FLUCTUATIONS OF A PLASMA (I)*

NORMAN ROSTOKER

JOHN JAY HOPKINS LABORATORY FOR PURE AND APPLIED SCIENCE

GENERAL ATOMIC DIVISION OF GENERAL DYNAMICS CORPORATION

SAN DIEGO, CALIFORNIA

We consider a fully ionized plasma. At time \(t \) the state of the system is represented by a point \(X \) in the phase space of all the particles. We define \(D_{dX}dX' \ldots dX^{(6)} \) as the joint probability that at time \(t' \) the system will be in \((X, dX) \), at time \(t' \) in \((X', dX') \), etc. A systematic procedure has been developed for calculating any desired moment of \(D_1 \) as an expansion in the discreteness parameters \(e, m, \) and \(1/n \). Spectral densities and autocorrelation functions can thus be obtained without any "Stoßzahlansatz" or Markoffian assumption. A comprehensive treatment of a plasma in thermal equilibrium has been carried out. A large class of non-equilibrium states may exist in a hot plasma for sufficient time to be considered stationary. Fluctuations have been calculated for the class of spatially homogeneous states of an infinite plasma. It is of some interest that thermal equilibrium relationships such as Kirchhoff's radiation law and the fluctuation-dissipation theorem survive. As an application we have calculated the degree of excitation of the collective modes such as plasma waves, ion oscillations, etc. For distribution functions which approach instability as some parameter is varied, the energy for some modes becomes very large and ultimately becomes infinite as instability is approached.

CONTENTS

1. THERMAL EQUILIBRIUM WITH COULOMB INTERACTIONS 101
2. NON-EQUILIBRIUM STATES WITH COULOMB FORCES 110

1.1 Introduction 101
1.2 Joint probability functions 103
1.3 Fluctuations of electric field 104
1.4 Superposition of dressed particles 105
1.5 Fluctuation-dissipation theorem 106
1.6 Kirchhoff's radiation law 106
1.7 Fluctuations of current density 107
1.8 Fluctuations with a constant magnetic field 108

2.1 Introduction 110
2.2 Joint probability functions 110
2.3 Electric field fluctuations 112
2.4 Theorems relating to fluctuations 114
2.5 Fokker-Planck equations 115
2.6 Fluctuations with a constant magnetic field 117

2.7 Diffusion in the presence of a constant magnetic field 119

REFERENCES 120

1. Thermal equilibrium with Coulomb interactions

1.1 Introduction

The state of a plasma at time \(t \) is represented by a point in phase space \(X = (x_1, v_1); (x_2, v_2); \ldots (x_n, v_n) \) where \(x_n, v_n \) are position and velocity of the \(n \)-th particle. For an ensemble of systems \(D_1 (X, t) dX \) means the probability that at time \(t \) a system will be in the volume element \((X, dX) \) of phase space. \(D_1 (X, t) \) determines the expectation value for the measurement of any observable at position \(x \) and time \(t \), i.e.,

\[
\langle O(x, t) \rangle = \int D_1 (X, t) O(x, t) dX.
\]
(1)

For example \(O(x, t) = \sum_n q_n \delta(x - x_n) \), the charge density; \(\sum_n q_n v_n \delta(x - x_n) \), the current density, etc. If a plasma is in thermal equilibrium, \(\langle O(x, t) \rangle = 0 \) for these quantities. However there are spontaneous fluctuations so that

\[
\langle O^2(x, t) \rangle = \int D_1 (X, t) O^2(x, t) dX \neq 0.
\]
(2)

It is possible to make more sophisticated measurements of fluctuating quantities whose expectation values are not determined by \(D_1 (X, t) \). We shall be...

* Research on controlled thermonuclear reactions is a joint program carried out by General Atomic and the Texas Atomic Energy Research Foundation.
concerned in particular with the auto-correlation function, see, e.g. Lax [1]:

\[C(T) = \lim_{T \to \infty} \frac{1}{T^2} \int_{-T/2}^{T/2} dt \int_{-T/2}^{T/2} e^{-i\tau} S(\omega) d\omega \]

(3)

and the spectral density

\[S(\omega) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} dt \int_{-T/2}^{T/2} e^{-i(\omega - \omega')t} S(\omega') \]

where

(4)

For example,

\[S(\omega) = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} dt \int_{-T/2}^{T/2} e^{-i(\omega - \omega')t} S(\omega') \]

(5)

To determine the expectation value of quantities like \(\langle O(t) O(t') \rangle \), the state of the system at time \(t \) is insufficient. It is necessary to consider a more general description of the plasma that involves \(D_2(X_t; X'_{t'}) dX dX' \), the probability that at time \(t \) the system will be in \((X, dX) \), and at time \(t' \) in \((X', dX')\).

In terms of this function the expectation value is

\[\langle O(t) O(t') \rangle = \int D_2(X_t; X'_{t'}) O(t) O(t') dX dX'. \]

For a stationary random process this will depend only on \(\tau = t' - t \) so that

\[\langle C(\tau) \rangle = \langle O(t) O(t+\tau) \rangle. \]

(6)

Laplace transforms will be employed in most calculations. To express \(S(\omega) \) and \(C(\tau) \) in terms of Laplace transforms, consider the identity

\[S(\omega) = \frac{1}{2\pi} \int d\omega' S(\omega') \]

(7)

Now,

\[\int_0^\infty dt e^{i(\omega' - \omega)t} = \pi \delta(\omega' - \omega) + i P \frac{1}{\omega' - \omega}, \]

\[\int_0^\infty dt e^{i(\omega' - \omega)t} = \pi \delta(\omega' - \omega) - i P \frac{1}{\omega' - \omega}, \]

where \(P \) means the principal part. Let

\[S^+(i\omega) = \frac{S(\omega)}{2} + \frac{i}{2\pi} \int_0^\infty \frac{d\omega'}{\omega' - \omega} S(\omega') \]

(8)

\[S^-(i\omega) = \frac{S(\omega)}{2} - \frac{i}{2\pi} \int_0^\infty \frac{d\omega'}{\omega' - \omega} S(\omega'); \]

then

\[S^+(i\omega) + S^-(i\omega) = S(\omega) \]

\[S^+(i\omega) - S^-(i\omega) = \frac{i}{\pi} P \int_0^\infty \frac{S(\omega') d\omega'}{\omega' - \omega} \]

or

\[\text{Im} [S^+(i\omega)] = \frac{1}{\pi} P \int_0^\infty \frac{d\omega'}{\omega' - \omega} \text{Re} [S^+(i\omega)] \]

\[\text{Re} [S^+(i\omega)] = -\frac{1}{\pi} P \int_0^\infty \frac{d\omega'}{\omega' - \omega} \text{Im} [S^+(i\omega)]. \]

The real and imaginary parts of \(S^+(i\omega) \) are Hilbert transforms. An alternative way of writing Eqs. (8) is

\[\lim_{\lambda \to 0} \int_{-\infty}^\infty S^+(i\omega') d\omega' = 0, \]

(9)

in which it is clear that the equality exists because of the fact that \(S^+(i\omega) \) is regular in the lower half of the \(\omega \)-plane (or \(S^+(p) \) is regular in the right half of the \(p \)-plane). Similarly

\[\lim_{\lambda \to 0} \int_{-\infty}^\infty S^-(i\omega') d\omega' = 0 \]

(10)

because \(S^-(i\omega) \) is regular in the upper half of the \(\omega \)-plane.

The spectral density and auto-correlation function can be generalized to include spatial fluctuations and
also different components of a tensor. The spectral density is defined as
\[S_{\alpha\beta}(k,\omega) = \lim_{\nu T \to \infty} \int \frac{d\nu}{2\pi} \int \frac{d\nu'}{2\pi} e^{i(\omega'T - \omega'T' + k \cdot (x'-x))} \times O_{\alpha}(x)O_{\beta}(x') \]
\(= \lim_{\nu T \to \infty} \frac{1}{\nu T} O_{\alpha}^{*}(k,\omega) O_{\beta}(k,\omega), \tag{11} \)
which is Hermitian. The auto-correlation function is
\[C_{\alpha\beta}(r,\tau) = \int \frac{d^3k}{(2\pi)^3} e^{i(k \cdot r)} S_{\alpha\beta}(k,\omega) \]
\(= \lim_{\nu T \to \infty} \frac{1}{\nu T} \int d\nu d\nu' O_{\alpha}(x) O_{\beta}(x + r, t + \tau). \tag{12} \)

The symmetry properties of these quantities are
\[S_{\alpha\beta}(k,\omega) = S_{\beta\alpha}^{*}(k,\omega) = S_{\beta\alpha}(k,\omega) \]
\[C_{\alpha\beta}(r,\tau) = C_{\beta\alpha}^{*}(r,\tau) = C_{\beta\alpha}(r,\tau). \]
The total fluctuation is symmetric, i.e.,
\[C_{\alpha\beta}(0,0) = \int \frac{d^3k}{(2\pi)^3} S_{\alpha\beta}(k,\omega) \]
\(= \lim_{\nu T \to \infty} \frac{1}{\nu T} \int d\nu d\nu' O_{\alpha}(x) O_{\beta}(x,t). \tag{13} \)

For a spatially homogeneous plasma and a stationary random process \(O_{\alpha}(x) \) depends only on \(r \) and \(\tau \) so that \(C_{\alpha\beta}(r,\tau) = O_{\alpha}(x) O_{\beta}(x + r, t + \tau). \)

A systematic procedure will be developed for calculating \(C_{\alpha\beta} \). Fourier transforms will be employed for the spatial co-ordinates and Laplace transforms for the time. The result will be obtained in the form
\[C_{\alpha\beta}(r,\tau) = \int \frac{d^3k}{(2\pi)^3} e^{i(k \cdot r)} S_{\alpha\beta}^{*}(k,\omega), \tag{14} \]
\(= C_{\alpha\beta}^{*}(r,\tau) \quad (\tau > 0) \)
\(= 0 \quad (\tau < 0). \)

The previous discussion of the two-sided Laplace transforms may be applied to infer a Hermitian and an anti-Hermitian spectral density.
\[S_{\alpha\beta}^{+}(k, i \omega) = \frac{1}{2} S_{\alpha\beta}(k, \omega) + \frac{i}{2 \pi} \int \frac{d\omega'}{\omega' - \omega} S_{\alpha\beta}(k, \omega') \]
\[S_{\alpha\beta}^{-}(k, i \omega) = \frac{1}{2} S_{\alpha\beta}(k, \omega) - \frac{i}{2 \pi} \int \frac{d\omega'}{\omega' - \omega} S_{\alpha\beta}(k, \omega') \]
\(= S_{\alpha\beta}^{*}(-k, -i \omega) = [S_{\alpha\beta}^{+}(k, i \omega)]^{*}. \tag{16} \)

The Hermitian spectral density is
\[S_{\alpha\beta}(k, \omega) = S_{\alpha\beta}^{+}(k, i \omega) + [S_{\alpha\beta}^{+}(k, i \omega)]^{*}. \]

There is also an anti-Hermitian spectral density
\[A_{\alpha\beta}(k, \omega) = S_{\alpha\beta}(k, i \omega) - [S_{\alpha\beta}^{+}(k, i \omega)]^{*} = \frac{i}{\pi} \int \frac{d\omega'}{\omega' - \omega} S_{\alpha\beta}(k, \omega'), \]
which is simply related to the Hilbert transform of the Hermitian spectral density. If \(2 S_{\alpha\beta}^{+}(k, i \omega) \) is symmetric, the real part will be the spectral density and the imaginary part will be its Hilbert transform. We shall begin with a plasma consisting of electrons and randomly distributed positive ions of infinite mass. Only Coulomb forces will be considered. The calculations will be progressively generalized to include ions of finite mass, constant external magnetic field, the complete electromagnetic field and relativistic modifications. In Section 1 we shall consider only Coulomb interactions and thermal equilibrium.

1.2 JOINT PROBABILITY FUNCTIONS

\(D_{\alpha}(X(t); X'(t); \ldots; X^{(N)(t)} \) means the joint probability that at time \(t \) the system will be in \((X, dX) \), at time \(t' \) in \((X', dX') \) etc. The entire system is trivially Markoffian so that all functions \(D_{\alpha} \) can be expressed in terms of \(D_{1} \) and \(D_{2} \). \(D_{2}(X(t); X'(t') \) satisfies the Liouville equation in the variables \(X', t' \),
\[\frac{\partial}{\partial t'} \sum_{i=1}^{N} \frac{\partial}{\partial x_{n}'} \frac{e^{2}}{m} \sum_{i \neq n} \frac{\partial}{\partial x_{n}'} \frac{1}{2} \frac{\partial}{\partial x_{n}} D_{2}(X(t); X'(t')) = 0 \tag{15} \]
and the initial condition
\[D_{2}(X(t); X'(t')) = D_{1}(X(t)) \delta(X' - X) \]
where
\[\delta(X' - X) = \prod_{n=1}^{N} \delta(x_{n}' - x_{n}) \delta(v_{n}' - v_{n}). \]

Coulomb forces only are considered and the ions are omitted from the problem in the usual way. For present purposes it is sufficient to determine
\[W_{ij}(X_{i}(t); X_{j}(t')) = V^{2} \int D_{2}(X(t); X'(t')) (dX)^{N-1} (dX')^{N-1} \tag{16} \]
where all coordinates are integrated out except \(X_{i}, X_{j}' \). The method consists of taking moments of the Liouville equation to produce chains of equations. The chains are solved by an expansion procedure in which the parameters of expansion are \(e, m \) or \(1/m \) as discussed previously by ROSTOKER and ROSENBLUM [2]. The determination of \(W_{ij} \) is very directly related to the previously discussed problem of test particles in a plasma [2].

Let
\[\psi(X_{i}(t); X_{j}(t')) = V \int D_{2}(X(t); X'(t')) (dX)^{N-1}. \tag{17} \]
\(\psi \) satisfies the Liouville equation in \((X'; t') \) and the initial condition
\[\psi(X_{i}(t); X_{j}(t')) = V D_{1}(X'(t')) \delta(X_{i}' - X_{j}). \tag{18} \]
Assuming that \(D_{1}(X(t)) \) is symmetric with respect to the interchange of the co-ordinates of any two particles it follows that \(\psi \) is also symmetric except for particle one, i.e., particle one is a singled-out test particle. We have thus reduced the problem to the previously discussed test-particle problem except that we have different initial conditions for the present case.
The s-body functions may be defined as follows:

\[f_s(X_1, ..., X_s; t) = V \int D_1(X_1) (dX)^{N-s} \]

\[F_s(X_1, t; X'_1, ..., X'_{s+1}, t') \]

\[= V \int \psi (X_1 t; X' t) dX_1 dX_{s+2} - dX_N \]

\[\Omega_s(X_1 t; X_1', ..., X_s', t') \]

\[= V \int \psi (X_1 t; X' t') dX'_{s+1} - dX'_N . \] (19)

We note that

\[W_{11} (X_1 t; X_1' t') = \Omega_s (X_1 t; X_1' t') \]

\[W_{12} (X_1 t; X_1' t') = F_s (X_1 t; X_1' t') . \]

By taking moments of the Liouville equation, coupled chains of equations are obtained for \(F_s, \Omega_s \). These chains have previously been terminated by expanding in terms of the discreteness parameters [2]. For our present purposes we need to know \(W^{(0)}_{11}, W^{(0)}_{12}, W^{(0)}_{13} \). The equations for these functions are as follows:

\[\left(\frac{\partial}{\partial v_1} + v_1 \frac{\partial}{\partial x_1} - \frac{\epsilon}{m} E_M(x'_1, t') \frac{\partial}{\partial x'_1} \right) W^{(0)}_{11}(X_1 t; X_1' t') = 0 \] (20)

\[\left(\frac{\partial}{\partial v_1} + v_1 \frac{\partial}{\partial x_1} - \frac{\epsilon}{m} E_M(x'_1, t') \frac{\partial}{\partial x'_1} \right) W^{(0)}_{12}(X_1 t; X_1' t') = 0 \] (21)

\[W^{(0)}_{12}(X_1 t; X_1' t') = f^{(0)}(X_1 t; X_1' t') = f(v_1) f(v_2) . \]

\[E_M^{(0)} \] means the macroscopic field

\[E_M^{(0)}(x', t') = n e \int \frac{1}{|x' - x|} f(v_1) dX_1 . \]

\[\left(\frac{\partial}{\partial v_2} + v_2 \frac{\partial}{\partial x_2} - \frac{\epsilon}{m} E_M(x'_2, t') \frac{\partial}{\partial x'_2} \right) W^{(0)}_{13}(X_1 t; X_1' t') \]

\[= \frac{n}{|x_2 - x_1|} \delta [x_2 - x_1] \delta (v_1 - v_2) / f(v_1) \] (22)

\[W^{(0)}_{13}(X_1 t; X_1' t') = - \frac{\epsilon^2}{\Theta} \exp \left[\frac{-|x_1 - x'_1|}{(LD)} \right] / f(v_1) f(v_2) . \]

In the above equations

\[f(v) = \left(\frac{m}{2 \pi \Theta} \right)^{3/2} \exp \left[-m v^2 / 2 \Theta \right] , \]

\[\frac{1}{(LD)^3} = \frac{4 \pi n e^2}{\Theta} . \]

The solutions of these equations are

\[W^{(0)}_{11}(X_1 t; X_1' t') = V f(v_1) \delta [x_1' - x_1 - v_1 (t' - t)] \delta (v'_1 - v_1) \]

\[W^{(0)}_{12}(X_1 t; X_1' t') = f(v_1) f(v_2) \] (23)

\[W^{(0)}_{13}(X_1 t; X_1' t') = f(v_1) f(v_2) \int \frac{d k}{(2\pi)^3} e^{i k \cdot (x_1' - x_1)} \int \frac{d p}{(2\pi)^3} e^{i p \cdot (v'_1 - v_1)} W_{pk}(v_1, v_2) \]

where

\[W_{pk}(v_1, v_2) = \frac{1}{n (k LD^3)} \epsilon (k, 0) \frac{p + i k \cdot v_2}{p + i k \cdot v_1} \left[1 - \frac{i k \cdot v_1}{p + i k \cdot v_1} \frac{1}{(k LD^3)^2} U(k, p) \right] \]

\[U(k, p) = \frac{k}{p + i k \cdot v} \]

\[\epsilon (k, p) = 1 - \frac{n^2 e^2}{k^2} \int \frac{d k'}{p + i k \cdot v'} \frac{1}{[1 + (k LD)^2]} . \] (24)

\[\frac{1}{(LD)^3} \] comes from the terms in Eq. (24) where \(k \gg 1/LD \). The term associated with a given \(k \) can be obtained from

\[\left(\frac{E \cdot E}{8 \pi} \right) = \left[\frac{d k}{(2\pi)^3} \frac{1}{2 \pi^2 + (k LD)^2} \right] . \] (25)

The energy per degree of freedom in the electric field is evidently \(\Theta / 2 \) for \(k LD \ll 1 \) and much less for \(k LD \gg 1 \).

To obtain the spectral density consider the ensemble average

\[\langle E_a(x t) E_b(x' t') \rangle = \int D_3(X t; X' t') \sum_{l, n} \frac{\partial}{\partial x_a} \left[\frac{e}{|x - x_l|} \frac{\partial}{\partial x_b} \left[\frac{e}{|x - x_n|} \right] dX dX' \right] \]

\[= \frac{n e^2}{V} \int \frac{\partial}{\partial x_a} \left[\frac{1}{|x - x_l|} \frac{\partial}{\partial x_b} \left[\frac{1}{|x - x_n|} \right] \right] W_{11}(X t; X_1 t') dX_1 dX'_1 \]

\[= \frac{n e^2}{V} \int \frac{\partial}{\partial x_a} \left[\frac{1}{|x - x_l|} \frac{\partial}{\partial x_b} \left[\frac{1}{|x - x_n|} \right] \right] W_{11}(X t; X_1 t') dX_1 dX'_1 \]

\[\times \int \frac{d k}{(2\pi)^3} e^{i k \cdot (x_1' - x_1)} k_a k_b \delta (\pi / k) U(k, p) \epsilon (k, 0) e^{i k \cdot (x_1 - x_1')} . \]

1.3 Fluctuations of Electric Field

Consider first the total fluctuation

\[\langle E_a(x t) E_b(x' t') \rangle = \int D_3(X t) \sum_{l, n} \frac{\partial}{\partial x_a} \left[\frac{e}{|x - x_l|} \frac{\partial}{\partial x_b} \left[\frac{e}{|x - x_n|} \right] dX \right] \]

\[= n e^2 \int \frac{\partial}{\partial x_a} \left[\frac{1}{|x - x_l|} \frac{\partial}{\partial x_b} \left[\frac{1}{|x - x_n|} \right] f_v \right] dX \]

\[+ n^2 e^2 \int \frac{\partial}{\partial x_a} \left[\frac{1}{|x - x_l|} \frac{\partial}{\partial x_b} \left[\frac{1}{|x - x_n|} \right] f_v \right] dX_1 dX_2 . \] (24)

It is clear that to obtain the lowest order result consistently, \(f_1 \) is required to lowest order and \(f_2 \) to first order. Substituting the thermal equilibrium functions we obtain the result

\[\langle E_a(x t) E_b(x' t') \rangle = (4 \pi e)^2 \int \frac{d k}{(2\pi)^3} \left[\frac{1}{2 \pi^2 + (k LD)^2} \right] . \] (25)

The energy associated with a given \(k \) can be obtained from

\[\left(\frac{E \cdot E}{8 \pi} \right) = \int \frac{d k}{(2\pi)^3} \frac{1}{2 \pi^2 + (k LD)^2} . \] (25.1)

The energy per degree of freedom in the electric field is evidently \(\Theta / 2 \) for \(k LD \ll 1 \) and much less for \(k LD \gg 1 \).

To obtain the spectral density consider the ensemble average

\[\langle E_a(x t) E_b(x' t') \rangle = \int D_3(X t; X' t') \sum_{l, n} \frac{\partial}{\partial x_a} \left[\frac{e}{|x - x_l|} \frac{\partial}{\partial x_b} \left[\frac{e}{|x - x_n|} \right] dX dX' \right] \]

\[= \frac{n e^2}{V} \int \frac{\partial}{\partial x_a} \left[\frac{1}{|x - x_l|} \frac{\partial}{\partial x_b} \left[\frac{1}{|x - x_n|} \right] \right] W_{11}(X t; X_1 t') dX_1 dX'_1 \]

\[= \frac{n e^2}{V} \int \frac{\partial}{\partial x_a} \left[\frac{1}{|x - x_l|} \frac{\partial}{\partial x_b} \left[\frac{1}{|x - x_n|} \right] \right] W_{11}(X t; X_1 t') dX_1 dX'_1 \]

\[\times \int \frac{d k}{(2\pi)^3} e^{i k \cdot (x_1' - x_1)} k_a k_b \delta (\pi / k) U(k, p) \epsilon (k, 0) e^{i k \cdot (x_1 - x_1')} . \]
According to the definitions of Eqs. (12.1) and (14)

\[S_{k,p}^*(k,p) = (4\pi \varepsilon)^2 n \frac{k \varepsilon(k,p)}{k^4} \varepsilon(k,0) \varepsilon(k,p) \]

(26)

The spectral density is therefore

\[S_{k,p}(k,\omega) = 2 \text{Re}[S_{k,p}^*(k,i\omega)] \]

(27)

If we define \(v_p = k \cdot v/k \) and \(\bar{v} = \Theta \),

\[F(v) = \int f(v)dv \]

(28)

and the Hilbert transform of \(\varepsilon \) is an odd function of \(\omega \),

\[\lim_{\omega \to \infty} \frac{1}{\omega} \int_0^\infty \frac{1}{\sqrt{2\pi}} \exp \left[-\frac{\omega^2}{2} \right] = \lim_{\omega \to \infty} \frac{1}{\omega} \int_0^\infty e^{-\omega^2 \omega} = \lim_{\omega \to \infty} \frac{1}{\sqrt{2\pi}} \left(\frac{\omega}{\omega} + \frac{\omega}{\omega} \right) = 1 \]

(29)

When \(kLD > 1 \), \(|\varepsilon(k,\omega)|^2 \approx 1 \); when \(kLD < 1 \) and \(\omega > k \bar{v} \)

\[|\varepsilon(k,i\omega)|^2 \approx \left[1 - \left(\frac{n_p}{n} \right)^2 \right]^2 + \pi \frac{1}{2} (kLD)^2 \exp \left[-\frac{1}{2} (kLD)^2 \right] . \]

(30)

In this case the denominator exhibits a resonance at \(\omega = \omega_p \). The spectral density \(S_{k,p}(k,\omega) \) must satisfy the relation

\[\int S_{k,p}(k,\omega) d\omega = \frac{E_{x}}{\varepsilon} \frac{E_{y}}{\varepsilon} = \frac{E_{x}}{\varepsilon} \frac{E_{y}}{\varepsilon} \]

(31)

Or which agrees with Eq. (25) since \(\varepsilon(0) \) is equal to \((kLD)^2[1 + (kLD)^2] \).

Therefore

\[\int_{-\infty}^{\infty} \frac{d\omega}{2\pi} S_{k,p}(k,\omega) = (4\pi \varepsilon)^2 n \frac{k \varepsilon(k,0)}{k^4} = \frac{1}{\varepsilon(k,0)} \]

(32)

which agrees with Eq. (25) since \(\varepsilon(0) \) is equal to \((kLD)^2[1 + (kLD)^2] \).

For a plasma consisting of electrons and ions, Eqs. (26) and (27) apply if we define \(U \) and \(\varepsilon \) as follows:

\[U(k,i\omega) = \frac{1}{\varepsilon(k,i\omega)} \int \frac{d\theta}{\pi} \]

(33)

Therefore

\[\int_{-\infty}^{\infty} \frac{d\omega}{2\pi} S_{k,p}(k,\omega) = (4\pi \varepsilon)^2 n \frac{k \varepsilon(k,0)}{k^4} = \frac{1}{\varepsilon(k,0)} \]

(34)

which agrees with Eq. (25) since \(\varepsilon(0) \) is equal to \((kLD)^2[1 + (kLD)^2] \).

For a plasma consisting of electrons and ions, Eqs. (26) and (27) apply if we define \(U \) and \(\varepsilon \) as follows:

\[U(k,p) = \frac{k}{\varepsilon(k,i\omega)} \int \frac{f_j(v') dv'}{p + i k \cdot v'} \]

(35)

\[\varepsilon(k,p) = 1 - \sum_j \frac{m_j v_j^2}{2} \exp \left[-\frac{m_j v_j^2}{2} \right] \]

(36)

1.4 Superposition of Dressed Particles

Consider the Vlasov equation

\[\frac{\partial f}{\partial t} + \frac{v \cdot \nabla f}{\partial x} + \frac{e}{m} \frac{v \cdot \nabla \Phi}{\partial x} \frac{\partial f}{\partial v} = 0 \]

(37)
where
\[\nabla^2 \Phi = -4\pi \left[\varrho_{\text{ext}} - ne \right] f \, dv + ne. \]

Suppose at \(t = -\infty \), \(\varrho_{\text{ext}} = (m/2\pi t \Theta)^{3/2} \exp \left[-m \psi^2 / 2 \Theta \right] \) and an external charge density of order \(e \) is switched on adiabatically; i.e.,
\[\varrho_{\text{ext}} = \lim_{t \to -\infty} \varrho(k, \omega) e^{i(\omega - i\delta)t} e^{i(k \cdot x - \omega t) \varrho_{\text{ext}}}. \]

If Eqs. (33) are solved in the usual way, the result is
\[\Phi(x, t) = \frac{4\pi \varrho(k, \omega)}{k^2} e^{i(\omega t + k \cdot x)} \]
and
\[f(x, v; t) = f^{(0)}(v) \frac{e^{k \cdot x}}{m} \frac{k \cdot \varrho_{\text{ext}}(v)}{m \varphi(k, \omega)} e^{i(\omega t + k \cdot x)} \]

It is therefore clear that \(\varrho(k, \omega) \) may be interpreted as a dielectric constant.

For a test charge \(\varrho_{\text{ext}} = -e \varrho(x - x_0 - v_0 t) \) and \(\varrho(k, \omega) = -e e^{i k \cdot x_0} \delta(\omega + k \cdot v_0) \). The electric field at a point \(x \) due to a fully "dressed" test particle at \(x' = x_0 + v_0 t \) with velocity \(v = v_0 \) is
\[E(x, x') = 4\pi \int \frac{dk}{2\pi^2} e^{i k \cdot (x - x')} \frac{i k}{k^2} \varrho(k, i \omega) e^{i(k \cdot x - \omega t)} \]

If we imagine the particles of the plasma immersed in a dielectric medium characterized by \(\varrho(k, \omega) \), then the Coulomb electric field due to a particle is effectively replaced by Eq. (35). If this is done the particles can then be regarded as statistically independent in the following sense:

\[\langle E_a(x,t)E_b(x',t') \rangle = \frac{n}{2\pi} \int E_a(x, X_1) E_b(x', X_1') \, W^{(0)}(X_1 t; X_1' t') \, dX_1 \, dX_1' \]

\[= (4\pi e)^2 n \int \frac{dk}{2\pi^2} \frac{k^2}{(2\pi)^3} \varrho^{(0)}(v' - v) e^{i k \cdot (x' - x)} \frac{k \cdot k_{\beta}}{k^2} \]

\[\times \left| \varrho(k, i \omega) \right|^2 \right] \frac{d \varphi(v)}{dv} f(v) \right| \]

Therefore
\[S^{2}_{\beta}(k, i \omega) = (4\pi e)^2 n \frac{k \cdot k_{\beta}}{k^2} \frac{2\pi}{k} \]

\[\times \left| \varrho(k, i \omega) \right|^2 \right| \frac{d \varphi(v)}{dv} f(v) \right| \]

This is the same as the previous result and was obtained by "dressing" the particles and neglecting the contribution from \(W^{(0)}(X_1 t; X_1' t') \), the correlation of different particles.* Similarly in the calculation of
\[\langle E_a(x,t)E_b(x,t) \rangle = \int D_1(X,t) \sum_{i,n} E_a(x,x_i) E_b(x,x_n) \, dX \]

we can neglect the terms \(i \neq n \), or assume \(f_2(X_1 X_2 t) = \frac{d(f_1)}{dv} f(v) \) provided \(E(x, x_i) \) is replaced by \(E(x, x_n) \).

* This method of obtaining the spectral density of electric field fluctuations was first pointed out to the author by W. B. Thompson of the Atomic Energy Research Establishment, Harwell, United Kingdom, in a lecture given at General Atomic in January 1960.

Thus
\[\langle E_a(x,t)E_b(x,t) \rangle = n \int \frac{dk}{(2\pi)^3} \int \frac{d \varphi}{dv} \frac{k \cdot k_{\beta}}{k^2} F(-\omega/k) \left| \varrho(k, i \omega) \right|^2 \]

With the change of variable \(\omega = k \cdot v_1 \) this becomes
\[\langle E_a(x,t)E_b(x,t) \rangle = (4\pi e)^2 n \int \frac{dk}{(2\pi)^3} \frac{d \varphi}{dv} \frac{k \cdot k_{\beta}}{k^2} \frac{2\pi}{k} F(-\omega/k) \left| \varrho(k, i \omega) \right|^2 \]
in agreement with Eq. (27).

1.5 Fluctuation-Dissipation Theorem

Consider the Vlasov equation
\[\frac{\partial f}{\partial t} + v \cdot \frac{\partial f}{\partial x} + \frac{e}{m} \frac{\partial E}{\partial v} = 0. \]

Suppose that at \(t = -\infty \), \(f = f^{(0)} = (m/2\pi t \Theta)^{3/2} \exp \left[-m \psi^2 / 2 \Theta \right] \) and the electric field is switched on adiabatically, i.e.,
\[E = \lim_{t \to -\infty} E_{\|} \frac{k}{k} e^{i(\omega - i\delta)t} e^{i(k \cdot x)} \]

It is assumed that \(E \) is of order \(e \) so that \(f = f^{(0)} + f^{(1)} \)

\[\frac{\partial f}{\partial t} + v \cdot \frac{\partial f}{\partial x} + \frac{e}{m} \frac{\partial E}{\partial v} = 0. \]

After solving for \(f^{(1)} \), the total current density is determined
\[j(x,t) = -ne \int f^{(1)}(x,v,t) \, dv + \frac{1}{4\pi} \frac{\partial E}{\partial t} \]

The result for the current amplitude is
\[j_{\|} = \langle 1/z_{\|} \rangle E_{\|} \]

where
\[z_{\|} = \frac{4\pi}{e} \langle \varrho(k, i \omega) \rangle \frac{1}{\left| \varrho(k, i \omega) \right|^2} \]

Surface \(\varrho(k, \omega) = 2 \Theta \frac{k \cdot k_{\beta}}{k^2} \).

1.6 Kirchhoff's Radiation Law

The energy density of the electrostatic field is
\[\frac{\langle E(x,t) \cdot E(x,t) \rangle}{8\pi} = \int \frac{dk \, dw}{(2\pi)^3} \frac{W(k, \omega)}{k^2} \]

where
\[W(k, \omega) = \frac{4\pi e^2 \pi}{k^2} F(-\omega/k) \left| \varrho(k, i \omega) \right|^2 \]

From the previous problem, the absorption coefficient may be defined as follows: the power absorption is
The absorption coefficient is
\[a(k, \omega) = \frac{1}{2} \Re \frac{E_n E_n^*}{8\pi}. \]

The relationship between the spectral densities is thus apparent.

The above result can also be obtained by a superposition of independent dressed test particles as in Section 1.4. The current density at \(x \) due to a dressed test particle with \(X_1 = (x_1, v_1) \)
\[
j(x, X_1) = -e v_1 \delta(x - x_1) - n e \int df(x, v, t) d v \]
where \(\delta f(x, v, t) = \frac{4\pi e^2}{m} \int \frac{d k}{(2\pi)^3} \frac{\partial}{\partial k} \frac{e(k, -i k \cdot v')}{|e(k, -i k \cdot v')|^2}. \)

Substituting \(W_{ij} \) from Eq. (23) we obtain the same result for \(2 \Re S_{ij} \) as Eq. (41).

A fluctuation dissipation theorem exists for the current density that involves a different dissipation tensor from that previously employed for the electric field fluctuations. It is defined as follows:
\[
\frac{\partial j}{\partial t} + v \cdot \nabla j = \frac{e}{m} [\mathbf{E}_{\text{ext}} - \nabla \phi] \quad \nabla \phi = 4\pi \epsilon n \int [j/(x, v, t)] d v - 1.
\]

We can calculate the conduction current as
\[
j(x,t) = -n e \int f^{(1)}(x,v,t) d v - j(k, 0) e^{i \omega t + i k \cdot x}.
\]
1.8 FLUCTUATIONS WITH A CONSTANT MAGNETIC FIELD

The calculations in this case follow the same pattern as in the case of zero magnetic field. The only new feature is the addition of the term \(-\left(\frac{e}{mc}\right)(v \times B) \cdot \left(\frac{d f}{dv}\right)\) to the Vlasov equations. The resultant spiral unperturbed orbits make the calculations considerably more involved. However, no new techniques are required so that we shall simply discuss the results.

The dielectric constant is

\[
\varepsilon(k, \omega) = \varepsilon(k, 0) + \frac{1}{(k L D)^2} \end{equation}

as in the case of zero magnetic field. The other function required to express the results is

\[
U(k, \omega) = \frac{k}{\pi} \int d\Omega \left(\sum_n \frac{J_n^2(k, \omega)}{P + i(k \cdot v)_n} \right)
\]

with this definition

\[
\varepsilon(k, \omega) = 1 + \frac{1}{(k L D)^2}
\]

The joint probability functions are as follows:

\[
W_{00}^0(X_1, t; X_1', t') = \int d\Omega \left(\sum_n \frac{J_n^2(k, \omega)}{P + i(k \cdot v)_n} \right) \delta(\mathbf{x}_1' - \mathbf{x}(t')) \delta(\mathbf{v}_1' - \mathbf{v}(t'))
\]

where \(\mathbf{x}(t') = -v_{1z} \sin(\beta_1 + \omega_1 t) \mathbf{e}_x + v_{1y} \cos(\beta_1 + \omega_1 t) \mathbf{e}_y + v_{1x} \mathbf{e}_z\)

\[
\mathbf{x}(t') = x_1 + a \cos(\beta_1 + \omega_1 t) \mathbf{e}_x + a \sin(\beta_1 + \omega_1 t) \mathbf{e}_y + v_{1x} \mathbf{e}_z
\]

\[
W_{12}^0(X_1, t; X_1', t') = \int d\Omega \left(\sum_n \frac{J_n^2(k, \omega)}{P + i(k \cdot v)_n} \right) \delta(\mathbf{x}_1' - \mathbf{x}(t')) \delta(\mathbf{v}_1' - \mathbf{v}(t'))
\]

\[
W_{12}^0(X_1, t; X_1', t') = \int d\Omega \left(\sum_n \frac{J_n^2(k, \omega)}{P + i(k \cdot v)_n} \right) \delta(\mathbf{x}_1' - \mathbf{x}(t')) \delta(\mathbf{v}_1' - \mathbf{v}(t'))
\]

Most of the previous results for zero magnetic field are recovered in the following sense; results that depend only on \(k\) and \(p\) remain formally the same, but with the new definitions of \(U(k, p)\) and \(e(k, p)\). The expressions that contain position and velocity coordinates are formally similar with the exception of the Bessel-function sums and the angular factors produced by the spiral orbits. For example, the electric field at \(x\) due to a fully dressed particle at position \(x\) and velocity \(v'\) is

\[
E(x, X') = 4\pi \varepsilon \left(\frac{d^4 k}{(2\pi)^4} \right)^2 \frac{\delta(k \cdot v')}{k^2} \mathbf{e}(x - X') \cdot \left(\sum_{n,n'} J_n(k_2, \omega') J_{n'}(k_2, \omega') e^{i(n-n')\phi - i(n-n')\phi - i} \right)
\]

This is to be compared with Eq. (35). The spectral density of electric field fluctuations can be calculated in the manner of Eq. (36).

\[
S_{\varepsilon\varepsilon}(k, \omega) = 2 \Re S_{\varepsilon\varepsilon}(k, i\omega)
\]

The result for \(S_{\varepsilon\varepsilon}(k, \omega) = 2 \Re S_{\varepsilon\varepsilon}(k, i\omega)\) is

\[
S_{\varepsilon\varepsilon}(k, \omega) = \left(4\pi \varepsilon \right)^2 \frac{n}{k^4} \frac{2}{k} \left| e(k, i\omega) \right|^2
\]

which is formally the same as Eq. (27).

As in Section 1.5, a resistance can be defined. The only modification is the addition of the Lorentz force term to the Vlasov equation. The result is formally the same, i.e.,

\[
r_{\parallel} = \frac{\left(4\pi \varepsilon \right)^2 n}{k^4} \frac{2}{k} \left| e(k, i\omega) \right|^2
\]

so that, as before,

\[
S_{\varepsilon\varepsilon}(k, \omega) = 2 \Theta r_{\parallel} k_2 k_3 / k^2.
\]

Similarly the formal expressions for Kirchhoff's law in Section 1.6 are unaltered.

The current density fluctuations are somewhat more involved so that a more detailed discussion will be given. The ensemble average is

\[
\langle j(x, t) j(x', t') \rangle = \left(4\pi \varepsilon \right)^2 \left(\frac{1}{k^2} \right)^2 \left| e(k, i\omega) \right|^2
\]

\[
\delta(x' - x_1) \delta(x - x_1)
\]

\[
W_{11}^{00}(X_1, t; X_1', t') \delta(x - x_1)
\]

\[
\delta(x' - x_1') \delta(x - x_1')
\]

\[
\delta(x' - x_2) \delta(x - x_2')
\]

\[
W_{11}^{00} \text{ and } W_{12}^{00} \text{ are given by } \text{Eq. (44).} \text{ It is convenient to express all vectors and tensors in terms of the unit vectors}
\]

\[
e_1 = \mathbf{k}, e_2 = \mathbf{k} \times \mathbf{B}/(k_1 B) \text{ and } e_3 = \mathbf{k} \times \mathbf{B} \times \mathbf{k}/(k_1 B).
\]

The cartesian components of \(v\) and \(B\) are \((k_1 \cos z, k_1 \sin z, k_2); (-v_1 \sin \beta, v_1 \cos \beta, v_2); \text{ and } (0, 0, B)\).
Therefore \(v = v_1 e_1 + v_2 e_2 + v_3 e_3 \)

where

\[
\begin{align*}
v_1 &= v \cdot e_1 = \frac{1}{k} [k_x v_x - k_y v_y \sin (\beta - \alpha)] \\
v_2 &= -v \cdot e_2 \\
v_3 &= \frac{k_y}{k} v_x + \frac{k_x}{k} v_y \sin (\beta - \alpha).
\end{align*}
\]

We can associate with these components certain symbolic components

\[
\begin{align*}
v_1^{(n)} &= (k_x v_x + n \omega_c)/k \\
v_2^{(n)} &= i v \cdot J_{n' - n} (k \cdot a)/J_n (k \cdot a) \\
v_3^{(n)} &= \frac{k_y}{k} v_x - \frac{k_x}{k} v_y - n \omega_c.
\end{align*}
\]

The purpose of the symbolic components is to express quantities like \(v_2 \exp [i k \cdot a \cos (\beta - \alpha)] \) in terms of Bessel-function sums. For example,

\[
v_1 \exp [i k \cdot a \cos (\beta - \alpha)] = \sum_n J_n (k \cdot a) e^{i n (\beta - \alpha) + n \pi/2} (k_x v_x - k_y v_y \sin (\beta - \alpha))/k = \sum_n J_n (k \cdot a) e^{i n (\beta - \alpha) + n \pi/2} v_1^{(n)}.
\]

The result for Eq. (46) is

\[
\langle j (x, t) j (x', t') \rangle = \int \frac{d k}{(2 \pi)^3} \int \frac{d p}{2 \pi i} e^{i k \cdot x} e^{i p \cdot y} \frac{\delta}{\delta p} \sum_{\alpha \beta} S_{\alpha \beta}^+(k, p) e_{\alpha x} e_{\beta y} = \frac{n \varepsilon^2}{(k \cdot a)^2} \int j^{(0)} (v) d v \sum_n \frac{J_n (k \cdot a) v_2 (n) e^{i n \pi \omega_c}}{p + i k v_1 (n)} + \frac{n \varepsilon^2 p}{(k \cdot a)^2} \int j^{(0)} (v) d v \sum_n \frac{J_n (k \cdot a) v_3 (n)}{p + i k v_1 (n)} \times \int j^{(0)} (v) d v \sum_n \frac{J_n (k \cdot a) v_3 (n) e^{i n \pi \omega_c}}{p + i k v_1 (n)}. \tag{47}
\]

A conductivity tensor is defined as follows:

\[
\frac{\partial j}{\partial t} + v \cdot \frac{\partial j}{\partial x} = \frac{e}{mc} v \times B \cdot \frac{\partial j}{\partial v} + \frac{e}{m} (E - \nabla \Phi) \cdot \frac{\partial j}{\partial v} = 0
\]

\[
\nabla^2 \Phi = 4 \pi ne \left[\frac{1}{j} dv - 1 \right].
\]

At \(t = -\infty, f = j^{(0)} (v) \) and the external field

\[
e E (x, t) = \lim_{t \to -\infty} E (k, \omega) e^{i \omega (t - t')} e^{i k \cdot x}
\]

is switched on adiabatically, \(E \) is of order \([e] \).

The linear response is calculated and

\[
\begin{align*}
\dot j_\alpha (k, \omega) &= -\frac{n e^2}{(k \cdot a)^2} \int j^{(0)} (v) d v \sum_n \frac{J_n (k \cdot a) v_2 (n)}{p + i k v_1 (n)} e^{i n \pi \omega_c} \\
\dot j_\alpha (k, \omega) &= \sigma_{\alpha \beta} (k, \omega) E_\beta (k, \omega),
\end{align*}
\]

where \(\sigma_{\alpha \beta} (k, p) \) is calculated from

\[
\frac{1}{(k \cdot a)^2} \int j^{(0)} (v) d v \sum_n \frac{J_n (k \cdot a) v_2 (n)}{p + i k v_1 (n)} e^{i n \pi \omega_c} \\
\int j^{(0)} (v) d v \sum_n \frac{J_n (k \cdot a) v_3 (n)}{p + i k v_1 (n)} e^{i n \pi \omega_c} \\
\int j^{(0)} (v) d v \sum_n \frac{J_n (k \cdot a) v_3 (n)}{p + i k v_1 (n)} e^{i n \pi \omega_c}.
at \(x_0 \) due to a dressed test particle at \(X \) can be found by solving the test particle problem [2].

\[
j_s(x_0, X) = - e v_a \delta(x_0 - x) - ne \int v_a \delta f dV
\]

where

\[
I_{s}(k, \alpha) = - e^{-i k \cdot \alpha \cos(\theta - \alpha)} \sum_{n} J_n(k_{\perp} \alpha) e^{i n (\theta - \alpha + \pi/2)}
\]

\[
\sum_{m} \langle \bar{v}_m^{(n)} - v_{1}^{(n)} \rangle (\bar{v}_m^{(n)} - v_{1}^{(n)} - i \Lambda)
\]

\[
= - e^{-i k \cdot \alpha \cos(\theta - \alpha)} \sum_{n} J_n(k_{\perp} \alpha) e^{i n (\theta - \alpha + \pi/2)}
\]

\[
\times \left\{ v_{1}^{(n)} - \delta V_a(k, -i k v_{1}^{(n)}) \right\}
\]

We can now compute

\[
\langle \mathbf{j}(x, t) \mathbf{j}(x', t') \rangle
\]

\[
= \frac{n}{\mathbf{v}} \int \mathbf{j}(x, x') W_{11}^{(0)}(X, \alpha) dX dX'
\]

\[
= \int \frac{d k}{(2 \pi)^{3}} \int \frac{d p}{2 \pi i} e^{i \mathbf{k} \cdot \mathbf{r}} e^{i \mathbf{p} \cdot \mathbf{t}} \sum_{a} S_{a, \beta}^{+}(k, p) e_{a} e_{\beta}.
\]

The result is

\[
S_{a, \beta}^{+}(k, p) = n e^{2} \int \frac{f(\nu)}{d \mathbf{V}} \sum_{\rho} J_{n}^{+}(k_{\perp} \alpha)
\]

\[
\times \left\{ v_{2}^{(n)} - \delta V_a(k, -i k v_{2}^{(n)}) \right\}
\]

\[
\times \left\{ v_{2}^{(n)} - \delta V_{\beta}(k, -i k v_{2}^{(n)}) \right\}
\]

The Hermitian spectral density clearly agrees with Eq. (49). The anti-Hermitian spectral density is the Hilbert transform of the Hermitian spectral density so that the superposition of dressed test particles gives completely equivalent results.

2. Non-equilibrium states with Coulomb forces

2.1 Introduction

A hot plasma may exist in a state quite different from thermodynamic equilibrium for a substantial length of time. Indeed, it is upon this fact that the hope for fusion power is based. Such states are approximately stationary and it is of some interest to consider fluctuations.

The states about which we shall examine fluctuations are stationary in the sense of our expansion. They will be adequately described for our present purposes by specifying the one-body distribution function to lowest order. This in turn uniquely determines the two-body correlation function. For example the one-body distribution function will be a solution of

\[
\frac{v \cdot \partial f^{(0)}}{\partial x} - \frac{n e^{2}}{m} \int \frac{\partial}{\partial x} \left(\frac{1}{|x - x'|} f^{(0)}(X') dX' \right) \frac{\partial f^{(0)}}{\partial \nu} = 0.
\]

We shall consider only spatially homogeneous solutions \(f^{(0)}(\nu) \). There are two restrictions on the function \(f^{(0)}(\nu) \). First of all, there must be no current density

\[
\mathbf{j} = - ne \int f^{(0)}(\nu) \mathbf{v} d\mathbf{V} = 0,
\]

because the magnetic field term is absent in Eq. (1).

Second, the secular equation

\[
\epsilon(k, \rho) = 1 - \frac{n e^{2}}{k^{2}} \int \frac{1}{|\mathbf{x} - \mathbf{x}'|} P(X, X') dX' = 0,
\]

must have no roots in which \(\rho \) has a positive real part, i.e., the state \(f^{(0)}(\nu) \) must be stable.

The two-body correlation function satisfies the equation

\[
\left(\frac{\partial}{\partial x} + \mathbf{v} \cdot \frac{\partial}{\partial \mathbf{x}} \right) P(X, X') = 0,
\]

\[
\epsilon(k, \rho) = 1 - \frac{n e^{2}}{k^{2}} \int \frac{1}{|\mathbf{x} - \mathbf{x}'|} P(X, X') dX' = 0.
\]

This equation determines \(P(X, X') \) when \(f^{(0)}(\nu) \) is given [3]. This information is sufficient to determine the auto-correlation function and spectral density for any quantity such as electric field or current density. Calculations will be made for a plasma consisting of electrons and infinite-mass ions, electrons and finite-mass ions and then a constant magnetic field will be added.

2.2 Joint probability functions

This treatment will be quite similar to Section 1.2. It is however more convenient to introduce conditional probability functions for our present purposes, so that we shall repeat some of the previous discussion.

The function \(D_{2}(X(\mathbf{t}); X'(\mathbf{t}')) \) satisfies the Liouville equation in the co-ordinates \(X', t' \) and the initial conditions

\[
D_{2}(X(\mathbf{t}); X'(\mathbf{t}')) = D_{1}(X(\mathbf{t})) \delta(X' - X).
\]

The function \(C(X(\mathbf{t})|X'(\mathbf{t}')) \) is defined by integrating out all initial co-ordinates but one, i.e.,

\[
f_{1}(X(\mathbf{t})|X'(\mathbf{t}')) = V \int D_{2}(X(\mathbf{t}); X'(\mathbf{t}')) (dX)^{N-1}
\]

where

\[
f_{1}(X(\mathbf{t})) = V \int D_{1}(X(\mathbf{t}))(dX)^{N-1}
\]
$C(X,t|X')$ satisfies the Liouville equation in (X', t') and the initial condition

$$C(X,t|X') = V D_1(X') \delta (X' - X)/f_1(X,t).$$

(4)

The s-body functions are defined as in Section 1:

$$F_s(X_1,t|X_2',..,X_s') = V \int C(X_1,t|X') dX'_1 dX'_2...dX'_s,$$

$$\Omega_s(X_1,t|X_2',..,X_s') = V \int C(X_1,t|X') dX'_1...dX'_s,$$

$$f_s(X_1,...,X_s,t) = V \int D_1(X,t) (dX)^{N-s}.$$ (5)

The initial conditions for one- and two-body functions are as follows

$$Q_1(X,x,t) = V \delta (X' - X),$$

$$Q_2(X,x_1,t,x_2,t) = V \delta (X'_1 - X_1) f_2(X_1,X_2,t)/f_1(X_1,t),$$

$$F_2(X_1,x_2,t) = f_2(X_1,X_2,t)/f_1(X_1,t).$$

(6)

The abbreviated notation $Q_s(X_1,x,t)$ will be employed instead of $Q_s(X_1,x_1,t,...,x_s,t)$ wherever this can be accomplished without confusion.)

F_s and Q_s are determined by taking moments of the Liouville equation and then expanding; i.e.,

$$F_s = F_s^{(0)} + F_s^{(1)} + ...$$

where the parameter of expansion is e, m, or l/n. This procedure has been carried out in detail for the test-particle problem [2]. Essentially the same equations apply to the present problem. However the initial conditions are different in the present case; in particular we do not wish to assume that the field particles are initially in thermal equilibrium. It is assumed that a partial specification of the initial density in phase space $D_1(X,t)$ is given in terms of its moments. For a spatially homogeneous plasma

$$P(X_1,X_2) = f_1^{(0)}(v_1) f_1^{(0)}(v_2),$$

$$P(X_1,X_2,...,X_s) = f_1^{(0)}(v_1) f_1^{(0)}(v_2) f_1^{(0)}(v_3) P(X_1,X_2),$$

$$F_1^{(0)}(X_1,t) = f_1^{(0)}(v_1) + f_1^{(1)}(v_1) = f_1(X,t),$$

$$F_2(X_1,X_2,t) = f_2(X_1,X_2,t) = f_1(v_1) f_1(v_2) + P(X_1,X_2),$$

$$F_s(X_1,...,X_s,t) = f_s(X_1,...,X_s,t) = f_1(v_1) f_1(v_2) f_1(v_3) + P(X_1,...,X_s),$$

$$P(X_1,X_2) = f_1^{(0)}(v_1) G(X_1|X_2).$$

The zero-order functions satisfy the differential equation

$$\left\{ \frac{\partial}{\partial t'} + v_1' \frac{\partial}{\partial x_1'} - \frac{e}{m} \frac{\partial}{\partial x_1'} E^{(0)}(v_1',t') \right\} F_1^{(0)}(X_1',t') = 0,$$

(9)

where

$$E^{(0)}(v_1',t') = n e \int \frac{\partial}{\partial x_1'} \frac{1}{|x_1' - x_1|} F_1^{(0)}(X_1',t') dX_1'.$$

The solutions are

$$\Omega_1^{(0)}(X_1',t') = V \delta [x_1' - x_1(t' - t)] \delta (v_1' - v_1),$$

$$F_1^{(0)}(X_1',t') = f_1^{(0)}(v_1').$$

(10)

The equation for the first order contribution to P_1 is

$$\left\{ \frac{\partial}{\partial t'} + v_2' \frac{\partial}{\partial x_2'} - \frac{e}{m} \frac{\partial}{\partial x_2'} E^{(0)}(v_2',t') \right\} F_1^{(1)}(X_2',t') = \frac{1}{|x_2' - x_1(t' - t)|} \int \frac{\partial}{\partial x_2'} P^{(0)}(X_1',X_2',t') dX_2'.$$

(11)

This is the usual equation for the field particle distribution [2] except for the term $St \{P_{F_1}\}$. The form of this collision operator is

$$St\{P_{F_1}\} = \frac{n e^2}{m} \int \frac{1}{|x_2' - x_1(t' - t)|} \frac{\partial}{\partial v_2'} P^{(0)}(X_1',X_2',t') dX_2'.$$

$P^{(0)}(X_1',X_2',t')$ depends only on $x_2' - x_1(t' - t)$ so that $St\{P_{F_1}\}$ is independent of spatial co-ordinates.

The solution of Eq. (11) subject to the initial condition of Eq. (8) is obtained in the usual way [2] by integrating along the characteristic or unperturbed orbits and making use of Fourier and Laplace transforms. The result is

$$F_1^{(1)}(X_2',t') = f_1^{(1)}(v_2',t') + \left[\frac{1}{(2\pi)^{\gamma-i}} \right] \frac{\partial}{\partial v_2'} G(v_1,v_2),$$

$$+ \frac{1}{2 \pi i} \int \frac{d^3k}{(2\pi)^3} e^{i(k \cdot x'_2 - \omega t')} \left\{ \frac{1}{p + i(k \cdot v)} + \frac{1}{p + i(k \cdot v') - \omega t'} \right\} G(k,v) d\omega.$$ (12)

In this expression,

$$G(k,v) = 1 - \frac{m}{2k^2} i k \cdot \frac{\partial}{\partial v} G(k,v)$$

and

$$G(k,v) \delta (v_1,v_2)$$

is defined such that

$$G(X_1|X_2) = \frac{1}{(2\pi)^3} \int d\omega e^{i(k \cdot \omega - \omega t')} G(k,v) d\omega.$$ (13)

The particular moments of $D_2(2X,t)$ that are usually required are

$$W_{12}(X,t;X',t') = V \int D_2(X,t;X',t') (dX)^{N-1} (dX')^{N-1}.$$ (14)

The only two independent moments are

$$W_{12}(X_1,t;X_2',t') = f_2(X_1,t) F_1(X_1,t|X_2',t').$$

111
We shall require \(W_{11} \) only to zero order and \(W_{12} \) to first order. The results for these quantities are as follows

\[
W_{11}^{(0)}(X_1; X_1') = V \int f_{i1}^{(0)}(v_1) \delta \left[x_1' - x_1 - v_1 (t' - t) \right] d[v_1]
\]

\[
W_{12}^{(0)}(X_1; t; X_1') = j_i^{(0)}(v_1) f_{i1}^{(0)}(v_2)
\]

\[
W_{12}^{(1)}(X_1; t; X_1') = f_i^{(0)}(v_1) j_i^{(1)}(v_2') + j_i^{(1)}(v_1) f_{i1}^{(0)}(v_2')
\]

\[
\int t' = t
\]

\[
\int \frac{d^3 k}{(2 \pi)^3} e^{i k \cdot r} \mathcal{S}_k(k, p)
\]

where \(\tau = t' - t, \rho = x' - x \) and

\[
S^t(k, p) = (4 \pi)^2 n e^2 \frac{1}{k^2} \int \frac{d^3 k}{(2 \pi)^3} e^{i k \cdot r} u(k, p)
\]

To achieve a more manageable form the following quantities are introduced

\[
U_k(k, p) = \int \frac{d^3 k}{(2 \pi)^3} e^{i k \cdot r} u(k, p)
\]

In terms of these quantities

\[
S^t(k, i \omega) = (4 \pi)^2 n e^2 \frac{1}{k^2} \int \frac{d^3 k}{(2 \pi)^3} e^{i k \cdot r} u(k, p)
\]

To make any further progress we must make use of some of the properties of the pair distribution function \(P_k(v_1, v_2) \). The Fourier transform of Eq. (2) is

\[
\lim_{k \to 0} \frac{k}{k} P^* _k(v_1) = \frac{\pi}{k} \frac{\delta (\omega + k \cdot v_1)}{(\omega + k \cdot v_1 - i \lambda)}
\]

where the interpretation of the integral is such that

\[
\lim_{k \to 0} \frac{\pi}{k} \frac{\delta (\omega + k \cdot v_1)}{(\omega + k \cdot v_1 - i \lambda)} = \frac{\pi}{k} \frac{\delta (\omega + k \cdot v_1)}{(\omega + k \cdot v_1 - i \lambda)}
\]

To make any further progress we must use some of the properties of the pair distribution function \(P_k(v_1, v_2) \). The Fourier transform of Eq. (2) is

\[
\lim_{k \to 0} \frac{k}{k} P^* _k(v_1) = \frac{\pi}{k} \frac{\delta (\omega + k \cdot v_1)}{(\omega + k \cdot v_1 - i \lambda)}
\]

After dividing by \(k \cdot (v_1 - v_2) - i \lambda \) and integrating over \(v_2 \) we obtain an integral equation for \(h_k(v_1) \)

\[
h_k(v_1) = \frac{1}{\epsilon(k, i \omega)} \left[\left(1 - \epsilon(k, i \omega) \right) f_i^{(0)}(v_1) \right] + \frac{i k \cdot \delta f_i^{(0)}(v_1)}{\delta v_1} + \int \frac{d^3 k}{(2 \pi)^3} e^{i k \cdot r} \mathcal{S}_k(k, p)
\]

Let \(H_k(u) = \int d v h_k(v) \delta(u - k \cdot v) \), multiply Eq. (17) by \(\delta (\omega + k \cdot v_1) \) and integrate over \(v_1 \). The result is

\[
H_k(\omega) = \frac{1}{\epsilon(k, i \omega)} \left[\left(1 - \epsilon(k, i \omega) \right) \Re U(k, i \omega) \right] - \frac{i k}{\pi} \int d v h_k^*(v_1) U(k, v_1)
\]
We can now substitute this result into Eq. (16) and obtain:

\[S^+(k, i \omega) = (4 \pi^2 n e^2 \frac{k k}{k^4} \frac{\pi i}{e}) \times \begin{bmatrix} \frac{1 - e(k, i \omega)}{\epsilon \text{Im} \epsilon} \end{bmatrix} \Re U(k, i \omega) \frac{H_k(-\omega/k)}{\text{Im} \epsilon} . \]

Since \(S^+ \) is a symmetric dyadic, the spectral density is

\[S(k, \omega) = 2 \Re S^+(k, i \omega) = (4 \pi^2 n e^2 \frac{k k}{k^4} \frac{2 \pi}{k} \frac{\Re U(k, i \omega)}{\epsilon(k, i \omega)} \times \begin{bmatrix} \frac{1 - e(k, i \omega)}{\epsilon(k, i \omega)} \end{bmatrix} \text{Im} H_k(-\omega/k) . \]

It has been previously established by Lenard [3] that \(\text{Im} H_k(-\omega/k) = 0 \). The final result is therefore

\[S(k, \omega) = (4 \pi^2 n e^2 \frac{k k}{k^4} \frac{2 \pi}{k} \Re U(k, i \omega) \times \begin{bmatrix} \frac{1 - e(k, i \omega)}{\epsilon(k, i \omega)} \end{bmatrix} \text{Im} H_k(-\omega/k) . \]

This is formally the same as Eq. (27) in Section 1. The previous derivation can easily be generalized to apply to a plasma consisting of electrons and ions. Eq. (19) still applies with the following new definitions

\[U(k, p) = \frac{k}{\pi} \sum_j \int \frac{f_j^{(0)}(v)}{p + ik \cdot v} \, dv, \]

\[\epsilon(k, p) = 1 - \sum_j \frac{\omega_p^2}{k^2} \int \frac{i k \cdot df_j^{(0)}}{p + ik \cdot v} \, dv, \]

where \(\omega_p^2 = 4 \pi ne^2/m_i \) and the summation is over particle species.

To indicate some of the features of non-equilibrium states, the electrostatic energy per degree of freedom will be calculated. That is

\[\frac{1}{8 \pi} \int d k d \omega \frac{W(k, \omega)}{E(\mathbf{x}, \tau) \cdot E(\mathbf{x}, \tau)} = \int d k d \omega W(k, \omega), \]

where

\[W(k, \omega) = \frac{4 \pi n e^2}{k^2} k \Re U(k, i \omega) \frac{\Re U(k, i \omega)}{\epsilon(k, i \omega)} \frac{\epsilon}{\epsilon(k, i \omega)}, \]

and the energy per degree of freedom is defined as

\[\frac{\Theta(k)}{2} = \int d \omega \frac{1}{2} W(k, \omega). \]

Consider for example, a plasma in which the electron and ion distribution functions are

\[f_e^{(0)}(v) = \left(\frac{m_e}{2 \pi \Theta_e} \right)^{\frac{3}{2}} \exp \left[-m_e v^2/2 \Theta_e \right], \]

\[f_i^{(0)}(v) = \left(\frac{m_i}{2 \pi \Theta_i} \right)^{\frac{3}{2}} \exp \left[-m_i v^2/2 \Theta_i \right], \]

where \(\Theta_i \ll \Theta_e \). Asymptotic forms for \(U \) and \(\epsilon \) can be employed in various regions of \(\omega, k \) space as illustrated in Fig. 2. The following definitions are employed

\[m_e v_e^2 = \Theta_e \quad \frac{1}{L_e^2} = \frac{4 \pi n e^2}{\Theta_e} \]

\[m_i v_i^2 = \Theta_i \quad \frac{1}{L_i^2} = \frac{4 \pi n e^2}{\Theta_i} . \]
result obtained from integrating across the ion resonance is
\[
\frac{\Theta(k)}{2} = \frac{\Theta_e}{2} \left(\frac{\theta_L}{1 + (\theta_L)^2} \right)^2
\times \left\{ \left[\frac{m_e}{m_i} + \left(\frac{1}{2} \frac{\partial \Theta_e}{\partial k} \right) \exp \left[-\frac{1}{2} \left(\frac{\theta_L}{1 + (\theta_L)^2} \right)^2 \right] \right] \right.
\left. \left[\frac{m_e}{m_i} + \left(\frac{1}{2} \frac{\partial \Theta_e}{\partial k} \right) \exp \left[-\frac{1}{2} \left(\frac{\theta_L}{1 + (\theta_L)^2} \right)^2 \right] \right] \right\}. \tag{25}
\]

If \(k_L < 1 \), then \(\Theta(k) \simeq \Theta_e (k - \theta_L)^2 \), provided that \(m_e/m_i > \frac{1}{2} \Theta_e \exp \left(-\Theta_e/\Theta_i \right) \) and \(\Theta(k) \simeq \Theta_e (k - \theta_L)^2 \) for the other direction of the inequality. For \(k_L \sim 1 \), \(\Theta(k) \simeq \frac{1}{2} \Theta_e \) or \(\frac{1}{2} \Theta_i \) according to the sign of the same inequality. For \(k_L > 1 \) the exponential terms will eventually dominate and \(\Theta(k) \simeq \Theta_i \). For moderately high electron temperature, the energy/degree of freedom increases monotonically with \(k \) from zero to \(\Theta_i \). For very high electron temperature there is a maximum in the neighborhood of \(k_L \sim 1 \) which is about \(\frac{1}{2} \Theta_i \).

Another case of interest is where there is a small number of runaway electrons. For example,
\[
f_i^{(0)}(v) = \frac{\left| 1 - (\Delta n/n) \right|}{(2\pi v_i^3)^{1/2}} \exp \left[-\frac{1}{2} \left(\frac{v}{v_i} \right)^2 \right] \\
+ \frac{\Delta n}{n} \frac{1}{(2\pi v_i^3)^{1/2}} \exp \left[-\frac{1}{2} \left(\frac{v + v_i}{v_i} \right)^2 \right]. \tag{26}
\]

For simplicity the ions are assumed to have infinite mass. If \(n v_i = v_i \Delta n \) there will be no current as required for a spatially homogeneous plasma. The requirement for stability is
\[
\frac{\Delta n}{n} \simeq \frac{v_i^2}{v_0^2} \left(\frac{v_i}{v_0} \right)^2 \exp \left[-\frac{1}{2} \left(\frac{v}{v_0} \right)^2 \right]. \tag{27}
\]
The validity of the present calculations is restricted to cases where Eq. (27) is satisfied. However we can consider the energy per mode as \(\Delta n \) increases up to the limit given by Eq. (27). Asymptotic forms for \(U \) and \(\epsilon \) can be employed for various regions of \(\omega, k_z \) space as indicated in Fig. 3. The z-axis is taken to be in the direction of \(V_z \), and we consider only modes for which \(k_z = k_0 = 0 \).

Re \(U(k_z, i\omega) = \frac{1}{\sqrt{2\pi v_0^3}} \exp \left[-\frac{1}{2} \left(\frac{\omega}{v_0} \right)^2 \right] \\
\frac{\Delta n}{n} \frac{1}{\sqrt{2\pi v_i^3}} \exp \left[-\frac{1}{2} \left(\frac{\omega - k_z v_0}{v_i} \right)^2 \right] \exp \left[-\frac{1}{2} \left(\frac{\omega - k_z v_i}{v_i} \right)^2 \right] \]

For \(\omega > k_z v_i \) and \(k_z < \omega v_i \)
\[
|\epsilon(k, i\omega)|^2 = \left[1 - \frac{\omega^2}{\omega^2 - v_i^2} + \frac{\pi}{2} \frac{\omega}{k_z v_i} \left(\frac{\omega}{k_z v_i} \right)^3 \exp \left[-\frac{1}{2} \left(\frac{\omega}{k_z v_i} \right)^2 \right] \right. \\
\left. + \frac{\omega - k_z v_0}{k_z v_i} \frac{\omega^2 \Delta n}{n (k_z v_i)^3} \exp \left[-\frac{1}{2} \left(\frac{\omega - k_z v_i}{v_i} \right)^2 \right] \right]^2.
\]

As long as Eq. (27) is satisfied, this result remains finite. However the energy for modes in the neighborhood of \(k_z \simeq \omega v_i/V_e \) becomes very large and ultimately infinite as
\[
\frac{\Delta n}{n} \simeq \frac{v_i^2}{v_0^2} \exp \left[-\frac{1}{2} \left(\frac{\omega}{v_0} \right)^2 \right].
\]

2.4. THEOREMS RELATING TO FLUCTUATIONS

The electric field due to a test charge is defined as follows:
\[
\frac{\partial \phi}{\partial x} + \frac{\partial}{\partial v} \frac{\partial \phi}{\partial t} + \frac{e}{m} \frac{\partial f}{\partial x} \cdot \frac{\partial f}{\partial y} = -S \{ f \} \tag{30}
\]

\[
\nabla \Phi = \frac{4}{\pi} e \left[\delta (x - x_i - v_i t) + n \left[\delta f \delta v \right] \right].
\]

\[
\frac{\Theta(k_z)}{2} = \frac{\Theta_e}{4} \exp \left[-\frac{\omega^2}{2 k_z v_i^2} + \frac{\Delta n}{n} \frac{v_i d n}{v_i} \exp \left[-\frac{1}{2} \left(\frac{\omega - k_z v_i}{v_i} \right)^2 \right] \right] \exp \left[-\frac{1}{2} \left(\frac{\omega - k_z v_i}{v_i} \right)^2 \right] \frac{\Theta_i}{4}. \tag{28}
\]
This differs from the thermal equilibrium problem in that \(\mathcal{S} \), the collision term for the field particles does not vanish. However, for a spatially homogeneous plasma it is independent of position, and can be neglected because it only drives the \(k = 0 \) modes. The calculation is therefore identical to the thermal equilibrium problem formally. The electric field at a point \(x \) due to a fully dressed test particle at \(x' \) with velocity \(v \) is

\[
E(x, x') = 4\pi e \int \frac{d^3 k}{(2\pi)^3} e^{i k \cdot (x - x')} \frac{i k}{k^2} \cdot \epsilon(k, -i k \cdot v) \tag{31}
\]

and the superposition theorem is retained i.e.,

\[
\langle E(x, t) E(x', t') \rangle = \frac{\lambda}{V} \int E(x, x') E(x', x''') W_{11}^{(0)}(x_1 t; x_3 t') dX_1 dX_3
\]

leads to Eq. (19) for \(\mathcal{S}(k, \omega) \).

For the same reason the calculation of \(r_2 = -\frac{4\pi e^2}{v_e} \text{Im} \epsilon(k, i \omega) \) in Section 1.5 remains formally correct. Therefore the fluctuation-dissipation theorem takes the form

\[
\mathcal{S}(k, \omega) = 2\Theta(k, \omega) r_2(k, \omega) \frac{k}{k^2} \tag{32}
\]

where

\[
\Theta(k, \omega) = -\frac{4\pi^2 n e^2}{k} \frac{\omega}{k} \text{Re} \mathcal{U}(k, i \omega) \text{Im} \epsilon(k, i \omega)
\]

Consider for example, the case of electrons and ions at different temperatures:

\[
\epsilon(k, \omega) = 2\Theta(k, \omega) r_2(k, \omega) \frac{k}{k^2} \tag{33}
\]

If \(\Theta_1 = \Theta_2 = \Theta_3 \) it is clear that \(\Theta(k, \omega) = \Theta_0 \). Many limiting cases are possible for \(\Theta_0 \neq \Theta_0 \). For example, if \(\Theta_2 \geq \Theta_0 \), then \(\Theta(k, \omega) \approx \Theta_0 \) for \(\omega < \omega_0 \) and \(\Theta(k, \omega) \approx \Theta_0 \) for \(\omega > \omega_0 \). It is clear that for non-equilibrium states the fluctuation-dissipation relation is not very useful.

The previous calculation of the absorption coefficient in Section 1.6 also remains formally correct, i.e.,

\[
a(k, \omega) = -2\omega \text{Im} \epsilon(k, i \omega)
\]

According to Kirchhoff's law we should expect that the emission per unit volume from the plasma would be

\[
e(k, \omega) = a(k, \omega) c(k, \omega) \epsilon(k, i \omega) \text{Re} \mathcal{U}(k, i \omega) \text{Im} \epsilon(k, i \omega)
\]

\[
e(k, \omega) = -2\pi n e^2 \frac{2\omega}{k} \text{Re} \mathcal{U}(k, i \omega) \text{Im} \epsilon(k, i \omega) \tag{34}
\]

The force on a test particle is \(-eE(x, x') \) so that the spontaneous emission from \(n^{(0)}(v) \) test particles per unit volume is

\[
4\pi n e^2 \int \frac{d k}{(2\pi)^3} \left[\frac{d v'}{v'} \right] \left(\frac{k \cdot v'}{k^2} \right) \text{Re} \mathcal{U}(k, i \omega) \text{Im} \epsilon(k, i \omega) \tag{35}
\]

Since \(\text{Re} \mathcal{U}(k, \omega) = \int f(v') d v' \delta(\omega + k \cdot v') \), this reduces to

\[
\int \frac{d k}{(2\pi)^3} \int \frac{d \omega}{2\pi} e(k, \omega)
\]

where \(e(k, \omega) \) is given by Eq. (35). In a situation where instability is approached, \(\text{Re} e \to 0, \text{Im} e \to 0 \) so that \(e(k, \omega) \to \infty \). However, the emission

\[
e(k) = \int \frac{d \omega}{2\pi} e(k, \omega)
\]

remains finite. For example if \(f^{(0)}(v) \) is given by Eqs. (26), the result from integrating across the resonance at \(\omega = \omega_p \) is

\[
e(0, 0, k_2) = \Theta_0 \left\{ \frac{n}{v_0} \frac{v_0}{v_1} \left(1 + \frac{v_0}{v_1} \right) \left(1 - \frac{k_z V_e}{v_1} \right) \frac{\omega}{k_z v_1} \right\} \tag{36}
\]

which remains finite when \(k_z \approx \omega_p / V_e \) and

\[
\frac{\Delta n}{n} \rightarrow \frac{v_1}{v_0} \frac{v_0}{v_1} \left(1 - \frac{1}{2} V_e^2 \right)
\]

The Fokker-Planck equations

The fact that \(\text{Im} H_k = 0 \) is sufficient to determine \(\text{Im} h_k(v_1) \) in Eq. (17) and the collision operator

\[
\mathcal{S} \{ f \} = -\frac{e^2}{m} \frac{\partial}{\partial v} \cdot \int \frac{d k}{(2\pi)^3} \frac{k^2}{k} \text{Im} h_k(v)
\]

is therefore determined as shown by Lenard [3]. It is however instructive to obtain this result by the present methods.

The number of particles in \((X', dX') \) at time \(t \) is

\[
f(X', t') = \sum_n \delta[x' - x_n(t')] \delta[v' - v_n(t')]
\]

where \(x_n(t'), v_n(t') \) describe the orbit of the \(n \)th particle. \(f(X', t') \) satisfies the equation

\[
\left\{ \frac{\partial}{\partial t'} + v' \cdot \frac{\partial}{\partial X'} - \frac{e}{m} E(X', t') \cdot \frac{\partial}{\partial v'} \right\} f(X', t') = 0
\]

with

\[
E(X', t') = e \sum_{1 \leq n} \frac{\partial}{\partial x'} \left(\frac{1}{x' - x_n(t')} \right)
\]

Eq. (37) can be integrated along the unperturbed linear orbits and the result can then be substituted back into Eq. (37) to obtain

\[
\left\{ \frac{\partial}{\partial t'} + v' \cdot \frac{\partial}{\partial X'} \right\} f(X', t') = \frac{e}{m} \frac{\partial}{\partial v'} \left(E(X', t') \left[x' - v' \left(t' - t'' \right), v' \right] \right)
\]

\[
+ \left(\frac{e}{m} \right)^2 \frac{\partial}{\partial v'} \cdot E(X', t') \int dx'' E[x' + v' (t'' - t'), v''] \frac{\partial}{\partial v''} f(x' + v' (t'' - t'), v''; t'') \tag{38}
\]
The next step is to take the ensemble average of each term in the equation. Thus

\[
\langle f(x', v'; t') \rangle = \int \sum_n \delta(x' - x_n) \delta(v' - v_n) D(Xt; X \cdot t'; X \cdot t') dX dX \cdot dX'
\]

\[
= n f_1(X', t')
\]

where \(f_1 \) is the usual one-body function.

\[
\langle E(x', t') f(x' - v'(t' - t), v'; t) \rangle
\]

\[
= \int \sum_n \frac{\delta}{\delta x' \cdot |x' - x_n|} \delta\left(v' - v'(t' - t) - x_n\right)
\]

\[
\times \delta\left(v' - v_n\right) D(Xt; X \cdot t'; X \cdot t') dX dX \cdot dX'
\]

\[
= n^2 \int \frac{\delta}{\delta x'} \left| x' - x_n \right| \delta\left(v' - v'(t' - t) - x_n\right)
\]

\[
\times \delta(v' - v_n) W_{12}(x_1 t; x_2 t') dX_1 dX_2.
\]

Making use of Eq. (13) we finally get the result

\[
n^2 f_1^{(0)}(v') \left(\frac{d}{d v'} \frac{\theta(v' - v - \theta)}{2 \pi i} \frac{1}{k \cdot v'} \right) + \frac{1}{n^2} \left(1 - e^{-\theta} \right) \int d k f_1^{(0)}(v')
\]

As usual, it is assumed that this expression goes to its asymptotic form, determined by the pole at \(p = 0 \), in a time sufficiently short compared to observable times, that the asymptotic form is always a good approximation. Thus

\[
\langle E(x', t') f(x' - v'(t' - t), v'; t) \rangle \approx \frac{n \epsilon}{k^2} \left(\frac{d}{d v'} \right) \int d k f_1^{(0)}(v')
\]

In the second term on the right hand side of Eq. (38), it is necessary to make use of Eqs. (15), the probability distributions for two singled-out particles. The result is

\[
\langle E(x', t') E(x' + v'(t' - t), v'; t') f(x' + v'(t' - t), v'; t) \rangle
\]

\[
= n \mathbf{C}^+ \left(v'(t' - t), v'; t' \right) f_1^{(0)}(v')
\]

where

\[
\mathbf{C}^+(r, \tau) = \int \frac{d k}{(2 \pi i)} \frac{d p}{2 \pi i} e^{i p \cdot r - \frac{\theta}{2} k \cdot v'} S^+(k, p)
\]

and \(S^+(k, p) \) is given by Eq. (16). The form of the Fokker-Planck equation is therefore

\[
\left\{ \frac{\partial}{\partial t} + v' \cdot \frac{\partial}{\partial x} \right\} f(x', t') = \mathbf{S} \{ f \}
\]

where

\[
\mathbf{S} \{ f \} = \frac{e m}{v} \frac{\partial}{\partial v} \cdot E(x', x') f^{(0)}(v')
\]

\[
+ \left(\frac{e m}{v} \right)^2 \frac{\partial}{\partial v} \cdot \int_{0}^{1} \tau \mathbf{C}^+(v', \tau, \tau) \cdot \frac{\partial}{\partial v} f^{(0)}(v') d\tau \quad (39)
\]

\[
\mathbf{C}^+(r, \tau) = \mathbf{C}(r, \tau) \quad (\tau > 0)
\]

\[
= 0 \quad (\tau < 0)
\]

so that \(\mathbf{C}^+ \) can be replaced by \(\mathbf{C} \) in the integration. \(\mathbf{C} \) is a symmetric dyadic in the present case so that

\[
\mathbf{C}(r, \tau) = \mathbf{C}(-r, -\tau). \quad \text{If most of the integral comes from values of } \tau \text{ less than any observable time, we can use the asymptotic value; i.e.,}
\]

\[
\int_{0}^{1} \tau \mathbf{C}^+(v', \tau, \tau) d\tau \approx \frac{1}{2} \mathbf{C}(v', \tau, \tau) d\tau
\]

\[
= \frac{1}{2} \int \frac{d k}{(2 \pi i)^2} S(k, -i k \cdot v').
\]

Now, substituting from Eq. (19), the final result is

\[
\mathbf{S} \{ f \} = 4 \pi \frac{e^2}{m} \frac{\partial}{\partial v'} \cdot \int \frac{d k}{(2 \pi i)^2} \frac{d p}{2 \pi i} \frac{\theta}{k^2} f^{(0)}(v')
\]

\[
+ \frac{\theta}{k^2} \frac{\partial}{\partial v'} f^{(0)}(v').
\]

Although this is in a different form, the result is identical to that of Lenard. The purpose of the present calculation has been simply to express the Fokker-Planck coefficients in terms of the electric field fluctuations.

There is another problem in which at \(t = 0 \) all particles but one have the distribution function \(f^{(0)}(v) \) which is spatially homogeneous. One particle is singled out and initially has the arbitrary distribution function \(Q(x) \). The lowest order one-body function for the singled-out particle is

\[
W^{(0)}(X, t) = \int Q(x_0) \delta(X - X_0) d X_0
\]

where \(\delta(x - X_0 - \theta) = \delta(x - v_0) \). The first order equation for \(W \) is

\[
\left\{ \frac{\partial}{\partial t} + \frac{\partial}{\partial x} \right\} W(X, t) = \mathbf{S} \{ W \}
\]

The determination of \(\mathbf{S} \{ W \} \) has previously been accomplished in the case where the field particle distribution is Maxwellian [2]. The equations previously employed are applicable with some alterations that will be cited. The collision operator takes the form

\[
\mathbf{S} \{ W \} = - \frac{1}{m} \frac{\partial}{\partial v} \left(F W^{(0)} + \mathbf{T} \cdot \frac{\partial}{\partial v} W^{(0)} \right)
\]

with

\[
\mathbf{F} = - n e \int E(x, x') \delta f(X, X', t) d X'
\]

\[
\mathbf{T} = - n e \int E(x, x') G(X, X', t) d X'.
\]

\(\delta f \) is determined by the equations

\[
\left\{ \frac{\partial}{\partial t} + \frac{\partial}{\partial x} + v' \cdot \frac{\partial}{\partial x} \right\} \delta f(X, X', t)
\]

\[
= - \frac{e m}{v} \frac{\partial}{\partial v'} \cdot \frac{\partial}{\partial v'} \Phi(X, X', t) + \mathbf{S} \{ f^{(0)}(v') \}
\]

\[
\n^2 \Phi(X, X', t) = 4 \pi e \delta(x' - x) + 4 \pi n e \int \delta f(X, X', t) d v'.
\]

In this case the only additional term is \(\mathbf{S} \{ f^{(0)}(v') \} \) given by Eq. (40). Since it only drives the \(k = 0 \) modes, it can be omitted and the result is formally the same as before.
The coefficients are the same as before. This is a Fokker-Planck equation of the classic type where the coefficients do not contain the dependent variable. $f^{(0)}(v)$ is required to be spatially homogeneous, but $W^{(0)}(Xt)$ is not.

2.6 FLUCTUATIONS WITH A CONSTANT MAGNETIC FIELD

The calculations follow the same pattern as in the case of zero magnetic field. The details of the calculations will be omitted here. The velocity coordinates (v_\perp, β, v_z) will be employed where the magnetic field is taken to be in the z-direction. The spatially homogeneous one-body function $f^{(0)}(v_\perp, v_z)$ is independent of β.

The joint probability functions are as follows:

$$W^{(0)}(Xt; X't') = V f^{(0)}(v) \delta[x' - x(t)] \delta(v_\perp' - v_\perp) \delta(v_z' - v_z) \delta(\beta' - \beta - \omega_0/\tau)$$

(46)

where $\tau = t' - t$ and

$$x(t) = x + \alpha [\cos(\beta + \omega_0 t) - \cos \beta] \varepsilon_x + \alpha [\sin(\beta + \omega_0 t) - \sin \beta] \varepsilon_y + v_z \varepsilon_z$$

(47)

where $r = x' - x$, $k = (k_\perp, \beta, k_z)$,

$$W_{pk}(v, v') = (1/n) \exp [-i k_\perp \cdot a' \cos(\beta' - \alpha)]$$

$$\times \left\{ n_{pk}(v, v') + i \frac{a^2}{k^2} \frac{[k \cdot v]}{\varepsilon(k, p)} \right\} e^{-i k \cdot v'}$$

(48)

$$\times \left[f^{(0)}(v) e^{-i k \cdot v' \cos(\beta' - \alpha)} \sum_n J_n(k_\perp a) \frac{\epsilon(a n') \epsilon'(\beta' - \alpha)}{p + i [k \cdot v]_n} \right]$$

$$+ \int d v' n P_{pk}(v, v') e^{-i k_\perp \cdot a' \cos(\theta' - \alpha)}$$

(49)

$$\sum_{n'} J_n(k_\perp a) \frac{\epsilon(a n') \epsilon'(\beta' - \alpha)}{p + i [k \cdot v]_n} \right\}$$

It should be noted that Eqs. (48), (49) and (50) imply an explicit expression for $Re H(u)$

$$Re H(u) = \int_0^\infty \frac{d u'}{\pi^2} Re U(k, -i k u') e^{-i u' u}$$

(51)

By means of the procedure employed in Section 2.5, the Fokker-Planck equation for a spatially homogeneous plasma with a constant magnetic field is obtained. The result is

$$\frac{d}{d \tau} + v \cdot \frac{\partial}{\partial x} - \frac{e}{mc} v \times B \cdot \frac{\partial}{\partial \varepsilon} \{ f(Xt) = \text{St} \{ f \} \}

(52)

$$\text{St} \{ f \} = \frac{e}{\varepsilon} \frac{\partial}{\partial \varepsilon} E(X, \varepsilon) f^{(0)}(v)$$

$$+ \left[\frac{e}{m} \frac{\partial}{\partial \varepsilon} \sum_0^\infty d \tau \mathbf{C}(\tau ; \tau) \cdot \frac{\partial}{\partial v} f^{(0)}(v) \right]$$

(53)

$$E(X, \varepsilon) = 4 \pi e \int_0^\infty \frac{d k}{2\pi^2} \frac{k}{k} e^{-i k \cdot \mathbf{a} \cos(\beta - \alpha)}$$

It has been established, that $Im H(u)$ is zero in the presence of a magnetic field, ROSTOKER [4]. Therefore

$$S+(k, i \omega) = (4 \pi^2 n \varepsilon^2) \frac{2 \pi}{k^4} \Re U(k, i \omega)$$

(49)

$$\text{and}$$

$$S+(k, i \omega) = \frac{2 \pi}{k^4} \Re U(k, i \omega)$$

(50)

It should be noted that Eqs. (48), (49) and (50) imply an explicit expression for $Re H(u)$

$$Re H(u) = \int_0^\infty \frac{d u'}{\pi^2} Re U(k, -i k u') e^{-i u' u}$$

(51)

For example,

$$S+(k, i \omega) = (4 \pi^2 n \varepsilon^2) \frac{2 \pi}{k^4} \Re U(k, i \omega)$$

(49)
and \(r(t) = x(t) - x \) where \(x(t) \) is given in Eq. (47). It should be noted that \(C(r(t); r\tau) = C(r(-t); -r\tau) \) so that the limits of the \(\tau \)-integration in Eq. (52) may not be changed from \((0, \infty)\) to \((-\infty, \infty)\). Instead we have

\[
\int_0^{\infty} d\tau C(r(\tau); \tau) = \int_{-\infty}^{\infty} d\tau C(r(\tau); \tau)
\]

where \(C(r, 0) \) is given by Eq. (48) or Eqs. (49) and (50). The only dependence on \(x \) is through the operators

\[
k \cdot \frac{\partial}{\partial v} = -\frac{k_\perp}{v_\perp} \cos (\beta - \alpha) \frac{\partial}{\partial \beta} - \frac{k_\perp}{v_\perp} \sin (\beta - \alpha) \frac{\partial}{\partial v_\perp} + k_\| \frac{\partial}{\partial v_\|},
\]

so that the \(z \)-integrations can easily be carried out. This accomplishes the following reduction of the Fokker-Planck equation

\[
\begin{align*}
\text{St} \{ f \} &= -\frac{4\pi e^2}{m} \int \frac{d k}{(2\pi)^3 k^2} \left[\frac{k \cdot \partial}{\partial v_\perp} J_n'(k, \alpha) \right] \\
&\quad \times \left\{ \frac{f^{(0)}}{\pi \omega^2} \left[\text{Im} \frac{\partial}{\partial \beta} \right] J_n'(k, \alpha) \frac{\partial}{\partial \beta} \right\} + \frac{k_\perp}{v_\perp} J_n'(k, \alpha) \frac{\partial}{\partial v_\perp} \frac{\partial}{\partial \beta}.
\end{align*}
\]

Since \(\partial f^{(0)} / \partial \beta = 0 \) for a spatially homogeneous plasma, the result is simply

\[
\text{St} \{ f \} = -\frac{4\pi e^2}{m} \int \frac{d k}{(2\pi)^3 k^2} \sum_n \left[\frac{k \cdot \partial}{\partial v_\perp} J_n'(k, \alpha) \text{Im} h_n(v_\perp, v_\|) \right]
\]

where

\[
- \text{Im} h_n(v_\perp, v_\|) = \frac{\partial f^{(0)}(v)}{\pi \omega^2} \left[\text{Im} \frac{\partial}{\partial \beta} \right] J_n'(k, \alpha) \frac{\partial}{\partial \beta} \text{Im} e(k, -i[k \cdot v_\|/\omega]) \frac{\partial}{\partial \beta}. \tag{57}
\]

This result has been obtained previously [4]. We note that the terms involving the Hilbert transform of the spectral density have all dropped out, not because of symmetry of \(C(r, \tau) \), but because \(f^{(0)}(v) \) is independent of \(\beta \). In the case of a test-particle problem the Fokker-Planck equation takes the form

\[
\left\{ \frac{\partial}{\partial t} + v \cdot \frac{\partial}{\partial x} - \frac{e}{m_e} \mathbf{v} \times \mathbf{B} \cdot \frac{\partial}{\partial v} \right\} w(Xt) = \text{St} \{ w \}
\]

where

\[
\begin{align*}
\text{St} \{ w \} &= \frac{e}{m} \frac{\partial}{\partial v} E(x, X) w^{(0)}(X, t) \\
&+ \left(\frac{e}{m} \right) \frac{\partial}{\partial v} \int_0^{\infty} d\tau C(r(\tau), \tau) \cdot \frac{\partial}{\partial v} w^{(0)}(Xt) \tag{58}
\end{align*}
\]

and \(E(x, X), C(r, \tau), \tau \) are the same as in Eq. (52). In this case however \(w^{(0)}(X, t) \), the lowest order one-body function for the singled-out particle is arbitrary so that \(\partial w^{(0)}/\partial \beta \neq 0 \).

The collision operator can be expressed as

\[
\text{St} \{ w \} = \frac{1}{m} \left[\frac{1}{v_\perp} \frac{\partial}{\partial v_\perp} F_\| w^{(0)} + \frac{\partial}{\partial v_\perp} F_\| w^{(0)} \right]
\]

\[
\begin{align*}
&- \frac{1}{v_\perp} F_\| \frac{\partial w^{(0)}}{\partial \beta} + \frac{1}{v_\perp} \frac{\partial}{\partial v_\perp} J_n'(k, \alpha) \frac{\partial}{\partial \beta} \\
&+ \frac{1}{v_\perp} \frac{\partial}{\partial v_\perp} J_n'(k, \alpha) \frac{\partial}{\partial \beta} + \frac{1}{v_\perp} \frac{\partial}{\partial v_\perp} J_n'(k, \alpha) \frac{\partial}{\partial \beta} \\
&+ \frac{1}{v_\perp} \frac{\partial}{\partial v_\perp} J_n'(k, \alpha) \frac{\partial}{\partial \beta} \right). \tag{59}
\end{align*}
\]

The coefficients in this collision operator are obtained from Eq. (56).

\[
\begin{align*}
F_\| &= 4\pi e^2 \int \frac{d k}{(2\pi)^3 k^2} \sum_n \frac{J_n'(k, \alpha) \text{Im} e}{|e(k, -i[k \cdot v_\|/\omega])|^2} \\
F_\| &= 4\pi e^2 \int \frac{d k}{(2\pi)^3 k^2} \sum_n \frac{J_n'(k, \alpha) \text{Im} e}{|e(k, -i[k \cdot v_\|/\omega])|^2} \\
T_{xx} &= (2\pi e^2)^2 \int \frac{d k}{(2\pi)^3 k^2} \sum_n \frac{|J_n'(k, \alpha)\text{Re} U(k, -i[k \cdot v_\|/\omega])|^2}{|e(k, -i[k \cdot v_\|/\omega])|^2} \\
T_{xx} &= (2\pi e^2)^2 \int \frac{d k}{(2\pi)^3 k^2} \sum_n \frac{|J_n'(k, \alpha)\text{Re} U(k, -i[k \cdot v_\|/\omega])|^2}{|e(k, -i[k \cdot v_\|/\omega])|^2}.
\end{align*}
\]

These coefficients are the same as in the spatially homogeneous case. The additional coefficients are

\[
\begin{align*}
F_\| &= 4\pi e^2 \int \frac{d k}{(2\pi)^3 k^2} \sum_n \frac{J_n'(k, \alpha) \text{Re} e}{|e(k, -i[k \cdot v_\|/\omega])|^2} \\
T_{xx} &= (2\pi e^2)^2 \int \frac{d k}{(2\pi)^3 k^2} \sum_n \frac{|J_n'(k, \alpha)\text{Re} U(k, -i[k \cdot v_\|/\omega])|^2}{|e(k, -i[k \cdot v_\|/\omega])|^2} \\
T_{xx} &= (2\pi e^2)^2 \int \frac{d k}{(2\pi)^3 k^2} \sum_n \frac{|J_n'(k, \alpha)\text{Re} U(k, -i[k \cdot v_\|/\omega])|^2}{|e(k, -i[k \cdot v_\|/\omega])|^2}.
\end{align*}
\]
2.7 Diffusion in the presence of a constant magnetic field

Consider the test-particle problem where the lowest order one-body function is

\[w^{(0)}(X', t') = \delta [x' - x(t')] \frac{\delta (v_{x'} - v_x)}{v_{x'}} \delta (v_{z'} - v_z) \delta (\beta' - \beta + \omega_c t) \]

and \(x(t') \) is given in Eq. (43). This function simply describes the motion of the test particle on its unperturbed orbit. We shall be interested in the quantity

\[\langle r_{\perp}^{2} \rangle = \int w(X', t') dX' r_{\perp}^{2} \]

where

\[r_{\perp}^{2} = [x' - x(t')]^{2} + [y' - y(t')]^{2}. \]

If \(w(X', t') = w^{(0)}(X', t') \), it is clear that \(\langle r_{\perp}^{2} \rangle = 0 \). The collision operator, however, has the effect of spreading out the distribution function so that if \(w(X', t) = w = i v \cdot \omega_c \) then \(\langle r_{\perp}^{2} \rangle \neq 0 \). To calculate \(w^{(1)} \), we integrate Eq. (58) along the unperturbed orbits:

\[w^{(1)}(X', t') = \int dt^{*} St \{ w^{(0)}(t^{*}) \} \]

where

\[w^{(0)}(t^{*}) = \delta [x' + a' \cos (\beta' + \omega_c (t^{*} - t')) - \cos \beta'] - x - a \cos (\beta + \omega_c (t' - t) - \cos \beta) \times \delta [y' + a' \sin (\beta' + \omega_c (t^{*} - t')) - \sin \beta'] - y - a \sin (\beta + \omega_c (t' - t) - \sin \beta) \times \delta [z' + v_{z'} (t^{*} - t') - z - v_{z} (t' - t)]

\[\times \frac{\delta (v_{x'} - v_x)}{v_{x'}} \delta (v_{z'} - v_z) \delta (\beta' - \beta - \omega_c (t^{*} - t')) \]

(60)

Eq. (50) is employed for \(St \{ w^{(0)} \} \). To calculate \(\langle r_{\perp}^{2} \rangle \) we first carry out the coordinate integration, then the velocity integration and finally the time integration. It will be apparent that only two terms in \(St \{ w^{(0)} \} \) produce anything so that the others will be omitted.

\[\langle r_{\perp}^{2} \rangle = \int d t^{*} \int d \beta^{*} \int d v_{\perp}^{*} \int d v'_{\perp}^{*} \int d v'_{\perp}^{*} \int d v'_{\perp}^{*} \]

\[\times \left[(a' \cos (\beta' + \omega_c (t^{*} - t')) - \cos \beta') - a \cos (\beta + \omega_c (t' - t) - \cos \beta) \times (a' \sin (\beta' + \omega_c (t^{*} - t')) - \sin \beta') - a \sin (\beta + \omega_c (t' - t) - \sin \beta) \times \frac{1}{m} \left(T_{v_{\perp}^{*}} \frac{\partial}{\partial v_{\perp}^{*}} + \frac{1}{v_{\perp}^{*}} \frac{\partial}{\partial v_{\perp}^{*}} - T_{v_{\perp}^{*}} \frac{\partial}{\partial v'_{\perp}^{*}} \frac{\partial}{\partial v'_{\perp}^{*}} \right) \right] \frac{\delta (v_{x'} - v_x)}{v_{x'}} \delta (v_{z'} - v_z) \delta (\beta' - \beta - \omega_c (t^{*} - t')). \]

(61)

Now integrate by parts twice. It is apparent that the only contributions obtain when \(r_{\perp}^{2} \) is differentiated twice. The result is therefore

\[\langle r_{\perp}^{2} \rangle = \int d t^{*} \int d \beta^{*} \frac{4 \omega_c^{2}}{m v_{\perp}^{2}} (T_{v_{\perp}^{*}} + T_{v_{\perp}^{*}}) [1 - \cos \omega_c (t^{*} - t')] \]

\[= \frac{4 \omega_c^{2}}{m v_{\perp}^{2}} \left(T_{v_{\perp}^{*}} + T_{v_{\perp}^{*}} \right) (t^{*} - t) \]

(62)

for \(t^{*} - t \gg 1/\omega_c \). In terms of the electric field fluctuations

\[T = \frac{e^{2}}{m} \int d \tau C(\tau) d \tau, \]

where

\[C(\tau) = \langle E(x, t) E(x + \tau, t + \tau) \rangle. \]

Therefore \(\langle r_{\perp}^{2} \rangle = D (t^{*} - t) \), where the diffusion coefficient is

\[D = \frac{4 e^{2}}{B^{2}} \int d \tau \langle E_{\perp}(x, t) \cdot E_{\perp}(x + \tau, t + \tau) \rangle \]

(62)

and

\[E_{\perp} = E - B \cdot E B. \]

An elementary derivation of a formula similar to Eq. (62) has previously been given by Spitzer [5]. Eq. (62) is, in fact, the same as Spitzer’s formula for a zero-velocity test charge; i.e., \(r(\tau) = 0 \).

Spitzer has discussed the effect of an instability of the collective modes of oscillation on the diffusion coefficient \(D \). It is a qualitative discussion because his formula is not explicit and because non-linear effects are considered. The present calculations do not include non-linear effects since they are restricted to stable distribution functions. However, we may consider a distribution function that approaches instability when some parameter is varied such as that given by Eq. (26). Only a zero velocity test charge will be considered so that

\[D = \frac{4 n e^{2} c^{2}}{B^{2}} \int \left(\frac{d k}{2 \pi} \right)^{2} \frac{k_{z}^{2}}{k^{2}} \left[\text{Re} U(k, \omega_{0}) \right] \]

\[+ \frac{1}{e(k, \omega_{0})} \left[\text{Im} U(k, \omega_{0}) \right] \]

(63)

where

\[\text{Re} U(k, \pm i \omega_{0}) = \frac{k}{2 \pi} \int d \tau \exp \left[\mp i \omega_{0} \tau - \frac{(k_{z} v_{\perp})^{2}}{2} \right] \]

\[- (k_{z} a_{0})^{2} (1 - \cos \omega_{0} \tau) \]

\[+ \frac{d n}{m} \exp \left[\mp i \omega_{0} \tau + k_{z} V \tau - \frac{(k_{z} v_{\perp})^{2}}{2} \right] \]

\[- (k_{z} a_{0})^{2} (1 - \cos \omega_{0} \tau) \]

(64)

\[a_{0} = v_{0} / \omega_{0}, \quad a_{1} = v_{1} / \omega_{c}; \]

\[\varepsilon(k, \pm i \omega_{0}) = 1 - \frac{1}{(k_{z} a_{0})^{2}} \int \frac{d \tau}{0} \exp \left[\mp i \omega_{0} \tau \right] \]

\[\frac{\partial}{\partial \tau} \exp \left[- \frac{(k_{z} v_{\perp})^{2}}{2} - (k_{z} a_{0})^{2} (1 - \cos \omega_{0} \tau) \right] \]

\[+ \frac{d n}{m} \frac{v_{\perp}^{2}}{v_{1}^{2}} \int \frac{d \tau}{0} \exp \left[\mp i \omega_{0} \tau + k_{z} V \tau \right] \]

\[\frac{\partial}{\partial \tau} \exp \left[- \frac{(k_{z} v_{\perp})^{2}}{2} - (k_{z} a_{0})^{2} (1 - \cos \omega_{0} \tau) \right] \]

(65)

where \(1 / L_{0}^{2} = \omega_{c}^{2} / v_{\perp}^{2} \).
We assume that $\omega_p > \omega_c$ and $(A n/n) (v_0/v_1)^2 \ll 1$. $A n$ is the parameter to be varied to ultimately produce instability. Eq. (63) can be evaluated by considering various regions of k-space in which U and ε have simple asymptotic forms. For example if $k > l/\varepsilon_0 > e^{l/2} v_0$ and $\varepsilon \approx 1$, $\text{Re} U \approx \sqrt{2} \pi v_0^2$ and

$$D_0 \approx \frac{4 \sqrt{2}}{3 \pi^{3/2}} \frac{a_0^2 e^2}{L_0^2} \frac{\ln (k_{\text{max}} L_0)}{m v_0}, \quad (66)$$

where k_{max} is the usual cut-off at the inverse of the closest distance of approach. This is the usual classical result. Now consider the contribution from the region $k a_0 < 1$ where

$$\text{Re} U (k, \pm i \omega_c) \approx \frac{k}{k_z} \left\{ \frac{1}{2 \pi v_0^2} \exp \left[- \frac{1}{2} \left(\frac{\omega_c}{k_z v_0} \right)^2 \right] \right\} + \frac{1}{\sqrt{2} \pi v_1^2} \frac{A n}{n} \exp \left[- \frac{1}{2} \left(\frac{\omega_c - k V_c}{(k v_1)} \right)^2 \right]$$

$$|\varepsilon (k, \pm i \omega_c)|^2 \approx \left[1 - \left(\frac{k_z V_c}{k v_0} \right)^2 \right]^{1/2} + \frac{1}{2} \frac{\omega_c}{(k v_1)} \exp \left[- \frac{1}{2} \left(\frac{\omega_c}{k v_1} \right)^2 \right]$$

$$+ (\frac{\omega_c}{k v_1}) \frac{A n}{n} \frac{v_0}{v_1} \exp \left[- \frac{1}{2} \left(\frac{\omega_c - k V_c}{k v_1} \right)^2 \right].$$

It is more convenient to carry out the integration in spherical coordinates i.e., $k_z = k \mu$, $k_\perp = k \sqrt{1 - \mu^2}$, $dk \approx 2 \pi k^2 d k d \mu$. There is a resonance for $\mu^2 = \omega_c^2/\omega_p^2$ that is sufficiently narrow to permit approximate methods of integration as long as $k a_0 \ll 1$ and $(A n/n) (v_0/v_1)^2 \ll 1$. After integrating across the resonance

$$D = \frac{4}{(2 \pi)^3} \frac{a_0^2 e^2}{L_0^2} \frac{1}{m v_0} \left(\frac{a_0}{\omega_p} \right)^{1/4} \frac{1}{k^2} \frac{d k}{d \mu} \times \quad (67)$$

$$\left\{ \exp \left[- \frac{1}{2} \frac{\omega_p}{(k v_0)} \right]^2 + \frac{v_0}{v_1} \frac{A n}{n} \exp \left[- \frac{1}{2} \left(\frac{\omega_p - k V_c}{k v_1} \right)^2 \right] \right\}$$

$$\exp \left[\frac{1}{2} \frac{\omega_p}{(k v_0)} \right]^2 + \frac{a_0}{\omega_p - k V_c} \frac{v_0}{v_1} \frac{A n}{n} \exp \left[- \frac{1}{2} \left(\frac{\omega_p - k V_c}{k v_1} \right)^2 \right].$$

If $A n/n = 0$, the result is small compared to Eq. (66). However, if

$$\frac{A n}{n} \to \left(\frac{v_0}{v_1} \right)^2 \frac{V_c}{v_1} \exp \left[- \frac{1}{2} \frac{V_c}{v_0} \right]^2,$$

the denominator in Eq. (67) becomes infinite for $k \approx \omega_p/V_c$. We may therefore expect significant contributions to the diffusion coefficient from the collective modes when they become unstable. The present formalism is not suitable for calculating the diffusion coefficient under these circumstances, since it diverges. It should be possible to treat the linear phase of instabilities by an extension of the present formalism in which the time-dependence of the Fokker-Planck coefficients is retained.

References

(Manuscript received on 12 October 1960, Section 1, and on 2 November 1960, Section 2)