It could be that their inclination was to finish the conversations in a more negative way, but they chose not to, either consciously or nonconsciously, because their answers were later
going to be reviewed by an experimenter.xvi Adjusting their answers upwards would effectively close the gap between their ratings and those of the high power participants. To test this theory in the future, one can measure the extent to which participants self-monitor during replications of both Smith’s 2005 experiment and Experiment 2. One way to do this is by administering the Self-Monitoring Scale (Snyder, 1974; Lennox & Wolfe, 1984), a commonly used measurement in the current literature.

\textit{Mood}. Mood is another aspect of the current investigation that deserves further attention. One the one hand, high (low) power is associated with the experience and expression of positive (negative) affect (Keltner et al., 2003; Watson & Clark, 1997). On the other hand, several studies that have used the same power mindset manipulation have not reported mood effects (e.g., Smith & Trope, 2006; Smith, Jostmann, Galinsky, & van Dijk, 2008). Curiously, the current investigation covers both ends of the spectrum. In Experiment 1, the power prime produced mood effects as evidenced by five mood measures. Conversely, only one out of five mood measures were affected by the power prime in Experiment 2. There are three possible reasons behind the mood effect discrepancy between Experiments 1 and 2: unreliable mood measures, execution of the power prime, and participant pool. The mood measures were taken directly from previous literature (Smith & Trope, 2006) and are assumed to be reliable.xvii

The execution of the power prime in Experiments 1 and 2 were the same with two exceptions – location and time. Participants in Experiment 1 filled out the survey online while those in Experiment 2 did so in a research lab on campus while the experimenter

xvi Previous research indicates that subjects often modify their responses to surveys in attempt to be seen in a more socially desirable way to the experimenter (Nederhof, 1985). Since high self-monitors are more aware of being observed, they may be more subject to this type of bias.

xvii A rigorous investigation into their reliability or validity is beyond the scope of the current investigation.
was in the same room. Although the subjects’ responses were unidentifiable in both cases, the increased anonymity inherent in online surveys may have engendered an environment more conducive to providing relatively honest or extreme answers to the mood questions. The experiments also differed in how much time was allotted to complete the essay. The participants in Experiment 1 had three minutes to respond while the participants in Experiment 2 had five minutes. It seems unlikely that this time difference would drastically affect the results. Even if it did, I would have expected the opposite of what actually happened. One would think that the manipulation would be more effective the longer participants spend writing the essay, at least until they reach the point of being frustrated with the task.xviii If power does impact mood, and the manipulation was more effective in Experiment 2 than Experiment 1, it is reasonable to assume that the mood effects would be greater in Experiment 2. Since that was not the case, we are left to consider the third possible reason behind the mood effect discrepancy – participant pool.

The participant pools were drastically different between the two experiments. For Experiment 1, the majority of the participants were White, and their average age was 34 years. For Experiment 2, the majority of the participants were Asian, and their average age was 21. Judging by their age, the participants from Experiment 1 likely have more professional experience (and possibly more time functioning in a hierarchical organization) than the undergraduate participants from Experiment 2. These differences in age, culture, and professional experience could be responsible for the mood effect

xviii To this point, it would be edifying to ask participants (1) how difficult they found the task and (2) how much they enjoyed the task to see if there is a relationship between mood and the task characteristics – a relationship that could possibly interfere with the power prime manipulation.
discrepancy between the two experiments. For example, older subjects have presumably experienced both a greater number and a greater range of power imbalances in their lives. As a result, these subjects (1) may more readily recall power imbalances, and (2) specifically recall more extreme power imbalances than their less-experienced counterparts. The latter may evoke stronger emotions that could more easily surface in the mood reports.

Conclusion. I originally embarked on this investigation in the hope that I would find evidence that elevated (diminished) power leads to optimistic (pessimistic) interpretations of ambiguous information. There are two general explanations for the failure of both Experiment 1 and Experiment 2 to establish this link. First and foremost, the experimental design may have been lacking in some way, in which case the link may exist but simply not have been detected by the experimental approach. Second, if the experimental design is sufficiently reinforced in future studies but still fails to demonstrate a link between power and optimism, it is possible that this theoretical link simply does not apply under the conditions presented by these experiments.

With respect to experimental design, there are at least three areas that require attention. First, the relatively high opportunity for self-monitoring when interpreting ambiguous conversations (as opposed to, e.g., ambiguous word fragments) is a potential complicating factor that must be addressed and eliminated. Second, it may be worth exploring alternative methods to manipulate power between subjects. While the power prime utilized in Experiments 1 and 2 is vetted in existing literature and appears effective, there remains the possibility that this power prime approach interacts poorly with the experimental design utilized here. For example, the power prime may not be
sufficiently strong enough to persist throughout a subject’s interpretation of the ambiguous conversations presented. There exist other accepted methods for manipulating power which should be explored in future research. This concern is further bolstered by a third experimental design issue: mood. There were mood effects across every mood measure in Experiment 1, but only with respect to a single mood measure (the overall measure) in Experiment 2. Mood effects can significantly compromise experimental results by either masking or explaining results. These effects should be addressed and preferably eliminated in future research.
APPENDIX A: Positive Conversations

1. Andrea: Hey, Lindsey. Jesse and I were thinking of eating out tonight. Do you know of any good places downtown?
 Lindsey: Yeah, there’s this new place that just opened – it’s awesome! We tried it out on impulse last night. The service is great and the food was yummy.
 Valence Score: M = 2.84, SD = 0.45
 Clarity Score: M = 3.61, SD = 0.50

2. Fred: Dude, how was the party last night?
 George: Man, you missed out! There were a ton of people there, and I met this really hot girl!
 Fred: Sweet! Did you get her number?
 George: Of course! I’ll let you know if she has a sister.
 Valence Score: M = 2.65, SD = 0.66
 Clarity Score: M = 3.18, SD = 0.91

3. Nancy: So, I want to hear all about your skydiving experience!
 Steve: Oh my God! It was such an adrenaline rush…scary, but so worth it. I am already getting a group together to go again. You want to come?
 Nancy: Hmm, well tell me more about it tonight, and I’ll let you know.
 Valence Score: M = 2.58, SD = 0.62
 Clarity Score: M = 3.25, SD = 0.70

4. Peter: Dude, I just finished playing the new PS3 game – you should totally try it out.
 Tyson: Yeah? I don’t know, at some point the games all seem the same to me.
 Peter: Well this one is totally different. It’s a strategy game with an awesome story line and ridiculous graphics. It’s challenging, but not impossible. Try it out! You will not be disappointed!
 Valence Score: M = 2.48, SD = 1.18
 Clarity Score: M = 3.21, SD = 0.74

5. Betty’s Mother: OK, now that we have pretty much seen every college on the east coast, are there any campuses that stick out in your mind?
 Betty: Yeah, I really liked the last one we were at. The campus was gorgeous, and the students seemed really nice. I immediately felt comfortable there – I can definitely see myself there for the next four years.
 Betty’s Mother: Go figure you pick the most expensive one! Joking aside, I think it’s a good choice.
 Valence Score: M = 2.45, SD = 0.72
 Clarity Score: M = 3.39, SD = 0.69

xix These conversations were only used in the Pretest. Conversations are presented in order of Valence Score – the most positive conversations appear first.
xix Participants were asked, “How positive/negative was _____ regarding _____?” on a scale from -3 (extremely negative) to 3 (extremely positive). This is referred to as the “Valence Scale.”
xxi Participants were asked, “How clear was _____ regarding _____?” on a scale from 1 (not at all clear) to 4 (very clear). This is referred to as the “Clarity Scale.”
6. Wendy: Hey Karen, I just found out I have to go to Philadelphia next week for the project I’m on. I know they’ve been flying you out there a lot lately. Is there any particular hotel you would recommend that the company would approve?
Karen: Yeah, the place I stayed at last time was really nice. I will have to go to my old expense report to look up the address for you. Anyways, the location was perfect – you could walk to all the restaurants and shops. The beds were comfortable, and the staff was very friendly.
Valence Score: $M = 2.45, SD = 0.62$
Clarity Score: $M = 3.61, SD = 0.50$

7. Anthony: Hey Ron, since I am new in the area, I was wondering if there is a doctor you would recommend.
Ron: Are you looking for a specific type of doctor, because I don’t usually see specialists?
Anthony: No, just a regular doctor – one for check-ups, the occasional cold, etc.
Ron: OK, in that case, I recommend Dr. Wu. He’s pretty cool and always takes the time to answer all of my questions. Another benefit is that there is never a long wait.
Valence Score: $M = 2.23, SD = 0.56$
Clarity Score: $M = 3.68, SD = 0.55$

8. Mark: Hey, Don. What’s the name of the band that made this song?
Don: Oh, I don’t remember … Why?
Mark: I really like it. I want to download it when I get home later.
Ed: Well, the info should be on my IPod.
Valence Score: $M = 1.87, SD = 0.96$
Clarity Score: $M = 3.18, SD = 1.09$

9. Sandra’s Mother: Hey honey, are you all settled into your dorm room?
Sandra: Yeah, so far so good.
Sandra’s Mother: What do you think of your roommate?
Sandra: She’s pretty cool. She has really cute clothes, and we wear the same size!
Valence Score: $M = 1.87, SD = 0.62$
Clarity Score: $M = 2.96, SD = 0.84$

10. Salesman: So, what do you think of the car?
Paul: You know, I’ve test driven a lot of cars, and I think this is the one. The next best option for us is comparable in price but not nearly as comfortable.
Salesman: When are you looking to buy a car?
Paul: Now, basically.
Valence Score: $M = 1.87, SD = 0.96$
Clarity Score: $M = 3.21, SD = 0.74$
APPENDIX B: Negative Conversations

1. **Kelsey**: Wow, Hank! You look so dressed up – what’s the occasion?
 Hank: Oh, um… I’m going to a funeral.
 Kelsey: Oh, I am so sorry to hear that! Was it someone close to you?
 Hank: It was my best friend from high school. He was hit by a drunk driver.
 *Valence Score: M = -2.74, SD = 0.68
 Clarity Score: M = 3.75, SD = 0.59

2. **Derrick**: Hey Ian! Welcome back! How was the camping trip?
 Ian: Well, unfortunately, nothing worked out the way it was supposed to. When we arrived at the camp site, there were no openings for us. So, we then tried 3 other sites until we were able to squeeze in somewhere. Then, it turned out to be really cold – like, 30 degrees, which we were not ready for. We basically spent the whole time shivering and distracting ourselves from the cold.
 Derrick: Sorry to hear that, man. At least you were able to get away from the daily grind.
 *Valence Score: M = -2.58, SD = 0.56
 Clarity Score: M = 3.57, SD = 0.63

3. **Scott**: Hey Ben, do you know Linda Williams? I think she is in the same program as you.
 Ben: Yeah, I know her. Why?
 Scott: My friend set me up on a blind date with her. I am trying to get some intel to see if I should go through with it.
 Ben: Oh, really? I don’t really like her cause she’s snobby. She makes fun of other people if they don’t wear brand labels and she brags about her parents all the time. She’s also slightly crazy – she threw her book at the professor the other day.
 Scott: Oh wow!
 Ben: Yeah, man. I mean, at the end of the day, it’s your decision, but I personally could think of a hundred better ways to spend your time than on a date with Linda.
 *Valence Score: M = -2.61, SD = 0.62
 Clarity Score: M = 3.96, SD = 0.19

4. **Jill**: Hey, I know you went to a mechanic recently to get your car fixed. Where did you go?
 Michelle: I went to a place called the “Car-Fixer” in Mission Valley. Why, what’s up?
 Jill: Unfortunately, I’ve been having some engine issues. I am scared my car is going to break down, so I need to get it fixed. Do you think I should go to the same place?
 Michelle: Sure, head on over to the Car-Fixer if you like being ripped off and waiting forever. I didn’t have such a great experience with them.
 Jill: That sucks. I guess I will ask some other folks.
 *Valence Score: M = -2.52, SD = 1.00
 Clarity Score: M = 3.68, SD = 0.55

5. **Helen’s Dad**: Hey sweetheart! Welcome home! How was the trip over here?
 Helen: The only good thing about it was that I got here in one piece. First, the original flight was delayed by 2 hours. Then, I missed my connecting flight. They were able to get me on a different plane, but it was a middle seat next to a screaming baby. Anyways, I am just glad to be here!
 *Valence Score: M = -2.26, SD = 0.68
 Clarity Score: M = 3.75, SD = 0.52

xxii These conversations were only used in the Pretest. Conversations are presented in order of Valence Score – the most negative conversations appear first.

xxiii Participants were asked, “How positive/negative was _____ regarding _____?” on a scale from -3 (extremely negative) to 3 (extremely positive). This is referred to as the “Valence Scale.”

xxiv Participants were asked, “How clear was _____ regarding _____?” on a scale from 1 (not at all clear) to 4 (very clear). This is referred to as the “Clarity Scale.”
6. **Ruth:** Hey Sharon, I know you worked at “Company B” before you started the MBA program. I actually have an interview with them tomorrow. How did you like it there?

 Sharon: Truthfully?

 Ruth: Yeah, of course.

 Sharon: My working there is actually what prompted me to join the MBA program. I wanted to open more doors for myself because I was ready to move on from the company.

 Ruth: What about the environment?

 Sharon: I thought it was brutal. The people were pretty competitive and kept to themselves. I was forced to wear suits every day and work long hours. Some people are OK with that sort of thing, but it wasn’t for me.

 Valence Score: $M = -2.26, SD = 0.58$

 Clarity Score: $M = 3.68, SD = 0.67$

7. **Sam:** Hey Dean, how did your performance assessment go?

 Dean: Man, I don’t really want to talk about it. Suffice to say they think I am “underperforming my potential” and they saw no need to give me a raise.

 Sam: Ouch! Sorry to hear that man. Well, I hope they tell you a different story 6 months from now…

 Valence Score: $M = -2.16, SD = 0.52$

 Clarity Score: $M = 3.25, SD = 0.75$

8. **Kim:** Hello?

 Jeff: Hey babe, it’s me. How are you doing? How did your parents handle you coming home past curfew last night?

 Kim: Not well at all. My mother stayed up late and could tell that I had been drinking. They’ve grounded me for two months! The only time I am allowed to leave the house is for school or for helping my parents out with errands.

 Jeff: Oh, that sucks! I am so sorry!

 Valence Score: $M = -2.23, SD = 0.67$

 Clarity Score: $M = 3.71, SD = 0.71$

9. **Saleswoman:** Here are the shoes you wanted to try on. … So, what do you think?

 Danielle: They are definitely cute, but they are really uncomfortable.

 Saleswoman: Would you like me to get them in a different size?

 Danielle: No, thank you. I don’t think it’s a size issue. There is no padding, and the heel is ridiculously high. I don’t see how I could reasonably wear these for more than five minutes.

 Valence Score: $M = -2.19, SD = 0.65$

 Clarity Score: $M = 3.93, SD = 0.26$

10. **Alicia:** So, while you were in the restroom, the waiter gave us free wine because we waited so long for him to come to our table.

 Carol: Well, that’s nice. How is it?

 Alicia: Its only redeeming qualities are that it is free and has alcohol. Otherwise, it’s not that great.

 Valence Score: $M = -1.23, SD = 1.26$

 Clarity Score: $M = 3.29, SD = 0.76$
APPENDIX C: Ambiguous Conversations

1. **Charles**: Hi Joe, whatcha been up to?
 Joe: Just finished watching our school’s baseball championship game.
 Charles: Oh yeah! How was it?
 Joe: Emotional. I am still in disbelief at what happened.
 Used in Pretest, Experiment 1, & Experiment 2
 Valence Score: M = -0.65, SD = 1.05
 Clarity Score: M = 1.64, SD = 0.91

2. **Tom**: Hey Chris! What did you do last night?
 Chris: I actually went out with this girl from my class – Lisa.
 Tom: Is she hot?
 Chris: She’s one of those people that look different every time you see her.
 Used in Pretest, Experiment 1, & Experiment 2
 Valence Score: M = 0.10, SD = 0.79
 Clarity Score: M = 1.68, SD = 0.67

3. **Linda**: I just got assigned to a team with Dustin. Have you worked with him before?
 Robert: Yeah, I did my marketing project with him last quarter.
 Linda: What do you think of him?
 Robert: Well, it was interesting. He certainly approaches things differently.
 Used in Pretest, Experiment 1, & Experiment 2
 Valence Score: M = 0.10, SD = 0.98
 Clarity Score: M = 1.79, SD = 0.88

4. **David**: Hey Rich, how was your weekend?
 Rich: Not bad. Saw that new movie – “Years”
 David: Oh, I’ve been wanting to see that. What did you think?
 Rich: It was definitely not what I expected. At first, I thought I was in the wrong theater!
 Used in Pretest, Experiment 1, & Experiment 2
 Valence Score: M = -0.71, SD = 1.07
 Clarity Score: M = 2.07, SD = 0.781

5. **Mary**: Hi Patricia!
 Patricia: Wow! Mary, did you get a haircut?
 Mary: Yeah, I just decided the other day that I wanted a new look. What do you think?
 Patricia: You definitely look like a different person!
 Used in Pretest & Experiment 1
 Valence Score: M = 0.84, SD = 1.10
 Clarity Score: M = 2.14, SD = 0.93

These conversations were used in the Pretest, Experiment 1, and Experiment 2. Conversations are presented in order of Ambiguity Score – the most ambiguous conversations appear first.

Participants were asked, “How positive/negative was _____ regarding _____?” on a scale from -3 (extremely negative) to 3 (extremely positive). This is referred to as the “Valence Scale.”

Participants were asked, “How clear was _____ regarding _____?” on a scale from 1 (not at all clear) to 4 (very clear). This is referred to as the “Clarity Scale.”
6. **John:** Hey James, me and a couple of buddies are going for a run today. You want to come?
 James: Not sure … What kind of distance are we talking about?
 John: Probably around 6 miles. Are you a good runner?
 James: I’m not bad … I’ll get back to you later and let you know.
 Used in Pretest only
 Valence Score: $M = 0.26$, $SD = 0.93$
 Clarity Score: $M = 2.18$, $SD = 0.67$

7. **Will:** Hey! I see you are back from spring break. You do anything interesting?
 Barbara: I went to India, actually.
 Will: Wow! How was it?
 Barbara: It was one of those trips that really opens your eyes. It helped me put things into perspective.
 Used in Pretest only
 Valence Score: $M = 1.61$, $SD = 0.88$
 Clarity Score: $M = 2.25$, $SD = 0.93$

8. **Liz:** Hey Jen, what classes do you have this quarter?
 Jen: I have Statistics, Calculus III, Biology and Biology Lab. To be honest, I am kind of worried about the bio class with Professor Johnson. Have you taken it before?
 Liz: Yeah.
 Jen: What did you think?
 Liz: I definitely learned a lot!
 Used in Pretest only
 Valence Score: $M = 1.87$, $SD = 0.96$
 Clarity Score: $M = 2.25$, $SD = 0.89$

9. **Marg:** Hey Dan, do you want to catch some lunch?
 Dan: Sure, let me just stop at my desk to drop off my notes. I just got back from a seminar.
 Marg: Oh, how was it?
 Dan: Some of the experiments dealt with food, so it made me hungry!
 Used in Pretest only
 Valence Score: $M = 0.39$, $SD = 0.80$
 Clarity Score: $M = 2.39$, $SD = 1.03$

10. **Maria:** Hey Susan, what do you think of these pants? Do they look OK?
 Susan: Yeah, I think they look fine.
 Maria: Cool, I was thinking of wearing them to that party tomorrow night.
 Susan: Just be sure to get the matching top.
 Used in Pretest only
 Valence Score: $M = 1.10$, $SD = 0.87$
 Clarity Score: $M = 2.79$, $SD = 0.92$
APPENDIX D: Power Mindset Manipulation

High Power Condition (used in both Experiment 1 and Experiment 2):

Please recall a particular incident in which you had power over another individual or individuals. By power, we mean a situation in which you controlled the ability of another person or persons to get something they wanted, or were in a position to evaluate those individuals.

Please describe this situation in which you had power — what happened, how you felt, etc. You will have 3 minutes. Please provide as much detail as possible.

Low Power Condition (used in both Experiment 1 and Experiment 2):

Please recall a particular incident in which someone else had power over you. By power, we mean a situation in which someone had control over your ability to get something you wanted, or was in a position to evaluate you.

Please describe this situation in which you did not have power—what happened, how you felt, etc. You will have 3 minutes. Please provide as much detail as possible.

Control Condition (only used in Experiment 1):

Please recall the last time you went to the grocery store. Please choose one experience in particular to reflect upon.

Take some time to visualize and describe this experience: events, feelings, thoughts, etc. You will have 3 minutes. Please provide as much detail as possible.

REFERENCES

