Lawrence Berkeley National Laboratory

Recent Work

Title
Assessment of Nextera Long Mate-Pair Libraries: A Rapid, Low-Input Method for Mate-Pair Library Construction Yields Improved Assemblies

Permalink
https://escholarship.org/uc/item/27j9m66h

Authors
Hoover, Cindi A.
Eng, Kevin S.
Sun, Hui
et al.

Publication Date
2013-03-26
Assessment of Nextera Long Mate-Pair Libraries: A Rapid, Low-Input Method for Mate-Pair Library Construction Yields Improved Assemblies

Cindi A. Hoover*1, Kevin S. Eng1, Hui Sun1, Jeff Froula1, and Feng Chen1

1 Department of Energy Joint Genome Institute // LBNL - Walnut Creek, CA

*To whom correspondence may be addressed. E-mail: cahoover@lbl.gov

March 25, 2013

ACKNOWLEDGMENTS:

The work conducted by the US Department of Energy (DOE) Joint Genome Institute is supported by the Office of Science of the DOE under Contract Number DE-AC02-05CH11231. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government, or any agency thereof, or the Regents of the University of California.

DISCLAIMER:

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California.
Assessment of Nextera Long Mate-Pair Libraries: A Rapid, Low-Input Method for Mate-Pair Library Construction Yields Improved Assemblies

Cindi A. Hoover*,1, Kevin S. Eng1, Hui Sun1, Jeff Froula1, and Feng Chen1
1 DOE Joint Genome Institute, Walnut Creek, CA, USA

Introduction

Long mate-pair libraries are invaluable tools for genome assembly. However, traditional methods of long mate-pair library construction require large (20 µg) quantities of DNA and several days of hands-on time. Illumina’s Nextera™ Long Mate-Pair (LMP) method is rapid and requires only 1 to 4 micrograms of input material. Here we present an initial assessment of the method for both gel-free and gel size-selected libraries using microbial, fungal, and plant samples. We observed uniform read coverage and high read uniqueness for Nextera™ LMP libraries. Assembly using ALLPATHS-LG generated low contig and scaffold numbers even with relatively low mate-pair coverage.

Methods Overview

Results

Organisms Tested

<table>
<thead>
<tr>
<th>Species</th>
<th>%GC</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phycomyces blakesleeanus</td>
<td>36%</td>
<td>Filamentous fungi</td>
</tr>
<tr>
<td>Spirochaeta smaragdinae</td>
<td>49%</td>
<td>Gram (-) microbe</td>
</tr>
<tr>
<td>Conexibacter woesei</td>
<td>73%</td>
<td>Gram (+) microbe</td>
</tr>
<tr>
<td>Cellumonas flavigena</td>
<td>74%</td>
<td>Gram (+) microbe</td>
</tr>
<tr>
<td>Suillus luteus</td>
<td>47%</td>
<td>Basidiomycete fungi</td>
</tr>
<tr>
<td>Sorghum bicolor</td>
<td>42%</td>
<td>Plant</td>
</tr>
</tbody>
</table>

Table 1. Initial testing organisms and their GC-content

<table>
<thead>
<tr>
<th>Organism & Assembly Type</th>
<th>Scaffolds</th>
<th>Contigs</th>
<th>Scaffold L50</th>
<th>Contig L50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conexibacter woesei Frag+Traditional LMP</td>
<td>1</td>
<td>7</td>
<td>6355 Kb</td>
<td>1190 Kb</td>
</tr>
<tr>
<td>Conexibacter woesei Frag+ Nextera LMP</td>
<td>1</td>
<td>8</td>
<td>6328 Kb</td>
<td>744 Kb</td>
</tr>
<tr>
<td>Cellumonas flavigena Frag+Traditional LMP</td>
<td>8</td>
<td>48</td>
<td>4060 Kb</td>
<td>188 Kb</td>
</tr>
<tr>
<td>Cellumonas flavigena Frag+ Nextera LMP</td>
<td>4</td>
<td>27</td>
<td>3493 Kb</td>
<td>408 Kb</td>
</tr>
<tr>
<td>Suillus luteus Fragment only</td>
<td>1944</td>
<td>2113</td>
<td>57.6 Kb</td>
<td>51.3 Kb</td>
</tr>
<tr>
<td>Suillus luteus Frag+ Nextera LMP</td>
<td>397</td>
<td>1477</td>
<td>240 Kb</td>
<td>54.6 Kb</td>
</tr>
</tbody>
</table>

Table 3. ALLPATHS-LG assemblies were improved with the inclusion of Nextera LMP data compared to traditional LMP data.

Summary

- User-friendly protocol with short hands-on time
- Low template requirement compared to traditional long-mate pair methods (1µg/4 µg)
- Read uniqueness is high for Nextera LMP libraries
- Nextera LMP libraries have uniform read coverage
- Insert size doesn’t seem to have significant impact on contig N50
- ALLPATHS-LG generated low contig and scaffold numbers for microbes, even with low coverage
- Addition of Nextera LMP data generally improved assembly results

The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231