Title
APPLICATIONS OF THE LORENTZ GROUP TO REGGE POLE ANALYSIS OF PION PHOTOPRODUCTION

Permalink
https://escholarship.org/uc/item/28f41149

Author
Dash, Jan William.

Publication Date
1968-06-20
APPLICATIONS OF THE LORENTZ GROUP TO REGGE POLE ANALYSIS OF PION PHOTOPRODUCTION

Jan William Dash
(Ph. D. Thesis)

July 20, 1968

Berkeley, California
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
APPLICATIONS OF THE LORENTZ GROUP TO REGGE POLE ANALYSIS OF PION PHOTOPRODUCTION

Jan William Dash

(Ph. D. Thesis)

July 20, 1968
CONTENTS

Abstract .. iv
Introduction ... 1

I. Kinematics of Pion Photoproduction
 and NN Scattering 4
 A. Pion Photoproduction 4
 B. Reggeization of the Pion Photoproduction
 Amplitudes 14
 C. Satisfaction of the Conspiracy
 Relation for Pion Photoproduction 18
 D. Nucleon-Nucleon Scattering 20
 E. Consistency Between Conspiracy
 Relations 26

II. The Data and Fits for $\gamma p \rightarrow n^+ p$, $np \rightarrow pn$,
 and $p\bar{p} \rightarrow n\bar{n}$ Scattering 28
 A. The Data 28
 B. Parameterization of the Pion Photoproduction
 Fit ... 28
 C. The Fits 31

III. The B Trajectory Photoproduction Sum
 Rule ... 34

IV. Implications for Scattering Data and
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>the Pion Sum Rule</td>
<td>39</td>
</tr>
<tr>
<td>A. Photoproduction</td>
<td>40</td>
</tr>
<tr>
<td>B. NN Scattering</td>
<td>42</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>44</td>
</tr>
<tr>
<td>Footnotes and References</td>
<td>45</td>
</tr>
<tr>
<td>Tables</td>
<td>49</td>
</tr>
<tr>
<td>Figure Captions and Figures</td>
<td>55</td>
</tr>
</tbody>
</table>
APPLICATIONS OF THE LORENTZ GROUP
TO REGGE POLE ANALYSIS OF PION PHOTOPRODUCTION

Jan William Dash
Lawrence Radiation Laboratory
University of California
Berkeley, California.

July 20, 1968

ABSTRACT

We consider applications of Lorentz invariance and Regge pole theory to the phenomenological study of photoproduction of pions from nucleons and nucleon-nucleon scattering. We first work out the kinematics for the more general cases having all unequal and nonzero external masses, and then take the limit of equal baryon masses and zero photon mass. We then consider the applications of Lorentz symmetry at $t = 0$ (i.e. conspiracy), and explicitly obtain the photoproduction daughter sequence through analyticity arguments. The factorization of the photoproduction Regge residues is shown to be consistent with the conspiracy relations in the nucleon-nucleon and pion Compton scattering processes. Finally, we analyze high energy pion photoproduction data along with nucleon-nucleon data assuming the existence of an $M = 1$ pion parity doublet.
conspiracy. We investigate the consequences of assuming a square-root type zero or a full zero in the $\pi N\bar{N}$ vertex function. The possibility of the existence of an $M = 1$ B-ρ' parity doublet conspiracy is investigated qualitatively through a photoproduction sum rule for the photon isoscalar amplitude, and by requiring consistency between phenomenological fits. Additional experimental tests for an $M = 1$ B trajectory are proposed.
INTRODUCTION

It has been known for some time that the differential cross sections for positive pion photoproduction\(^1\) show a marked forward peak very close to \(t=0\), similar to the peak found in np charge exchange, with a width close to \(\mu^2\). The successful application of the assumption of an \(M=1\) pion Lorentz pole with a zero in the \(\pi\text{NN}\) vertex function to np charge exchange\(^2\) makes a similar conjecture attractive in pion photoproduction\(^3\). Although the unequal external \(\pi\) and \(\gamma\) masses make the direct application of the usual group theoretical arguments at \(t=0\)\(^4\) more difficult, analyticity arguments and the asymptotic behavior of amplitudes can be used to give meaning to an \(M=1\) pion daughter sequence, which possesses the same members as in \(\text{NN}\) scattering. We study the general kinematics of photoproduction and \(\text{NN}\) scattering by taking the limit of equal baryon masses and zero photon mass in the reactions involving all unequal and nonzero external masses. We next show that the constraints in photoproduction, pion Compton scattering, and \(\text{NN}\) scattering can be satisfied by the asymptotic Regge pole contributions to the scattering amplitudes assuming factorized Regge residues.

The existing positive pion photoproduction data range from laboratory momenta of 2.6 to 16 GeV/c. We find that the \(M=1\) parity doublet (the pion \(\pi\) and its parity doublet partner \(\pi'\)) provides a satisfactory explanation of the data up to \(t=-0.5\,\text{GeV}^2\) if the \(\rho\), \(A_2\), and \(B\) trajectories are also included (as they were in Ref.\(^2\)). These latter trajectories are all assumed to be \(M=0\) trajectories with the \(\text{BNN}\) residue vanishing at \(t=0\). (The \(B\) parent trajectory is completely
neglected here, i.e., we assume it decouples completely from the $\bar{N}N$ and $\gamma\pi$ channels). The only other known meson trajectory that could be exchanged here is the A_1 trajectory. Although the A_1 trajectory (with an $M=0$ assignment) seems necessary to fit certain resonance production data, we do not include it here. Thus the fits here are consistent with the assumption of zero (or small) $A_1\bar{N}N$ and $A_1\gamma\pi$ couplings.

The question of the order of the zero in the $\pi\bar{N}N$ residue function is also investigated (this dynamical zero is denoted here by t_0). We find that the assumption of a full zero in the vertex function is preferred over that of a square-root type zero in the above model. Constraints involving factorization have been imposed from previous fits, and a fit assuming the existence of a double zero in the pion $N\bar{N} \to N\bar{N}$ residue function has been carried out for the reactions $np \to pn$ and $pp \to nn$. This double zero occurs around $t_0 \approx -2.5 \mu^2$ rather than $t_0 \approx -\mu^2$ as is the case if a single zero is assumed.

We have also qualitatively investigated the possibility that the B trajectory is an $M=1$ rather than an $M=0$ object. For some time people have speculated about the possibility of the B trajectory conspiring with an as yet unknown trajectory, usually denoted by ρ', from certain high energy data. Here we find evidence from two sources that this may be the case. The first is a photoproduction sum rule for the B trajectory, similar to the Bietti-Roy-Chu sum rule for the pion trajectory. It was found that there was evidence from this sum rule for a conspiring pion with a zero in the pion residue.
at \(t_0 \approx -1.5 \mu^2 \), qualitatively (but not exactly) consistent with phenomenological fits of the data. We perform a similar calculation using the small photoproduction isoscalar amplitudes for the \(B \) trajectory and find similar results; the \(B \) residue is small and nonvanishing at \(t = 0 \) with a zero displaced by about \(+5 \mu^2 \). The second source comes from the pion photoproduction and NN data, relying on the Regge fits. The small \(M = 1 \) \(B \) amplitude suggested by the sum rule seems inconsistent with the large \(M = 0 \) \(B \) amplitude found in the fit. Further, if one demands consistency of the position of the zero in the pion residue function found in these fits with the Bietti-Roy-Chu sum rule, an \(M = 1 \) \(B \) trajectory is preferred over \(M = 0 \). Experimental tests involving the \(p\overline{p}-n\overline{n} \) and \(\pi^-p-n\overline{n} \) reactions at small \(t \) are proposed to make a quantitative determination possible.

In Section I we give an account of the pion photoproduction and NN scattering formalism. In Section II we describe the data and the fits. Section III describes the photoproduction \(B \) sum rule. Section IV is concerned with qualitative remarks designed to support an \(M=1 \) assignment for the \(B \) trajectory.
I. KINEMATICS OF PION PHOTOPRODUCTION AND NN SCATTERING

A. Pion Photoproduction

We first consider the reaction with all the external masses being nonzero and unequal. We define the s and t channels as

\[\begin{align*}
 s: & \quad \gamma N_1 \rightarrow \pi N_2 \\
 t: & \quad \gamma \pi \rightarrow N_1 N_2
\end{align*} \]

where \(m_\gamma, m_\pi, m_{N_1}, \) and \(m_{N_2} \) denote the masses of \(\gamma, \pi, N_1, \) and \(N_2 \) respectively. We denote the t channel scattering angle by \(\theta_t \) \((z_t = \cos \theta_t)\) and the t channel helicity amplitudes by \(f^t_{\lambda_1 \lambda_2 \lambda_\gamma} \). Parity conservation reduces the number of independent amplitudes to six; hence we consider only those amplitudes with \(\lambda_\gamma = 0 \) or \(1 \). We define \(\lambda_1 = \pm \) to mean \(\lambda_1 = \pm \frac{1}{2} \) \((i=1,2)\). Extracting the half angle factors

\[\frac{1}{\sin \theta_t} \left(f^t_{++}, f^t_{+-} \right) \]

from the helicity amplitudes in the usual way, we define the six parity conserving amplitudes

\[f^\pm_{++} (s,t) = \frac{1}{\sin \theta_t} \left(f^t_{++} \pm f^t_{--} \right) \]

\[f^\pm_{+-} (s,t) = \frac{f^t_{++}}{1 + z_t} \pm \frac{f^t_{--}}{1 - z_t} \]

\[f^-_{++, o} (s,t) = f^t_{++, o} \]

\[f^-_{--, o} (s,t) = \frac{1}{\sin \theta_t} f^t_{++, o} \]

(1)
Notice that the amplitudes \(f_{++\frac{1}{2},0} \) are zero via parity conservation. Now in the unequal mass case, the helicity amplitudes are presumed analytic at \(t=0 \), since no pseudothreshold or physical region boundary coincides with this point. Since \(z_t \to l + O(t) \) as \(t \to 0 \), we see that \(f_{++\frac{1}{2},1} \) and \(f_{+-\frac{1}{2},0} \) have \(t^{-\frac{1}{2}} \) singularities, while \(f_{+-\frac{1}{2},1} \) have \(t^{-1} \) singularities. Further, since both \(tf_{+-\frac{1}{2},1} \) only depend on \(f_{+-\frac{1}{2},1} \) at \(t=0 \),

\[
 tf_{+-\frac{1}{2},1} = - tf_{+-\frac{1}{2},1} \quad \text{as } t \to 0 \tag{2}
\]

This relation is the unequal mass conspiracy relation. Conspiracy relations will be discussed in more detail later.

The parity conserving partial-wave amplitudes \(f^{J\pm}_{\lambda_1 \lambda_2, \lambda_{\gamma}}(t) \) are defined through the usual partial wave expansions of the parity conserving amplitudes

\[
f^{J\pm}_{\lambda_1 \lambda_2, \lambda_{\gamma}}(s,t) = \sum_{J} (2J+1) \left[e^{J_{\mu}}_{\lambda_1 \mu}(z_t) f^{J\pm}_{\lambda_1 \lambda_{\gamma}, \lambda_{\gamma}}(t) + e^{-J_{\mu}}_{\lambda_1 \mu}(z_t) f^{-J\pm}_{\lambda_1 \lambda_{\gamma}, \lambda_{\gamma}}(t) \right] \tag{3}
\]

where \(\lambda = \lambda_{\gamma} \) and \(\mu = \lambda_1 - \lambda_2 \).

The functions \(e^{J_{\mu}}_{\lambda_1 \mu}(z_t) \) are defined and listed in Ref. 9. We remark here that \(e^{J_{\mu}}_{00}(z_t) = e^{J_{-10}}_{+1}(z_t) = 0 \), accounting for the absence of the second term in the expansions of \(f_{++\frac{1}{2},1} \) and \(f_{+-\frac{1}{2},0} \).

Next, we use the L-S coupling method of Jackson and Hite \(^{10}\) to extract the threshold and pseudothreshold kinematic singularities from the parity conserving amplitudes and to find their threshold and pseudothreshold relations. This method involves expanding the partial wave helicity amplitudes in terms of L-S coupling amplitudes and then using the known behavior of these amplitudes around thresholds.
and pseudothresholds (pseudothresholds may be treated in exactly the same manner as thresholds if "pseudo" L-S amplitudes are defined with the parity of the lighter particle at each vertex being changed if it is a fermion; all parities otherwise remaining unchanged.)

The intrinsic spin and orbital angular momentum associated with the initial \((\gamma_1)\) and final \((\gamma_2)\) states will be denoted by \(S, L\) and \(S', L'\) respectively. We define the L-S t-channel partial wave amplitudes \(f_{L'S'LS}^{J \pm}(t)\) with parities \((-1)^J\) and \((-1)^{J+1}\) respectively, through the expansion

\[
f_{L'S'LS}^{J \pm}(t) = \sum_{\mathbf{s}, \mathbf{s}'} \Delta_{\mathbf{s}, \mathbf{s}'} \sum_{\lambda, \lambda} C_{L,S}^{\lambda} C_{\mathbf{s}', \mathbf{s}'}^{\lambda} C_{S', L'}^{\lambda} f_{L'S'LS}^{J \pm}(t)
\]

where \(C_{L,S}^{\lambda, \lambda'}\) are the usual Clebsch-Gordan coefficients. Near initial or final thresholds or pseudothresholds we expand the L-S amplitudes respectively about \(T_i^2 = 0\), where \(i = N, N', P, P'\) denotes

\[
T_N^2 = t - (\mu + m_\gamma)^2, \quad T_{N'}^2 = t - (m_\gamma + m_\mu)^2, \quad T_P^2 = t - (m_\gamma - \mu)^2, \quad T_{P'}^2 = t - (m_\gamma - m_\mu)^2.
\]

Near \(T_N^2 = 0\) for example, we obtain

\[
f_{L'S'LS}^{J \pm}(t) = T_N^{-1} \sum_{n=0}^{\infty} \tilde{f}_{L'S'LS, n}^{J \pm} (t)
\]

Next, we expand the \(e^{J \pm(\lambda \mu)(z_t)^2}\) functions in powers of \(z_t^{-2}\), obtaining

\[
\tilde{f}_{L'S'LS, n}^{J \pm} (t) = z_t^{-1 - n} \sum_{k=0}^{\infty} \gamma_k n^{J \pm(\lambda \mu)} z_t^{-2k}
\]

where \(\lambda_N = \text{max}(|\lambda|, |\mu|)\) and \(\eta_\pm = \{0\}_{1}\). This expansion is valid near \(T_1^2 = 0\) when all external masses are unequal, since near these points \(z_t \to \infty\).
Multiplying the two series for $f_{L'S'LS}^{J\pm}$ and $e^{-J\pm}$ together in the expansion of the full helicity amplitudes yields

$$ f_{J\pm}^{\lambda_1,\lambda_2,\lambda_3}(s,t) = \sum_{J} \left\{ \frac{1}{T_N^{2J+\lambda_M}} (2J+1) \right\} \frac{T_N^{\pm}}{T_N^{\pm}} \left\{ C_{L+S}^{\lambda_1,\lambda_2,\lambda_3} C_{L'S'}^{\lambda_1,\lambda_2,\lambda_3} \right\} $$

$$ \left\{ \frac{T_N^{\pm}}{T_N^{\pm}} \left\{ \frac{1}{T_N^{2J+\lambda_M}} \right\} \right\} $$

We define L_{\pm} to be the minimum value of the orbital angular momentum L in the \pm parity conserving state at $T_{N}^{2}=0$ ($i=N,N',P,P'$). We obtain $L_{\pm}^{N}=L_{\pm}^{N'}=\{J\}$ and $L_{\pm}^{N'}=\{J-1\}$ for $f_{L'S'LS}^{J\pm}$ respectively. Further, $f_{L'S'LS}^{J+}$ ($f_{L'S'LS}^{J-}$) do not couple to $S'=0$ at $T_{N}^{2}=0$ ($T_{F}^{2}=0$) respectively due to the NN quantum numbers.

The kinematic singularities of the full helicity amplitudes $f_{J\pm}^{\lambda_1,\lambda_2,\lambda_3}(s,t)$ at $T_{N}^{2}=0$ are just the factors T_{N}^{\pm} appearing in the $L=L_{N}^{\pm}$ term of the expansion (note that $L_{N}^{\pm}-J$ is independent of J). The threshold relations at $T_{N}^{2}=0$ are found by comparing expansions for the amplitudes $f_{J\pm}^{\lambda_1,\lambda_2,\lambda_3}$ in each order of T_{N}^{2n+2k}. For $n=k=0$ we get the usual threshold relations, and for $n,k>0$ we get derivative threshold relations when they exist.

Following this procedure we split off the $(L,n,k)=(L_{N}^{\pm},0,0)$ term from the expansion about $T_{N}^{2}=0$, obtaining
\[f_{\lambda_1, \lambda_2, \lambda_3}^{\pm}(s, t) = \frac{T^\lambda_z}{T^\lambda_z + 1} \sum_{S, S'} \left(\frac{\alpha^{\lambda_z}}{T^\lambda_z} \right)^{S, S'} \left\{ \tilde{a}_{L}^{\lambda_z} + O(T^\lambda_z) \right\} \]

where \(\alpha_{\pm} = L^\mp_{N} - L^\pm_{N} + 1 \) and

\[\tilde{a}_{L}^{\lambda_z} = \sum_{L'} (2L+1) C_{L}^{\lambda_z, L'} C_{L' S'}^{\lambda_z, \lambda} \left\{ \delta_{\lambda, \lambda} \text{ for } f_{L, S}^{+, \lambda} \right\} \]

The terms contributing to \(O(T^\lambda z) \) are \((L, n, k) = (L^z_N, 1, 0), (L^z_N, 0, 1) \) and \((L^z_N + 2, 0, 0) \). There are too many unknown coefficients introduced to allow any derivative relations. Notice that the sum over \(S \) and \(S' \) collapses. Also notice that \(|L^z_N - L^\pm_N| = 1 \); hence the term \(T^\lambda_{N, \pm} \) in the expansion may be of the same order as the first term.

As mentioned, the expansions about \(T_{N, \pm}^2 \), \(T_{P}^2 \), and \(T_{P'}^2 = 0 \) can be similarly obtained. We do not write these out in detail, as they have been discussed by several authors.\(^{11,12}\) We will, however, treat the more difficult case of \(N\bar{N} \) scattering explicitly in Section 1D.

These expansions lead us to define the parity conserving amplitudes free of all kinematic singularities.
\[\tilde{F}_1 = \frac{1}{\sin \theta_t} \left(f^{++} + f^{--} \right) \frac{t^{\frac{1}{2}}}{\mathcal{J}(t - \Delta^2)^{\frac{1}{2}}} \]

\[\tilde{F}_2 = \frac{1}{\sin \theta_t} \left(f^{++} - f^{--} \right) \frac{t^{\frac{1}{2}}}{(t - 4M^2)^{\frac{1}{2}}} \]

\[\tilde{F}_3 = \left(\frac{f^{++}}{1 + z_t} + \frac{f^{--}}{1 - z_t} \right) \frac{t}{\mathcal{J}(t - \Delta^2)^{\frac{1}{2}}} \]

\[\tilde{F}_4 = \left(\frac{f^{++}}{1 + z_t} - \frac{f^{--}}{1 - z_t} \right) \frac{t}{(t - 4M^2)^{\frac{1}{2}}} \]

\[\tilde{F}_5 = f^{++},0 \mathcal{J}(t - \Delta^2)^{\frac{1}{2}} \]

\[\tilde{F}_6 = \frac{1}{\sin \theta_t} \left(f^{++},0 \right) \frac{t^{\frac{1}{2}}}{(t - 4M^2)^{\frac{1}{2}}} \] (8)

where \(\mathcal{J} = \left\{ \left[t - (m + \mu)^2 \right] \left[t - (m - \mu)^2 \right] \right\}^{\frac{1}{2}} \), \(M = \frac{m_1 + m_2}{2} \),

\(\Delta = m_1 - m_2 \). \(\tilde{F}_5 \) and \(\tilde{F}_6 \) refer to amplitudes with zero helicity for the massive photon.

By comparing the expansions for the helicity amplitudes it can be shown that the \(\tilde{F}_1 \) satisfy the relations
The unequal mass conspiracy relation becomes

\[\Delta (\mu^2 - m_r^2) \tilde{F}_3 (s,0) = 2M \tilde{F}_4 (s,0) \quad (\mu > m_r) \quad (10a) \]

The unequal mass formalism given above is perfectly general, and would apply, for example to the reaction \(\pi N \rightarrow K^* \Sigma \). We next take the limit \(m_1 \rightarrow m_2 \), thereby obtaining a formalism appropriate, for example, to \(\pi N \rightarrow \phi N \). To do this, we must expand the kinematic singularity free amplitudes \(\tilde{F}_j \) in powers of \(t \) and \(\Delta \) around \(\Delta = 0 \). While this procedure strictly speaking lies outside the framework of S-Matrix theory, it is most unlikely that a dynamical singularity in
exists at $\Delta = 0$, so that the expansion should converge in some neighborhood of $\Delta = 0$.

Following this procedure, we write

$$\tilde{F}_3 = \sum_{m=0}^{\infty} c_3^m t^m \Delta^m$$

and insert this into the various relations, evaluating t at the appropriate values to make the right hand sides vanish. Since we have a power series in Δ equalling zero, the coefficient of each power of Δ must vanish separately. We then take the limit $\Delta \to 0$. It is easily seen that (9b) and (9c) imply that $c_4^{00} = c_5^{00} = 0$; hence \tilde{F}_4 and $\tilde{F}_5 \to 0(t)$ in the equal mass limit. Next we consider the equal mass conspiracy relation. The unequal mass conspiracy relation yields

$$2M c_4^{01} = (\mu^2 - m_\gamma^2) c_3^{00}$$

while the coefficient of Δ in relation (9b) yields $c_4^{01} = c_2^{00}$. Associating the equal mass amplitudes \tilde{F}_2^E and \tilde{F}_3^E with c_2^{00} and c_3^{00} at $t=0$ yields (as $\Delta \to 0$)

$$2M \tilde{F}_2^E(s,0) = (\mu^2 - m_\gamma^2) \tilde{F}_3^E(s,0) \quad (10b)$$

Finally we consider the zero mass limit of the photon. Writing $\tilde{F}_j^E = F_j^t + O(m_\gamma)$ and evaluating relations (9d) at $t=(m_\gamma + \mu)^2$ and at $t=(m_\gamma - \mu)^2$ respectively yields

$$\sqrt{2} (m_\gamma \pm \mu) F_6^t - F_4^t = O(m_\gamma)$$
Adding these equations and letting $m_y \to 0$ yields $F^{t}_{4}(s, \mu^2) = 0$, provided that \tilde{F}_{6}^{E} does not blow up as $m_y \to 0$; hence $F^{t}_{4} \propto (t - \mu^2)$.

Next we consider relations (9e). Since \tilde{F}_{5} is an amplitude for a zero helicity massive photon plus π having a transition to the singlet \bar{NN} state, one may expect a pion pole in this amplitude. Except for the case of π^0 photoproduction where charge conjugation does not permit the pion pole, one cannot argue that as $m_y \to 0$, \tilde{F}_{2}^t becomes proportional to $t - \mu^2$. Rather, one obtains the normalization condition for the pion pole contributing to F_{2}^{t}. This condition and the $t - \mu^2$ factor in F_{4}^{t} is the full content of gauge invariance for the t-channel helicity amplitudes of photoproduction.

For small enough fixed m_y, both relations (9e) are valid arbitrarily close to $t = \mu^2$. Hence we may split off the pion pole term in F_{5}^{t}, obtaining

$$F_{5}^{t} = \frac{c_{5}^{(1)}}{t - \mu^2} + c_{5}^{(2)} \quad \text{as } t \to \mu^2$$

Perturbation theory yields the coupling $c_{5}^{(1)}$ (in essence this defines the charge e)

$$c_{5}^{(1)} = \frac{\sqrt{2}}{4} \, e g \frac{m_y}{m_y} (4\mu^2 - m_y^2) \, \mu^t$$

We also write $F_{2}^{t} = c_{2}^{(1)} + (t - \mu^2)c_{2}^{(2)}$ for $t \approx \mu^2$.

Evaluating relations (9e) at $t = (m_y \pm \mu)^2$ respectively yields

$$\sqrt{2} \left[\frac{c_{5}^{(1)}}{(m_y \pm \mu)^2 - \mu^2} + c_{5}^{(2)} \right] + (m_y \pm \mu)4p_{k}z_{\ell} \left[c_{2}^{(1)} + \{ (m_y \pm \mu)^2 - \mu^2 \} c_{2}^{(2)} \right] = 0$$

Subtracting these, we obtain to order m_y
\[
\frac{\sqrt{2} \, c^{(i)}_S}{m^\gamma \mu} + \frac{8 \mu \, p \, k \, z \, c^{(i)}_L}{m^\gamma = 0} = O(m^\gamma)
\]

Since \(2p \, k \, z \) = \(s - m^2 \) at \(t = \mu^2 \) we get the desired result as \(m_\gamma \to 0 \), namely

\[
F^t_2 (s, \mu^2) = c^{(i)}_2 \to -\frac{e \mu^2}{2(s - m^2)}
\]

Finally, then, we are led to define the amplitudes for massless photon photoproduction, denoted by \(F^t_1 \) (redefining \(F^t_4 = \lim_{m' \to 0} \frac{F}{t(t - \mu^2)} \))

\[
F^t_1 = \frac{1}{\sin \theta_t} \left(f^{t+}_+ - f^{t+}_- \right) \frac{1}{t - \mu^2},
\]

\[
F^t_2 = \frac{1}{\sin \theta_t} \left(f^{t+}_+ - f^{t+}_- \right) \frac{(t/\mu^2)}{t(t - \mu^2)}
\]

\[
F^t_3 = \left(\frac{f^{t+}_+}{1 + z_t} + \frac{f^{t+}_-}{1 - z_t} \right) \frac{(t)^{3/2}}{t - \mu^2},
\]

\[
F^t_4 = \left(\frac{f^{t+}_+}{1 + z_t} - \frac{f^{t+}_-}{1 - z_t} \right) \frac{(t^2/(t - \mu^2)^{1/2})}{(t - \mu^2)(t - \mu^2)^{1/2}},
\]

where \(z_t = (s + \frac{t}{2} - m^2 - \mu^2)/2kp = \sqrt{2}/2kp \), \(k = \frac{t - \mu^2}{2(t)^{1/2}} \), \(p = \frac{1}{2}(t - 4m^2)^{1/2} \).

and \(f^{t+}_+ \lambda_1 \lambda_2 \lambda_3 \) \(\lambda_4 \) are the \(m_\gamma = 0 \) photoproduction helicity amplitudes.

The pion contributes to \(F^t_2 \) only while sense-nonsense coupled triplet states contribute only to \(F^t_1 \). \(F^t_3 \) and \(F^t_4 \) in leading order are composed of nonsense-nonsense coupled triplet amplitudes and uncoupled triplet amplitudes respectively.
B. Reggeization of the Pion Photoproduction Amplitudes

Following the usual Reggeization procedure, we represent the amplitudes F^t_i for large s and small t by the Regge asymptotic series, neglecting cuts and the background integral. We obtain

$$F^t_1 = \sum_i \frac{(1 + \alpha_i)(1 \pm e^{-i\pi\alpha_i})}{2 \sin \pi \alpha_i} \gamma_{SR}^i(t) G_{SR}^i(t) \left(\frac{\nu}{\nu_0}\right)^{\alpha_i - 1},$$

$$F^t_2 = \sum_i \frac{(1 + \alpha_i)(1 \pm e^{-i\pi\alpha_i})}{2 \sin \pi \alpha_i} \gamma_{0I}^i(t) G_{0I}^i(t) \left(\frac{\nu}{\nu_0}\right)^{\alpha_i - 1},$$

$$F^t_3 = \sum_i \frac{(1 + \alpha_i)(1 \pm e^{-i\pi\alpha_i})}{2 \sin \pi \alpha_i} \left[\alpha_i \gamma_{NR}^i(t) G_{NR}^i(t),
ight.$$

$$- \frac{1}{\nu}(\alpha_i - 1) (t - \mu^2)(t - 4m^2) \gamma_{11}^i(t) G_{11}^i(t) \left(\frac{\nu}{\nu_0}\right)^{\alpha_i - 1},$$

$$F^t_4 = \sum_i \frac{(1 + \alpha_i)(1 \pm e^{-i\pi\alpha_i})}{2 \sin \pi \alpha_i} \left[\alpha_i \gamma_{11}^i(t) G_{11}^i(t),
ight.$$

$$- \frac{1}{\nu}(\alpha_i - 1) \frac{t - \mu^2}{t} \gamma_{NR}^i(t) G_{NR}^i(t) \left(\frac{\nu}{\nu_0}\right)^{\alpha_i - 1},$$

where $\nu_0 \equiv 1$ GeV2.

The residue functions $\gamma_{ij}^i(t)$ have been given labels descriptive of the vertices. We label the singlet, uncoupled triplet, sense coupled triplet, and nonsense coupled triplet $\gamma_{j}^i(t)$ vertices by 0, 1, S, N, and the regular $[P = (-1)^J]$ and irregular $[P = (-1)^{J+1}]$ $\gamma_{\pi X}$ vertices by R and I. The residues may contain powers of α or t depending on the ghost-killing mechanisms and $t = 0$ coupling.
schemes, and are denoted by $G_{ij}(t)$ (Table I). The connection of the γ_{ij} with factorizable residues β_{ij} is given in Table I.

The cross section in the s channel in terms of helicity amplitudes is given by

$$\frac{d\sigma}{dt}(\text{ub GeV}^{-2}) = \frac{389.5}{2\pi(s - m^2)^2} \left(|f^t_{++,1}|^2 + |f^t_{-+,1}|^2 + |f^t_{+,1}|^2 + |f^t_{-,1}|^2 \right),$$

or in terms of the parity-conserving amplitudes,

$$\frac{d\sigma}{dt}(\text{ub GeV}^{-2}) = \frac{389.5}{4\pi(s - m^2)^2} \left\{ \left(z^2_t - 1 \right) \left[(\mu^2 - t)^2 |F^t_1|^2 + \frac{m^2 - t}{-t} |F^t_2|^2 \right]
ight.
\left. + (z^2_t + 1) \left[\frac{m^2 - t}{-t} |F^t_3|^2 + (4m^2 - t)(\mu^2 - t)^2 |F^t_4|^2 \right]
\right.
\left. + 4z_t \left(\frac{4m^2 - t}{-t} \right) \left[(\mu^2 - t)^2 \text{Re}(F^t_3 F^{*t}_4) \right] \right\}. \quad (14a)$$

The photoproduction conspiracy relation is

$$2m F^t_2(s, 0) = \mu F^t_3(s, 0).$$

Notice that this constraint removes the apparent singularity in $\frac{d\sigma}{dt}$ at $t = 0$. In terms of the $M = 1$ parity doublet conspiracy between the π and π' we obtain the following relation between the residue functions V_{01}^{π} and $V_{HR}^{\pi'}$: ...
\[\overline{\gamma}_{NR}^{\pi'}(0) = -\frac{2m}{\mu^2} \overline{\gamma}_{0\pi}(0) \] (15)

The gauge invariance relation giving the pion-nucleon coupling constant for \(\pi^+ \) photoproduction is

\[\lim_{t \to \mu^2} (t - \mu^2) [f_{++}^{t,1}(s, t) - f_{--}^{t,1}(s, t)] = -\mu^2 \epsilon \gamma \] (16a)

Hence we obtain the connection between \(g^2/4\pi \) and \(\overline{\gamma}_{0\pi}^{\pi'} \) for \(\pi^+ \) photoproduction:

\[g^2/4\pi = \frac{1}{4\pi} \left[\frac{\overline{\gamma}_{0\pi}^{\pi'}(\mu^2) (1 - \mu^2/t_0)}{e_{\pi}\mu^2} \right]^2, \] (16b)

where \(\overline{\gamma}_{0\pi}^{\pi'}(\mu^2) = a_{\pi} e^{b_{\pi}\mu^2} \) (see Table II). The relation (16a) also requires a factor of \((t - \mu^2) \) in the B residue; otherwise the B would contribute to the pion pole.

The constraint arising from factorization on the \(\pi' \) residue function from nucleon-nucleon fits is given by
where \(\gamma_{12}^{\pi'} \) and \(\gamma_{22}^{\pi'} \) are the same functions listed in Table II of Ref. 2.

Finally we remark on an amusing connection between the cross section calculated from the gauge-invariant Born term and that calculated by using the \(M = 1 \) \(\pi - \pi' \) conspiracy, assuming \(t_0 = \mu^2 \). Namely, for small \(t \) and large \(s \) the Regge contribution is equivalent to the Born approximation. Satisfying the normalization condition and the conspiracy condition with the residues \(\beta(t) \approx \frac{e^2 g}{2} (1 + t/\mu^2) \) and \(\beta(t) \approx \frac{e^2 g}{2} \), one obtains

\[
\left(\frac{d\sigma}{dt} \right)_{\text{Regge}} \approx \frac{389.5}{4\pi(s - m^2)^2} \left\{ \left[\frac{e^2 g}{4} (1 + t/\mu^2)^2 \right] + \left[\beta(t) \right]^2 \right\}
\]

\[
= \frac{389.5}{4\pi(s - m^2)^2} \frac{e^2 g}{4} (1 + t/\mu^2)^2 = \left(\frac{d\sigma}{dt} \right)_{\text{Born}}
\]

This coincidence accounts for the abnormal success of gauge invariant perturbation theory in fitting the \(\pi^+ \) photoproduction cross sections.
C. Satisfaction of the Conspiracy Relation for Pion Photoproduction

We now show in detail how the assumption of an M=1 parity doublet conspiracy satisfies the constraints due to analyticity at the unequal mass (γ_π) vertex and the conspiracy equation

$$2mF_{2}^{t}(s,0) = \mu^2 F_{3}^{t}(s,0)$$

The Reggeized form of the amplitudes can be written formally as

$$2mF_{2}^{t}(s,t) = \nu^{n-1} c_\pi(t) \bar{Y}_\pi(t) + \sum_{n=1}^{\infty} \nu^{d-2n-1} t^{-n} c_\pi^{(n)}(t)$$

$$\mu^2 F_{3}^{t}(s,t) = \nu^{n-1} c_{\pi^{'}}(t) \bar{Y}_{\pi^{'}}(t) + \sum_{n=1}^{\infty} \nu^{d-2n-1} t^{-n} c_{\pi^{'}}^{(n)}(t)$$

$$F_{q}^{t}(s,t) = t^m \nu^{d-2} [c_d(t)\bar{Y}_d(t) + c_{\pi^{'}}'(t)\bar{Y}_{\pi^{'}}(t)] + \sum_{n=1}^{\infty} \nu^{d-2n-2} t^{-n} c_{\pi^{'}}^{(n)}(t)$$

where for simplicity we have assumed all trajectories are parallel, and where we have split off the leading order contributions corresponding to the $M=1$ doublet $\pi-n'$ and the first daughter d. The t^{-n} singularities coming from the $d^\alpha_{\lambda\mu}$ functions and the daughter residues are exhibited explicitly. The coefficients $c_{\pi^{'}}^{(n)}(t)$ are thus presumed regular in t about $t=0$. Hence, expanding,

$$c_{\pi^{'}}^{(n)}(t) = \sum_{k=0}^{\infty} c_{\pi^{'}}^{(n,k)} t^k$$

We see that the n^{th} derivative of $c_{\pi}^{(n)}(0)$ contributes a finite amount to the conspiracy equation. Thus the conspiracy equation yields
\[
c_{\pi}(0)\overline{\gamma}_\pi(0) = c_{\pi'}(0)\overline{\gamma}_{\pi'}(0)\] for the \(\pi\) and \(\pi'\) residues, and
\[
d^n c_{2}(0) = d^n c_{3}(0) \quad (n=1,2,\ldots)\] where all the pion-like trajectories \(\alpha_i\) with \(\alpha_i(0)-\alpha_i(0)-2n\) will contribute to \(c_{2}^{(n)}\) and all \(\pi\) and \(d\)-like trajectories with \(\alpha_i(0)-\alpha_i(0)-2n\) will contribute to \(c_{3}^{(n)}\).

Analyticity of \(F_{2}^t\) and \(F_{3}^t\) implies that \(c_{i}^{(n,k)}=0\) for \(k<n\) (i=2,3).

The existence of \(\pi\) and \(\pi'\)-like trajectories is actually sufficient to guarantee analyticity of \(F_{2}^t\) and \(F_{3}^t\) since a new \(\pi\) (\(\pi'\)) type trajectory enters in each order of \(t^{-n}c_{2}^{(n)}\) (\(t^{-n}c_{3}^{(n)}\)). However, analyticity of \(F_{4}^t\) forces the existence of the first daughter \(d\) to cancel off the \(t^{-1}\) singularity in \(F_{4}^t\) due to the \(\pi'\), and the other \(d\)-type trajectories are required for analyticity in higher orders in \(t^{-n}\) of \(F_{4}^t\). Thus analyticity requirements due to the unequal \(\gamma_{\pi}\) mass kinematics coupled with the conspiracy equation, assuming only the existence of the first \(\pi-\pi'\) doublet, forces the existence of the whole \(M=1\) Lorentz pole family. The constraints of analyticity and conspiracy do not suffice to determine all derivatives of the residue functions. For example, we have two constraints on the zeroth derivatives of the \(\pi,\pi',\) and \(d\) residues coming from \(F_{4}^t\) analyticity to order \(t^{-1}\) and the conspiracy equation. However, unknown functions are introduced in each \(t^{-n}\) term, so that the constraints tell us nothing about the nonzero derivatives of these residues. In general, the first \(n-2\) derivatives will be completely determined for the \(n^{th}\) \(\pi\pi'd\) group, one derivative of order \(n-1\) will be lacking, and no information will be available for the derivatives of order \(\geq n\).
D. Nucleon-Nucleon Scattering

The Regge formalism for the equal mass \(\bar{N}N \) scattering process has been summarized in Ref. 2. Here we give an account of the kinematic formalism appropriate for all unequal masses and show how the usual formalism results in the limit of vanishing mass differences.

We proceed in a manner similar to that followed in Section IA. We define our reaction as \(N_1N_2 \rightarrow N_3N_4 \) (t channel). Parity conservation and time reversal invariance limits the number of independent amplitudes for the unequal mass process to six (upon taking the limit of equal masses, G parity in the t channel or the Pauli principle in the s channel reduces this number to five). Defining the parity conserving helicity amplitudes \(f_{\lambda\lambda'}^{\pm \pm} (s,t) \) in the usual way from the t-channel helicity amplitudes \(f_{\lambda\lambda'}^{t} (s,t) \), we make the partial wave expansion, obtaining amplitudes \(f_{\lambda\lambda'}^{J \pm} (t) \). We remark that the amplitudes \(f_{\lambda} \) of \(GG \ll 1^{3} \) are related to ours up to a factor by \(f_{\lambda} (i=1,2,3,4,5) \propto (f_{++},++, f_{+-},+-, f_{-+},+-, f_{++},++ \text{ etc.}) \) in the equal mass limit.

We next make the L-S expansion of the partial wave amplitudes, obtaining

\[
f_{\lambda\lambda'}^{J \pm} (t) = \sum_{ss'LL} C_{\lambda,s}^{s} C_{\lambda',s'}^{L} C_{L,S,L}^{s,s'} C_{L,S,L}^{s,s'} f_{L,S,L}^{J \pm} (t) \quad (20)
\]

where \(\lambda = \lambda_{1}-\lambda_{2} \) and \(\mu = \lambda_{3}-\lambda_{4} \). We define \(T_{N}^{2} = t-\hbar^{2}M_{12}^{2} \), \(T_{N'}^{2} = t-\hbar^{2}M_{34}^{2} \), \(T_{F}^{2} = t-\Delta_{12}^{2} \), and \(T_{F'}^{2} = t-\Delta_{34}^{2} \) where \(M_{1j} = (m_{1}+m_{j})/2 \) and \(\Delta_{ij} = m_{i}-m_{j} \). Further, we define \(\hbar p_{1}p_{2} = T_{N}T_{N'}T_{F}T_{F'} \). We expand \(f_{L'S'L'S}^{J \pm} \) about
Hence we obtain (splitting off the leading term)

\[
\mathcal{F}_{\pm}^{J}(s, t) = \mathcal{F}_{\pm}^{J}(s, t) = \mathcal{F}_{\pm}^{J}(s, t) = \mathcal{F}_{\pm}^{J}(s, t)
\]

where

\[
\mathcal{F}_{\pm}^{J}(s, t) = \mathcal{F}_{\pm}^{J}(s, t) = \mathcal{F}_{\pm}^{J}(s, t) = \mathcal{F}_{\pm}^{J}(s, t)
\]

Here the absence of \(S=0\) coupling for \(F_{\pm}^{J} \leftrightarrow S_{\pm} \leftrightarrow S_{\pm} \leftrightarrow S_{\pm} \) has been included along with some information about the Clebsch-Gordan coefficients in the Kronecker deltas. We have, further, \(I_0^+ = I_0^- = |J-1\rangle\) and \(I_0^+ = I_0^- = |J \rangle\) respectively. To leading order we obtain at \(T_N^2 \approx 0\)

\[
\mathcal{F}_{++}^{J} = \frac{1}{2 T_N} \sum_{J} \left(T_N e^{2J} \right) \mathcal{F}_{++}^{J} - \frac{1}{2 T_N} \sum_{J} \left(T_N e^{2J} \right) \mathcal{F}_{++}^{J} + O(T_N^2)
\]

\[
\mathcal{F}_{+-}^{J} = \frac{1}{2 T_N} \sum_{J} \left(T_N e^{2J} \right) \mathcal{F}_{+-}^{J} + \frac{1}{2 T_N} \sum_{J} \left(T_N e^{2J} \right) \mathcal{F}_{+-}^{J} + O(T_N^2)
\]

\[
\mathcal{F}_{-+}^{J} = -\frac{1}{2 T_N} \sum_{J} \left(T_N e^{2J} \right) \mathcal{F}_{-+}^{J} - \frac{1}{2 T_N} \sum_{J} \left(T_N e^{2J} \right) \mathcal{F}_{-+}^{J} + O(T_N^2)
\]

\[
\mathcal{F}_{++}^{J} = \frac{1}{2 T_N} \sum_{J} \left(T_N e^{2J} \right) \mathcal{F}_{++}^{J} + \frac{1}{2 T_N} \sum_{J} \left(T_N e^{2J} \right) \mathcal{F}_{++}^{J} + O(T_N^2)
\]

\[
\mathcal{F}_{+-}^{J} = \frac{1}{2 T_N} \sum_{J} \left(T_N e^{2J} \right) \mathcal{F}_{+-}^{J} + \frac{1}{2 T_N} \sum_{J} \left(T_N e^{2J} \right) \mathcal{F}_{+-}^{J} + O(T_N^2)
\]

\[
\mathcal{F}_{-+}^{J} = -\frac{1}{2 T_N} \sum_{J} \left(T_N e^{2J} \right) \mathcal{F}_{-+}^{J} - \frac{1}{2 T_N} \sum_{J} \left(T_N e^{2J} \right) \mathcal{F}_{-+}^{J} + O(T_N^2)
\]
\[f_{++}^{+} = \frac{1}{2} \sum_J (T_N^i \omega_i)^J \gamma_J \left(f_{J+J}^{++} + O(T_N^i) \right) \]

\[f_{++}^{-} = \frac{T_N^i}{2} \sum_J (T_N^i \omega_i)^J \gamma_J \left[\frac{\gamma_J}{J+1} f_{J+J}^{-} + \frac{J+1}{J} \left(f_{J-1,J-1}^{-} + O(T_N^i) \right) \right] \]

\[f_{++}^{+} = \frac{T_N^i}{2} \sum_J (T_N^i \omega_i)^J \gamma_J \left[\sqrt{\frac{1}{J+1}} f_{J+J}^{+} + O(T_N^i) \right] \] (23)

where \(r_J = \frac{(2J+1)(2J)!}{2^J (J!)^2} \). The expansions at \(T_N^2 = 0 \) are similar and will be discussed below.

The expansions at \(T_P^2 = 0 \) or \(T_P' = 0 \) can be obtained by substituting \(T_N \rightarrow T_P \) (or \(T_P' \)), \(f^\pm, \lambda_1, \lambda_2, \lambda_3, \lambda_4 \rightarrow f^\mp, \lambda_1, \lambda_2, \lambda_3, \lambda_4 \), and \(f^J, \lambda_1, \lambda_2, \lambda_3, \lambda_4 \rightarrow f^J, \lambda_1, \lambda_2, \lambda_3, \lambda_4 \) (i.e. \(\tilde{\alpha}_{N^1SS'} \rightarrow \tilde{\alpha}_{P^1SS'} \)). We also note that the amplitudes \(f^\pm, \lambda_1 \) corresponding to the process \(N_1N_2 \rightarrow N_3N_4 \), where \(N_2 \) and \(N_4 \) have quantum numbers \(J^P = (\frac{3}{2})^- \) may be obtained either by substituting \(T_N \rightarrow T_P \), \(T_N \rightarrow T_P' \), \(f^\pm, \lambda_1 \rightarrow f^\mp, \lambda_1 \), and \(f^J, \lambda_1 \rightarrow f^J, \lambda_1 \) or by substituting \(f^\pm, \lambda_1 \rightarrow f^\mp, \lambda_1 \), \(f^J, \lambda_1 \rightarrow f^J, \lambda_1 \), and \(T_N^2 \rightarrow T_P^2 \). This same procedure yields the amplitudes for NN scattering. The \(\tilde{\alpha}_{N_1N_2} \rightarrow \tilde{\alpha}_{N_3N_4} \) process is useful because it factorizes at the intermediate state pion pole into a product of \(pN \rightarrow pN \) amplitudes.

Examining the threshold expansions, we find the relation

\[T_N T_N' (f_{++}^{++} + \omega \varepsilon f_{++}^{++}) = O(T_N^i) \] (24a)

The expansions about \(T_N^2 = 0 \) are the same for all amplitudes.
except $f^{++,+-}$ if the replacements $T_N \rightarrow T_{N'}$ and \(f_{L' S' L S}^{J+} \rightarrow f_{L S L'}^{J+} \) are made (note that symmetry is maintained in $f^{-,++}$ which has only $J=L$ couplings). The expansion for $f^{++,+-}$ is

$$f_{++,-}^{++} = \frac{1}{2} \sum (\mathcal{T}_X, \mathcal{Z}) \mathcal{T}_X \left[\frac{\lambda}{2 \lambda - 1} f_{++}^{++} + \sqrt{\frac{\lambda}{\mathcal{Z}}(2 \lambda - 1)(2 \lambda + 3)} f_{++}^{++} \right] + O(\mathcal{T}_N^2) \right] \quad \text{at } t \approx T_{N'}^2$$

Hence we obtain the threshold relation at $T_{N'}^2 \approx 0$,

$$f_{++,-}^{++} + f_{++,-}^{++} = O(T_{N'}^2) \quad (24b)$$

The unequal mass threshold relations become the GGMW threshold relations Eq. 7.15b, 7.15d in the equal mass limit. Eq. 7.15c is merely the statement that $f^{-,+-}$ has a kinematic singularity as $T_N T_N' \rightarrow 4 \lambda^2$.

Next, we consider the pseudothreshold relations. Making the replacements indicated above, we see that the following relations are satisfied

$$f_{++,-}^{-} + f_{++,-}^{++} = O(T_{N'}^2)$$

$$T_p T_p f_{++,-}^{-} + T_p T_p f_{++,-}^{++} = O(T_{N'}^2) \quad (25)$$

Finally we have the unequal mass conspiracy relation, obtained as in Section IA

$$t f_{++,-}^{++} = -t f_{++,-}^{+-} \quad \text{as } t \rightarrow 0 \quad (26)$$
We next discuss the equal mass limit of the pseudothreshold and conspiracy equations. First, using the results of the L-S expansions, we define kinematic singularity free amplitudes \(\tilde{F}_i \) (with the usual \(t^\frac{3}{2}(|\lambda j|+|\mu|) \) factor also removed)

\[
\begin{align*}
 f^+_{++} &= (T_N T_{\mu})^{-1} \tilde{F}_1 \\
 f^-_{++} &= (T_p T_{\nu})^{-1} \tilde{F}_1 \\
 f^+_{+-} &= t^\frac{1}{2} T_p T_{\nu} \tilde{F}_3 \\
 f^-_{+-} &= t^\frac{1}{2} T_N T_{\nu} \tilde{F}_3 \\
 f^+_{-+} &= t^{-\frac{1}{2}} T_p T_{\nu} \tilde{F}_5 \\
 f^-_{-+} &= t^{-\frac{1}{2}} T_N T_{\nu} \tilde{F}_5
\end{align*}
\]

The \(\tilde{F}_i \) amplitudes then satisfy the relations

\[
\begin{align*}
 t^{-\frac{1}{2}} T_N T_{\nu} \tilde{F}_3 + t^\frac{1}{2} T_N T_{\mu} \tilde{F}_6 &= O(T_p^2) \quad (a) \\
 \tilde{F}_1 + t^{-\frac{1}{2}} T_N T_{\nu} T_p T_{\nu} \xi \tilde{F}_6 &= O(T_p^2) \quad (b) \\
 T_p T_{\nu} \tilde{F}_4 + T_N T_{\mu} \tilde{F}_3 &= O(t) \quad (c) \quad (28)
\end{align*}
\]

We next expand each amplitude in a triple power series in \(t \), \(\Delta_{12} \) and \(\Delta_{34} \), writing

\[
\tilde{F}_i = \sum_{jkl} c_{ijkl} t^j \Delta_{12}^j \Delta_{34}^k
\]

We set \(t = \Delta_{12}^2 \) (or \(t = \Delta_{34}^2 \)) in the two pseudothreshold relations, set \(t = 0 \) in the conspiracy equation, and then equate coefficients of \(\Delta_{12}^m \Delta_{34}^n \) separately (it is not sufficient to set \(\Delta_{12} = \Delta_{34} = \Delta \) and equate coefficients of powers of \(\Delta \)). Further, we must expand...
We obtain

From (28a): \(c_{33}^{000} = c_{310}^{002} = c_{310}^{010} + c_{300}^{100} + c_{300}^{020} = c_{310}^{111} + c_{310}^{001} = 0 \)

From (28b): \(c_{11}^{000} = c_{11}^{100} + c_{11}^{002} + 2(s - \frac{1}{2} \sum_{i}^{2} m_{i}^{2}) c_{6} = c_{11}^{020} + 4M_{12} M_{34} c_{6}^{010} = 0 \)

From (28c): \(c_{44}^{000} + 4M_{12} M_{34} c_{4}^{011} = 0 \)

By symmetry we have \(c_{33}^{020} = c_{33}^{002} \) and \(c_{11}^{020} = c_{11}^{002} \). Hence we obtain

\[
\begin{align*}
4M_{12} M_{34} c_{4}^{011} + 2(s - \frac{1}{2} \sum_{i}^{2} m_{i}^{2}) c_{6} = 0
\end{align*}
\]

We set \(M_{12} = M_{34} = m \) and define \(f_{1}^{1}(s,0) = c_{11}^{100}, f_{3}^{3}(s,0) = c_{33}^{100} \), and \(f_{4}^{4}(s,0) = c_{44}^{000} \), where \(f_{1} \) are the kinematic singularity free parity-conserving amplitudes for \(\overline{NN} \) scattering (note \(c_{33}^{000} = c_{33}^{000} = 0 \), i.e. \(f_{3} \) and \(f_{4} \) pick up a factor \(t \) in the equal mass limit, as they must to cancel the unequal mass kinematic singularities \(T_{P}^{-1} T_{O}^{-1} \) or \(t^{-1} \) which are not present in the equal mass case). We have \(f_{1} = f_{3}^{1}, f_{3} = T_{N}^{-1} f_{3}^{3} \), and \(f_{4} = f_{4}^{4} \). Hence the equation becomes

\[
\begin{align*}
f_{1} - f_{3} - z f_{4} = 0 \quad \text{at} \quad t = 0
\end{align*}
\]

or in terms of the GGMW \(\phi_{n}^{t} \) amplitudes,

\[
\begin{align*}
\phi_{1}^{t} - \phi_{2}^{t} = \phi_{3}^{t} - \phi_{4}^{t} \quad \text{at} \quad t = 0
\end{align*}
\]

This is the equal mass conspiracy relation.

Thus we have shown that the usual \(\overline{NN} \) scattering formalism results in the limit of equal masses in the unequal mass formalism.
E. Consistency Between Conspiracy Relations

We show here that the conspiracy relations for the three processes \(\bar{N}N \rightarrow \bar{N}N \), \(\gamma\pi \rightarrow \bar{N}N \), and \(\gamma\pi \rightarrow \gamma\pi \) are consistent with each other and with factorization of the residues for an \(M=1 \) type parity doublet conspiracy. Denoting the full factorized residues by \(\beta_{ij} = \gamma_i \gamma_j \) where \(i,j = 0,1,S,N,R,I \) are the vertex labels of Section IB, we obtain the following forms for the Reggeized amplitudes.

1. \(\bar{N}N \rightarrow \bar{N}N \)

We have, formally (the exact expressions will not be needed)

\[
\phi_1^t - \phi_4^t = 2K'(t)D_0^\alpha(z_t) \left[\gamma''_1(t) \right]^2
\]

\[
\phi_3^t - \phi_4^t = K''_1(t) \left[D_n^\alpha(z_t) - D_{i-1}^\alpha(z_t) \right] \left[\gamma''_N(t) \right]^2
\]

\[
+ K'_d(t) \left[D_n^{\alpha'}(z_t) + D_{i-1}^{\alpha'}(z_t) \right] \left[\gamma'_d(t) \right]^2
\]

where \(D_{\lambda \mu}^\alpha \) are the \(D_{\lambda \mu}^\alpha \) with the Legendre polynomials \(P_\alpha \) replaced by the usual \(\phi_\alpha \). Since at \(t=0 \), \(z_t \rightarrow 0 \) we may write expansions for \(D_{\lambda \mu}^\alpha \) in powers of \(z_t^{-2} \). We have \(\phi_\alpha \propto A_\alpha z_t^\alpha, D^{\alpha}_{11} - D^{\alpha}_{1,-1} \propto \frac{\alpha}{\alpha+1} A_\alpha z_t^\alpha \), and \(D^{\alpha}_{11} + D^{\alpha}_{1,-1} \propto 0(z_t^{\alpha-1}) \). To leading order in \(z_t \) (where \(\alpha_1(0) = \alpha(0) - 1 \)), consistent with \(M=1 \), the conspiracy equation for \(\bar{N}N \) scattering becomes [note \(K_1(0) = K''_N(0) \)]

\[
\left[\gamma''_1(0) \right]^2 = \frac{\alpha(0)}{\alpha(0) + 1} \left[\gamma''_N(0) \right]^2
\]

2. \(\gamma\pi \rightarrow \bar{N}N \)

The connection of the photoproduction amplitudes \(F_i^t \) with the \(\gamma_i \)
is given by

\[2mF_2^t = -2K_n(t)\sqrt{\frac{\alpha}{\alpha + 1}} A_{d,2}^\pi(t) \gamma^X(t) \gamma^\pi(t) \]

\[\mu^2 F_3^t = K_n(t)\frac{\alpha}{\alpha + 1} A_{d,2}^\pi(t) \gamma^\nu'(t) \gamma^\eta'(t) + K_n(t)\gamma^\pi(t) \gamma^\pi(t) \cdot O(z_t^{-2}) \]

(31a)

We have expanded the d-functions in powers of z_t^{-2} even though as $t \to 0$ we have $z_t \to 0$ since these singularities are to be cancelled by the daughters as described in Section IC. Hence to leading order in z_t the conspiracy equation becomes

\[\gamma^\pi_X(0) \gamma^\nu(0) = -\frac{\alpha(0)}{\alpha(0) + 1} \gamma^\nu(0) \gamma^\eta(0) \]

(31b)

\[\gamma^\pi \to \gamma^\pi \]

The pion Compton scattering amplitudes F_{RR} and F_{II} are analytic, where

\[F_{RR} = \left(\frac{t_{10,10}}{1 + z_t} + \frac{t_{10,-10}}{1 - z_t} \right) \frac{t}{(t - \mu^2)^2} \]

\[F_{II} = \left(\frac{t_{10,10}}{1 + z_t} - \frac{t_{10,-10}}{1 - z_t} \right) t \]

(32a)

The unequal mass conspiracy relation

\[\frac{1}{\mu} F_{RR}(s, 0) = -F_{II}(s, 0) \]

(32b)

is satisfied by the (full) factorized residues $(\gamma^\pi_X(0))^2 = (\gamma^\eta(0))^2$ for the parity doublet solution. This relation eliminates the apparent pole in $t_{10,10}$ at $t = 0$.

II. THE DATA AND FITS FOR $\gamma p \rightarrow \pi^+ p$, $np \rightarrow pn$,
AND $p\bar{p} \rightarrow n\bar{n}$ SCATTERING

A. The Data

The photoproduction data used were positive pion photoproduction data at 2.6, 2.7, 3.4, 3.7, 5, 8, 11, and 16 GeV/c lab momentum. Reliable high energy negative pion photoproduction data are scarce; we used only one point at 3.4 GeV/c, $t = -0.37$ GeV2 as a constraint. We have included data up to $t = -0.5$ GeV2, consistent with the fits. We have included the possibility of systematic errors quoted by the experimentalists on the order of $\pm 5\%$. In all, 62 photoproduction data points were used.

The $np \rightarrow pn$ and $p\bar{p} \rightarrow n\bar{n}$ data were described in Ref. (2). In all, 74 data points were used.

B. Parameterization of the Pion Photoproduction Fit

The most important part of the parameterization of the pion residue function is the zero at t_0. If one makes the assumption that the zero in the $NN \rightarrow NN$ pion residue is a single zero (i.e. a square root type zero in the NN_K vertex), then the square root zero must propagate throughout all vertex functions of the form XY_K. If, however, we assume that there is a full zero in the NN_K vertex and thus a double zero in the $NN \rightarrow NN$ pion residue, only reactions involving NN need have the zero. (Of course there is nothing to prevent any other
XYI vertex function from having such a zero, but it is then not required to be in any specific place.) While the origin and full content of the zero is not well understood, it seems to be connected with the apparent incompatibility of $M=1$ with the zero spin of the physical pion2,15 and recent work of Toller indicates that the hypothesis of a full zero in the $\beta\beta$ vertex function is preferred over that of a square-root type zero from group theoretic grounds. Since earlier fits to $\beta\beta$ scattering assumed the square root type vertex zero, we have fit the $\beta\beta$ data with the full $\beta\beta$ vertex function zero hypothesis and find that the zero is then required to be at around $t_0 = -2.5 \mu^2$ rather than at $-\mu^2$. The photoproduction pion residue function has a single zero in any case (we assume nothing about the $\gamma\beta$ vertex in the full vertex zero case). We find that consistent fits to all data can be obtained with the full vertex zero hypothesis but that some discrepancy exists between the values of $g^2/4\pi$ obtained in the $\beta\beta$ and photoproduction fits if the square root vertex zero is assumed.

We next consider the zero in somewhat more theoretical detail. Mandelstam15 has argued that since the $M=1$ pion must choose nonsense at $\alpha_{\pi^0} = 0$ for the massless pion (π^0) case, all soft pion amplitudes must be small. However, M can also be defined through the asymptotic behavior of unequal mass amplitudes, and one finds that the kinematic factors of $t^{1/2}$ yield small hard pion amplitudes as well. Evidently, one must either give up the hypothesis that the pion is $M=1$, or else hope that the soft pion amplitudes will have additional zeros relative to the hard pion ampli-
tudes. This can easily be accomplished in Bethe-Salpeter models by regarding the pion trajectory as being composed as a superposition of crossing trajectories, which are regarded as the leading members of an $M=1$ and an $M=0$ family. A full zero is thereby introduced in the $\pi N\pi$ vertex function, and the physical pion (which must choose sense at $\alpha = 0$) is produced through the $M=0$ trajectory. Finally, by considering ghost killing mechanisms for equal mass scattering processes by looking at singularities in the group theoretic expansions at integer values of trajectories, Toller concludes that the zero in the πNN vertex function exists, and moreover that it is most likely a full zero. If such an analysis could be carried out for unequal masses, it might happen that such zeros could depend on the external masses, the zeros moving close to $t=0$ only when the equal mass limit is reached. Unfortunately, there are no unequal mass expansions that do not also make the unphysical assumption of parallel daughter trajectories. An inverse Regge-Lorentz expansion would not possess this difficulty, since a separate inverse expansion could be written for each daughter; the sum of the daughter expansions would then collapse appropriately at $t=0$ for equal masses. Although such inverse unequal mass expansions can easily be performed at asymptotic s (nonuniquely), it appears difficult to write expansions which have the correct analyticity properties as $t \rightarrow 0$.

We conclude this section by describing the rest of the parameterization. The parameterization of all trajectories and residue functions was made consistent with meson-nucleon and nucleon-nucleon fits. The π, π', ρ, and A_2 trajectories were considered fixed and the B trajectory slope was assumed unknown. Factorization from meson-nucleon fits constrained the ρ and A_2 residues, which were taken to have the
C. The Fits

Photoproduction fits for both cases of a full vertex zero and a square root type vertex zero were obtained. The parameters obtained in the former case are listed in Table II. The amplitudes are pictured in Figs. 1 and 2, and the fit itself is pictured in Figs. 3 and 4. Although little effort has been made to test the nonuniqueness of the fits, it is probably true that they are not unique, so that these parameters should not be regarded quantitatively too seriously. We note in passing that the small ρ amplitudes found here seem consistent with the result of small $\gamma_{\rho\rho}$ coupling found in photoproduction dispersion relation calculations.

A fit to the np-pn and pp-$n\bar{n}$ data was obtained with the assumption of a full $NN\pi$ vertex zero, and these parameters are also presented in Table II. The notation used is that of Ref. (2). Fits with the square root zero at various locations were also obtained, and will be discussed below.

The best photoproduction fit for the square root vertex zero case was obtained with $\chi^2 = 73$ for 62 points and a value of
\(g^2/4\pi = 16.8 \), in some disagreement with the value of \(g^2/4\pi = 13 \)
obtained in the NN fit for this value of \(t_0 \) (\(t_0 = -0.02' \)). Fits with larger values of \(t_0 \) tend to decrease \(g^2/4\pi \) for photoproduction faster than \(g^2/4\pi \) for NN scattering, so that the farther out we move \(t_0 \) the closer we come to consistency. However, for \(t_0 = -0.03' \) we obtain \(g^2/4\pi = 15 \) and 11.7, respectively, for \(\gamma p \) and NN scattering; we cannot move \(t_0 \) farther out and retain an acceptable value of \(g^2/4\pi \) for NN scattering. On the other hand, moving the zero in to \(t_0 = -0.018 \) only raises \(g^2/4\pi \) to 15.7 in NN scattering. Thus some inconsistency seems to exist. This discrepancy may, however, not be serious, since we cannot be sure that there are no other \(M = 1 \) conspiring parity doublets (e.g., \(B - \rho' \)). If there were, one could put a zero at some \(t_B < 0 \) into the \(B \) residue function, and the data could then be fit with a wide range of values for \(t_0 \) since the coupling of the pion would then no longer be constrained at \(t = 0 \). We discuss this point more fully in Section IV.

The best photoproduction fit for the full vertex zero case was obtained with \(\chi^2 = 66 \) for 62 points (not significantly different from the previous case). With a value of \(t_0 = -0.05' \), nearly equal values of \(g^2/4\pi = 15.4 \) and 14.7 were obtained for photoproduction and NN scattering respectively. Thus problems of consistency do not seem to arise if the zero is assumed to be a full vertex zero.

The value of the \(\pi^-/\pi^+ \) cross section ratio at 3.41 GeV/c, \(t = -0.37 \) GeV\(^2\) is measured to be \(0.73/2.1 = 0.35 \). We obtain
\sigma(\pi^-) / \sigma(\pi^+) = 0.87 / 1.5 = 0.57 \text{ for both types of zeros, giving a}
\text{total } \chi^2 \text{ of about } 3 \text{ for the } \pi^- \text{ and } \pi^+ \text{ cross sections in each case.}

The photoproduction data can be fit well only out to about
$t = -0.5 \text{ GeV}^2$ with the models assumed here. Past this point, the
data show a break which we do not quantitatively reproduce. This
break may be related to the structure in the $p\bar{p} \to n\bar{n}$ cross sections
past $t = -0.5$ which the NN fits could not quantitatively describe.
It is possible that the inclusion of other trajectories (e.g., an
$M = 1 \rho'$ or some amount of A_1) could be used to affect quantitative
reproduction of the data.
III. THE B TRAJECTORY PHOTOPRODUCTION SUM RULE

We begin by writing the sum rule, a positive moment sum rule for the even ν part of the t-channel photoproduction amplitude which contains the B (but not the π) trajectory. This t-channel amplitude is proportional to the photon isoscalar amplitude which in CGLN notation is (we use CGLN's ν in this section)

$$A(\nu, t) \equiv A_1^{(0)}(\nu, t) + t A_2^{(0)}(\nu, t). \quad (33)$$

The sum rule is then

$$0 = \frac{1}{\pi} \int_{\nu_{\min}}^{\nu_{\max}} \nu \text{Im} A(\nu, t) d\nu + \nu_B \frac{\epsilon g t + \mu^2}{4M_{\nu_B}} - \frac{1}{\pi} R_{OJ}(t) R(t) \frac{\alpha_B^{+1}}{\alpha_B + 1}, \quad (34)$$

where $R_{OJ}(t)$ is the same residue used in the photoproduction fit,

$$4M_{\nu_B} = -\mu^2 + t, \quad 4M_{\nu} = s - u,$$

and

$$R(t) = 2\alpha_B(1 + \alpha_B)(2 + \alpha_B)(t/\mu^2)^{\alpha_B^{-1}/(2\epsilon)}/(2\epsilon)^{\alpha_B^{-1}}(1.39)^{\frac{\beta}{2}}.$$

We evaluate $A(\nu, t)$ by writing its multipole expansion formally as

$$A(\nu, t) = \sum \mathcal{M}_i(\nu, t) + \frac{\epsilon g t + \mu^2}{4M_{\nu} - \frac{t}{\mu^2}} \left(\frac{1}{\nu + \nu_B} + \frac{1}{\nu + \nu_B}\right), \quad (35)$$
where the multipole sum has the \((\text{real})\) Born term explicitly removed.

The sum \(\sum_i \mathcal{M}_i(v, t)\) is given in CGLN through the multipole expansion of \(\mathcal{F}_i(0)\) where

\[
\tilde{\mathcal{A}}(v, t) = \frac{l_3 \pi}{k} \left[\frac{(M + E_1)/(M + E_3)}{2} \right] \mathcal{F}_1(0)(v, t)
\]

\[
- \frac{l_3 \pi}{q} \left[\frac{(M + E_2)/(M + E_1)}{2} \right] \mathcal{F}_2(0)(v, t)
\]

\[
+ \frac{l_3 \pi}{q} \frac{(W - M^2) \mathcal{F}_3(0)(v, t)}{(W - M^2)[(M + E_2)/(M + E_1)]^2}
\]

\[
- \frac{l_3 \pi}{2k W_s^2} \frac{(W + M^2)[(M + E_2)/(M + E_1)]^{1/2}}{\mathcal{F}_4(0)(v, t)} .
\]

The final form of the sum rule is thus

\[
+ \frac{\pi \mathcal{B}}{(4M)^2} (t + \mu^2) + \frac{1}{\pi} \int_v \text{Im} \sum_i \mathcal{M}_i(v, t) d_v = \frac{l_3 \pi \mathcal{B}}{(4M)^2} \mathcal{B}(t) \mathcal{R}(t) \frac{N}{\alpha_B + 1}
\]

\[
(37)
\]

We use the parameterization of the multipoles given by Walker \(^{20}\) to evaluate the sum \(\sum_i \mathcal{M}_i(v, t)\). This parameterization utilizes six resonances and a number of nonresonant parts, which are generally small.
The results of the calculation are presented in Table III, and the integrands of both the Bietti-Roy-Chu and the B-meson sum rules at \(t = 0 \) are plotted in Fig. 5.

It is seen that the \(B \) residue is finite at \(t = 0 \) and has a zero at \(t_B = -\mu^2 \). The implication is that the \(B \) trajectory is an \(M = 1 \) trajectory, conspiring with an as yet unknown trajectory usually denoted as \(\rho' \). Before turning to the relevance of this to scattering data, we remark that the form found for the \(B \) residue suggests an analogy with the pion residue function and perhaps suggests some correlation between the two trajectories in the sense of exchange degeneracy. If the \(B \) trajectory were to pass through the \(B \) meson and through zero at \(t = 0 \) the slope \(\alpha_{B'} \) would be 0.7, which is not unreasonable.

We comment next on the reliability of the positive moment sum rule. First, we note a deficiency of the \(B \) sum rule that the corresponding pion sum rule does not possess. First the Born term here is depressed by a factor \((t - \mu^2) \) relative to the pion sum rule so that the inherent stability of the pion sum rule due to a large Born term is lost. Secondly, the small isoscalar amplitude is presumably not too reliably determined, as it involves cancellation of large and nearly equal resonant amplitudes for \(\pi^+ \) and \(\pi^- \) photoproduction. Thus, if there were important isoscalar resonant contributions at \(k > 1.2 \text{ GeV/c} \) the sum rule would be inaccurate. We remark, however, that the integrand is positive over the whole region.
k = 0.2 to 1.2 GeV/c; hence to reverse the sign of the integral (thus making the B an M = 0 trajectory), one would need to undo the total effect of the first six resonances. Since we are working with a positive moment sum rule, this is not inconceivable. However, the convergence of the integral over the first six resonances is good even with the positive moment, so the sum rule as it presently stands converges well. Notice that the "duality concept" as advanced by Schmid and Chew, whereby dominant Regge trajectories provide a semi-local average to the energy dependence of the imaginary part of the amplitude at low energies in the resonant region, does not appear to hold in this energy region, as the contribution of the first six resonances to the B sum rule integrand produces only a wide positive bump over the whole region of integration. In fact, the Rietti-Roy-Chu sum rule integrand is even worse, being purely positive at momenta 0.2 < k < 0.7 GeV/c and negative for 0.7 < k < 1.2 GeV/c (see Fig. 5). Thus photoproduction amplitudes at these energies seem to violate the Schmid "duality concept," though there is no reason why it should not be valid over a larger energy region. Finally we remark on the zero in the B residue indicated by the sum rule. The zero is caused by cancellation of the Born term that rapidly increases in t with the nearly constant integral. If we double the integral, the zero moves outward to \(t_B = +0.24 \); if we cut the integral in half the zero moves in to \(t_B = +0.03 \). Since we cannot reliably estimate the errors on the integral, we cannot really be sure that the zero is not in fact at \(t_B = 0 \) (thus indicating an M = 0 B trajectory).
We have also investigated the possibility of evaluating the π and B residues using ordinary cutoff dispersion relations. The results are only roughly in agreement with the unsubtracted sum rules, yielding $M = 1$ π and B residues without any zeros and with magnitudes at $t = 0$ larger than those of the FESR by an order of magnitude. However, the cutoff dispersion relation is satisfied very nearly by the Born term and roughly by the resonances, so that the calculation of the Regge term is inherently inaccurate.
IV. IMPLICATIONS FOR SCATTERING DATA AND THE PION SUM RULE

The actual existence of an \(M = 1 \) \(B \) trajectory cannot conclusively be established from experimental evidence. As we have shown, an \(M = 0 \) \(B \) trajectory is certainly compatible with the existing data. We argue, however, that an \(M = 1 \) \(B \) trajectory is also compatible and perhaps preferred by existing data, but that exhaustive fits using it would be inappropriate until measurements at small \(t \) are made of the high energy cross sections for the processes \(p\bar{p} \to n\bar{n} \) and \(\gamma n \to \pi^- p \). These measurements should serve to determine the existence of an \(M = 1 \) \(B \) trajectory in a model where only the \(\pi \) and \(B \) trajectories have \(M = 1 \), since the \(\pi-B \) and \(\pi'-p' \) interference terms change sign between the processes \(pn \to np, p\bar{p} \to n\bar{n} \) and between \(\gamma p \to \pi^+ n, \gamma n \to \pi^- p \). If the \(B \) has the quantum number \(M = 0 \) these interference terms at \(t = 0 \) are zero in all cases. However, for an \(M = 1 \) assignment these interference terms would be nonzero at \(t = 0 \).

Further, the small \(t \) behavior of the \(p\bar{p} \to n\bar{n} \) reaction also provides a clear way to distinguish the type of zero in the \(nNN \) vertex function.

Another reaction which would be critical in determining the \(M \) quantum number of the \(B \) would be \(\pi N \to \omega N^* \) near \(t = 0 \). Notice that this reaction is the analog of the reaction \(\pi N \to \rho N^* \), involving \(\pi \) exchange. Finally, \(pn \to np \) polarization measurements near \(t = 0 \) should affect this determination; these measurements are currently in progress.
We now consider the implications of consistency of high-energy data combined with the pion sum rule for an $M = 1$ assignment for the B trajectory.

A. Photoproduction

If we take the result of the B sum rule at least as an indication of the magnitude of the B residue, there appears to be a contradiction with the fit. For $|t| > \mu^2$ the fit with $t_0 = -0.05$ seems to require at least a factor of 30 times the B contribution given by the sum rule. The $M = 0$ B assumed in the $\gamma p \rightarrow \pi^+ n$ fit may therefore be interpreted as simulating the effect of a small $M = 1$ B amplitude together with the ρ' amplitudes. If we assume small $\pi \gamma B$ and $\pi \gamma \rho'$ couplings, a medium NNB and medium $NN\rho'$ nonsense coupling, and a large $NN\rho'$ sense coupling, the $M = 1$ B and ρ' will very nearly simulate the $M = 0$ B amplitude assumed in the photoproduction fit, being predominately equal to the sense-nonsense ρ' amplitude which vanishes at $t = 0$ (see Fig. 6).

It is possible that with different ρ or A_2 ghost killing mechanisms (or the inclusion of some amount of $M = 0 A_1$), less $M = 0$ B would be required to fit the data. In any case, the π^+ photoproduction fit can surely be made consistent with an $M = 1$ $B-\rho'$ conspiracy.

Next, we consider implications of an $M = 1$ B trajectory for π^- photoproduction. Assuming the existence of an $M = 1$ B trajectory and the zeros indicated by the sum rules in the π and B residues,
it is phenomenologically clear that more constructive π-B and $(\rho + \rho') - (\pi' + A_2)$ interferences would give better results for the fit to the π^-/π^+ ratio at moderate t. This, unfortunately does not predict that the π^-/π^+ ratio near $t = 0$ would continue to be small since the ρ and A_2 terms vanish at $t = 0$, and these terms are significant at moderate t. Notice that local fluctuations (i.e. maxima or minima) should occur in the π^-/π^+ ratio in the $M = 1$ B model when the π or B residues vanish. Notice also that as $t \to 0$ an $M = 1$ B trajectory predicts that the π^-/π^+ ratio would be different from 1, whereas the model utilized in the fit with the $M = 0$ B residue vanishing at $t = 0$ yields the prediction of a ratio of 1 at $t = 0$. Even if the ρ' nonsense and B residues were small as indicated by the sum rule, interference with the large π and π' amplitudes would produce a noticeable effect. Hence, a measurement of the π^- photoproduction cross section near $t = 0$ would provide a critical test of the ρ'-B conspiracy. 14

Next we consider π^0 photoproduction. Ader and Capeville and Braunschweig et al. 22 have fit low energy π^0 photoproduction data utilizing an $M = 0$ B amplitude very similar in magnitude to what our $M = 0$ B would yield for π^0 photoproduction at small t (e.g., $t \approx -0.1$). For higher values of t, the ρ amplitudes in our fit would simulate the B amplitudes in these fits (which did not include the ρ). Hence the conjectured simulation of the $M = 0$ B by an $M = 1$ $B + \rho'$ should fit the π^0 photoproduction data.
Finally we remark that the presence or absence of polarization in $\pi^-p \rightarrow \pi^0n$ is not critical to any of these arguments, since we may always fit the polarization with a sufficiently small $\rho'\pi\pi$ residue.

B. NN Scattering

Next we consider implications of an $M = 1$ $B-\rho'$ conspiracy for the $pn \rightarrow np$ and $\bar{p}p \rightarrow n\bar{n}$ reactions. First, suppose that the zero in the pion vertex function (πNN) is of the square-root type. The value of the zero $t_0 = -1.5 \mu^2$ is consistent in the sum rule and the photoproduction fits, but leads to some inconsistency in the NN fits, since $g^2/4\pi$ in the NN fit turned out to be rather low. However, an $M = 1$ B trajectory could easily remove this discrepancy by releasing the constraint on the pion residue at $t = 0$, thus allowing a higher value of $g^2/4\pi$ to be obtained in the NN fit via destructive interference of the π with the B at $t = 0$ [the ρ' and π' would also interfere destructively (see Fig. 7)]. Notice that since more parameters are introduced in an $M = 1$ B fit, the amount of freedom in fitting the NN data actually increases, so there is no doubt that a successful NN fit can be performed. The zero in the B residue would help to provide the necessary sharp peaks in the cross sections and the medium sized NNB and $NN\rho'$ nonsense couplings would no doubt be nonviolent enough to achieve consistent fits. Thus, the pion could still be held accountable for a large role in making the sharp peaks. Notice that in this case destructive interference in $pn \rightarrow np$ implies
constructive interference in $\bar{p}p \rightarrow n\bar{n}$ so that the $\bar{p}p \rightarrow n\bar{n}$ cross sections should remain larger than the $pn \rightarrow np$ cross sections at $t = 0$ if this square-root type vertex zero model is correct.

Suppose now that the πNN vertex zero is a full zero. The value of this zero required to fit both photoproduction and NN data is $t_0 \approx -2.5\mu^2$. This value is not consistent with the pion sum rule but could be made consistent if the $M = 1$ B trajectory were present. Moving the pion zero to $t_0 = -1.5\mu^2$ would lower the $t = 0$ contribution of the pion in the NN fits significantly (assuming fixed $g^2/4\pi$). The extra contribution needed in the $pn \rightarrow np$ cross section could then easily be provided by constructive interference of the B with the π, and the ρ' with the π' (see Fig. 7). Thus, in this case of a full vertex zero, the interference in $\bar{p}p \rightarrow n\bar{n}$ would be destructive so that there should actually be a dip in the $\bar{p}p \rightarrow n\bar{n}$ cross section for $|t| < 0.02$ GeV2 (i.e., the $pn \rightarrow np$ and $\bar{p}p \rightarrow n\bar{n}$ cross sections should cross over).

To summarize, if the pion photoproduction sum rule is correct, the existing NN data seem to favor the existence of an $M = 1$ B trajectory regardless of the type of zero in the πNN vertex function. If the pion sum rule is yielding misleading results, there is no preference from NN scattering for an $M = 1$ B trajectory since it could be that a full $NN\pi$ vertex zero at $t = -0.05$ would be consistent with the sum rule. The existence of higher resonances with large γN couplings could well change these sum rule results. In particular, measurements of the total cross section up to 2.6 GeV/c (where our Regge fits begin to work) would provide information on the γN partial widths of these resonances.
ACKNOWLEDGMENTS

I wish to express my gratitude to Professor Geoffrey Chew for his help and encouragement throughout my graduate studies. I also wish to thank Professor Gerson Goldhaber for helpful guidance during the first years of my graduate work. I would like to thank the National Science Foundation for a graduate fellowship. Finally, I wish to thank Dr. Farzam Arbab and Dr. Richard Brower for indispensable conversations, Professor R.L. Walker for his preliminary multipole fits to low energy photoproduction data, and Professor J. D. Jackson for helpful comments.
FOOTNOTES AND REFERENCES

2. F. Arbab and J.W. Dash, Phys. Rev. 163, 1603 (1967). In this paper all values of $g^2/4\pi$ quoted should be multiplied by a factor $1.6=3.89^{-1/2}$.

4. See, e.g., M. Toller, Nuovo Cimento 37, 631 (1965); M. Toller, CERN preprint TH. 780 (1967); and Ref. 2 above.

5. F. Arbab and R. Brower (Lawrence Radiation Laboratory), private communication. Since an $M = 0$ A_1 type conspiracy does not contribute to photoproduction at $t=0$ in leading order in s we expect it to play a secondary role here in any case, although it may be important at large t. Further we remark that both types of zeros in the $NN\pi$ vertex function are compatible with the resonance production data.

14. Very recent \(\pi^- \) photoproduction data of Heide et al. (DESY preprint, 1968) seem to yield inconclusive results for the \(\pi^-/\pi^+ \) ratio since the ratio relies on the ability to make separate \(\pi^- \) and \(\pi^+ \) final state interaction corrections to their deuteron scattering measurements, and these have not yet been done. Possibly measurements of the inverse reaction \(\pi^-.p \rightarrow \eta n \) would provide a more reliable method of obtaining the \(\pi^- \) photoproduction cross sections, since this method would not rely on any detailed theoretical deuteron models.

22. J.P. Ader and M. Capdeville, CERN preprint TH 803 (1967); and M. Braunschweig, W. Braunschweig, D. Husmann, K. Lubelsmeyer, and D. Schmitz, University of Bonn preprint 1-038 (1968). Very recent preliminary π^0 photoproduction data at 6, 11, and 16 GeV/c seem to indicate a different energy dependence than that of the usual $\omega + B$ model [D. Ritzen et al (Stanford Linear Accelerator Center, Stanford), private communication.] This could be due to small but nonzero ρ amplitudes combined with flatter $M=0$ B or $M=1$ $B'-\rho'$ trajectories than those usually assumed, and (or) a change in the ω residue parameterization usually employed to give the dip at about $t = -0.6$ at low energies.
23. That the consistency problem is not trivial can be seen in the following way. First, the pion sum rule is highly stable due to the large Born term; doubling the effect of the resonances only moves the zero to $t_0 = -0.04$. Secondly, a double zero NN fit for this value of t_0 yields $g^2/4\pi \approx 17.5$, which is already too
high. It is of course possible that other trajectories could change the position of the zero in the pion residue function, but the only candidate is the A_0 daughter, which is expected via kinematics to be small near $t = 0$.
Table 1. Definition of $G_{ij}(t)$ and the full residues $\beta_{ij}(t)$

1. The factors $G_{ij}(t)$ in Eq. (2) are

$$G_{SP}(t) = \begin{cases} \alpha \text{ Chew } \rho \text{ with } M = 0 \\ \alpha \text{ Gell-Mann } A_2 \text{ with } M = 0 \\ \alpha \text{ Gell-Mann } \pi' \text{ with } M = 1 \end{cases}$$

$$G_{MK}(t) = \begin{cases} \alpha t & \rho \\ 1 & \pi' \end{cases}$$

$$G_{0I}(t) = \begin{cases} \alpha t (1 - t/\mu^2) \text{ B with } M = 0 \\ \alpha (1 - t/t_0) \text{ B with } M = 1 \end{cases}$$

$$G_{II}(t) = \begin{cases} \alpha \text{ Chew } A_1 \\ 1 \text{ Gell-Mann } A_1 \end{cases}$$

2. Define $X(\alpha) = \frac{(1 + \alpha) \Gamma(\alpha + 1)}{\sqrt{\pi} (2\alpha + 1) \Gamma(\alpha + \frac{1}{2})}$. The connection of the full residue functions $\beta_{ij}(t)$ with the functions $\gamma_{ij}(t)$ in Eq. (2) are
Table I (Continued).

<table>
<thead>
<tr>
<th>Trajectories</th>
<th>Full residue</th>
<th>(NN) vertex</th>
<th>(\gamma \pi) vertex</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho)</td>
<td>(A_2)</td>
<td>(\pi')</td>
<td>(\beta_{SR} = \left[\begin{array}{c} \sqrt{x} \rho^{-1} \left(\begin{array}{c} 1 \ \sqrt{\alpha} \ \sqrt{t} \end{array} \right) \end{array} \right]) [\begin{array}{c} \sqrt{x} \kappa^{-1} (\alpha + 1)^{\frac{1}{2}} \left(\begin{array}{c} \sqrt{\alpha} \ \sqrt{t} \sqrt{1} \end{array} \right) \end{array}] [\beta_{SR}]</td>
</tr>
<tr>
<td>(A_2)</td>
<td>(\pi')</td>
<td>(\rho')</td>
<td>[\begin{array}{c} \sqrt{x} \rho^{-1} (\alpha + 1)^{\frac{1}{2}} \left(\begin{array}{c} \sqrt{\alpha} \ \sqrt{t} \sqrt{1} \end{array} \right) \end{array}] [\begin{array}{c} \sqrt{x} \kappa^{-1} (\alpha + 1)^{\frac{1}{2}} \left(\begin{array}{c} \sqrt{\alpha} \ \sqrt{t} \sqrt{1} \end{array} \right) \end{array}] [\gamma_{SR}]</td>
</tr>
<tr>
<td>(B)</td>
<td>(\pi)</td>
<td>(\beta_{NR} = \left[\begin{array}{c} \sqrt{x} \rho^{-1} \left(\begin{array}{c} \sqrt{t} \ \sqrt{1} \end{array} \right) \end{array} \right]) [\begin{array}{c} \sqrt{x} \kappa^{-1} (\alpha + 1)^{\frac{1}{2}} \left(\begin{array}{c} \sqrt{\alpha} \ \sqrt{t} \sqrt{1} \end{array} \right) \end{array}] [\gamma_{NR}]</td>
<td></td>
</tr>
<tr>
<td>(A_1)</td>
<td>(\beta_{OI} = \left[\begin{array}{c} \sqrt{x} \rho^{-1} \left(\begin{array}{c} \sqrt{t} \ (1 - t/t_0)^{\frac{1}{2}} \end{array} \right) \end{array} \right]) [\begin{array}{c} \sqrt{x} \kappa^{-1} [\alpha(\alpha + 1)]^{\frac{1}{2}} \left(\begin{array}{c} (1 - t/\mu^2) \ t^{-\frac{1}{2}}(1 - t/t_0)^{\frac{1}{2}} \end{array} \right) \end{array}] [\gamma_{OI}]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A_1)</td>
<td>(\beta_{II} = \left[\begin{array}{c} \sqrt{x} \rho^{-1} (\alpha + 1)^{\frac{1}{2}} \left(\begin{array}{c} \sqrt{t} \ 1 \end{array} \right) \end{array} \right]) [\begin{array}{c} \sqrt{x} \kappa^{-1} (\alpha + 1)^{\frac{1}{2}} \left(\begin{array}{c} \sqrt{t} \ 1 \end{array} \right) \end{array}] [\gamma_{II}]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table II. Parameters for fits with full $\bar{N}N\pi$ vertex zero at $t_0 = -0.05$

Parameters fixed from meson-nucleon scattering\(^5\)

- $\alpha_\rho = 0.58 + 1.11t$
- $\alpha_{A2} = 0.5 + 0.86t$
- $b_{12}/b_{11} = \frac{\gamma_{NR}}{\gamma_{SR}} = -8.8 e^{-0.4t}$
- $b_{12}/b_{11} = \frac{\gamma_{NR}}{\gamma_{SR}} = 3.5 e^{-0.11t}$

Parameters obtained in nucleon-nucleon fit [notation and data normalizations correspond to Table II in Ref. (2)]. Residue units are proportional to (mb)^3 (equalling $\text{(mb)}^4 (\text{GeV})^k$ for appropriate values of k).

- $\chi^2 = 89$ for 74 points
- $\alpha_\pi = -0.025 + 1.25t$
- $\gamma_{0}^B = -800t (\alpha_B + 2)e^{10t}$
- $\alpha_{\pi'} = -0.025 + t$
- $\gamma_{0}^\pi = 0.919(1 + t/0.05)^2 e^{11t}$
- $\alpha_B = -0.4 + 0.9t$
- $\gamma_{22}^\pi = [b_0(0)/\alpha_\pi(0)]e^{4.8t}$
- $\gamma_{11}^\rho = 0.35 e^{-4.4t}$
- $\gamma_{12}^\pi = -68 (\alpha_\pi')^{3/2} e^{2.2t}$
- $\gamma_{11}^{A2} = 1.8 e^{11t}$
- $g^2/4\pi = 14.7$
Table II (Continued).

Parameters obtained in π^+ photoproduction fit. Residue units not proportional to $(\mu b)^{1/2}$ (equalling $(\text{GeV})^k$ for appropriate values of k).

\[\chi^2 = 66 \text{ for 62 points} \]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_B</td>
<td>$-0.4 + 0.95 t$</td>
</tr>
<tr>
<td>$\gamma_{\pi OI}$</td>
<td>$-0.078 , e^{9.1 t}$</td>
</tr>
<tr>
<td>γ_{SR}^P</td>
<td>$0.166 , e^{-9.0 t}$</td>
</tr>
<tr>
<td>$\gamma_{\pi' OI}$</td>
<td>$-0.078 , e^{9.1 t}$</td>
</tr>
<tr>
<td>γ_{SR}^{A2}</td>
<td>$0.77 , e^{-1.1 t}$</td>
</tr>
<tr>
<td>$\gamma_{SR}^{\pi' \pi' OI}$</td>
<td>$1.86 , e^{-2.6 t}$</td>
</tr>
<tr>
<td>γ_{OIR}^B</td>
<td>$-2.95 , e^{1.1 t}$</td>
</tr>
<tr>
<td>$g^2/4\pi$</td>
<td>15.4</td>
</tr>
</tbody>
</table>
Table III. Results of the \(B \) meson sum rule

Eq. (37) reads

\[
\frac{1}{\pi} \gamma_{01}(t) R(t) \frac{\alpha_B + 1}{\alpha_B + 1} = B(t) + I(t),
\]

where \(B(t) \) is the Born term. The power series expansions of \(I(t) \) and \(B(t) \) around \(t = 0 \) are given by

\[
I(t) = -0.027 - 0.06t + 0.06t^2,
\]

\[
B(t) = 0.0058 + 0.294t.
\]

The residue is zero at \(t_B \approx 40.09 \).

The contributions \([X(-10^3 \mu^2)]\) to \(I(t)|_{t=0} \) are given by

\[
\begin{align*}
P_{33}(1238) & : 0.01 & S_{11}(1560) & : 0.13 & \text{Nonresonant} & : 0.01 \\
P_{11}(1470) & : 0.21 & D_{15}(1652) & : 0.00 \\
P_{13}(1520) & : 0.21 & F_{15}(1672) & : -0.01
\end{align*}
\]
Table IV. TABLE OF NOTATION

Section IA

$f^t_{\lambda_1\lambda_2,\lambda_Y}$: t channel helicity amplitude for unequal mass process $\gamma N_1 N_2$

$f^\pm_{\lambda_1\lambda_2,\lambda_Y}$: t channel parity conserving helicity amplitude (same process)

$f^{J\pm}_{\lambda_1\lambda_2,\lambda_Y}$: t channel partial wave helicity amplitude (same process)

$f^{J\pm}_{L'S'LS}(t)$: t channel partial wave L-S amplitude (same process)

$\gamma^{J\pm}_{L'S'LS}$: Coefficients of L-S amplitude expansion around threshold

$\gamma^{J\lambda\mu\pm}_L$: Coefficients in expansion of $e^{J\lambda\mu}(z_t)$ functions

$\gamma^{\lambda\mu\pm}_{L'S'S'}$: Coefficients describing leading order behavior of helicity amplitudes around threshold

$\tilde{F}_i(s,t)$: Kinematic singularity free form of $f^\pm_{\lambda_1\lambda_2,\lambda_Y}(s,t)$

$\tilde{F}_i^E(s,t)$: $\lim_{m_1 \to m_2} \tilde{F}_i(s,t)$

$F_i^t(s,t)$: $\lim_{m \to 0} \tilde{F}_i^E(s,t)$ (in Eqn. 12, $F_4^t = \lim_{m \to 0; \alpha \to 0} \frac{\tilde{F}_4}{t(t - \mu^2)}$).

Section ID

$\tilde{F}_i(s,t)$: Kinematic singularity free amplitudes for unequal mass process $\overline{N}_1 N_2 \rightarrow \overline{N}_3 N_4$

$\tilde{f}_i(s,t)$: $\lim_{m_1 \to m_2; m_3 \to m_4} \tilde{F}_i(s,t)$

$c_{ijkl}^j(s)$: Coefficient of $t^j \Delta_{12}^{l} \Delta_{34}^{k}$ in expansion of $\tilde{F}_i(s,t)$
FIGURE CAPTIONS

Fig. 1. Real parts of the π^+ photoproduction amplitudes at 8 GeV/c for full NNπ vertex zero $t_0 = -0.05$. To leading order,

$$
\frac{d\sigma}{dt} = 2|\pi \ast B|^2 + 2|\pi\beta_{SR} + (A_2)_{SR} + \pi'_{SR}|^2
$$

π^+ photoproduction

$$
+ 2|\pi_{NR} + (A_2)_{NR} + \pi'_{NR}|^2.
$$

Fig. 2. Imaginary parts of the π^+ photoproduction amplitudes at 8 GeV/c for full NNπ vertex zero $t_0 = -0.05$.

Fig. 3. π^+ photoproduction fit. Curves have been multiplied by 0.99, 1.03, 1.03, 0.97, 0.93, respectively for 2.6, 5, 8, 11, and 16 GeV/c.

Fig. 4. Small t region for π^+ photoproduction fit with the same normalization factors.

Fig. 5. Integrands at $t = 0$ for the \bar{B} and pion photoproduction sum rules. $(-\frac{\mu^2}{\pi} \text{Im} A_1^0)$ and $(-\frac{\mu^2}{\pi} \text{Im} A_1^{-})$, respectively).

Fig. 6. Conjectured simulation of $M = 0$ B amplitude found in photoproduction fit with $M = 1$ B, ρ' amplitudes.

Fig. 7. Conjectured $M = 1$ B amplitude and resulting π amplitude for $pn \to np$ scattering near $t = 0$.

- --- π amplitude with $M = 0$ B assumed.
- ---- π amplitude with $M = 1$ B assumed.
- . -. $M = 1$ B amplitude.
The mark on the vertical axis yields $\frac{d\sigma}{dt} (pn \rightarrow np) = 1 \text{ mb}$ at 8 GeV.

Fig. 8. Real parts of the nucleon-nucleon amplitudes at 8 GeV/c for full NN_π vertex zero $t_0 = -0.05$. To leading order,

$$\frac{d\sigma}{dt} \bigg|_{pn \rightarrow np, \; p\bar{p} \rightarrow n\bar{n}} = 2|\pi \pm 3|^2 + 2|i\rho_{11} + (A_2)_{11} + \pi'_{11}|^2$$

$$+ 2|i\rho_{22} + (A_2)_{22} + \pi'_{22}|^2 + 4|i\rho_{12} + (A_2)_{12} + \pi'_{12}|^2$$

To leading order the coupled triplet amplitudes factorize; e.g., $\pi'_{11} \pi'_{22} = -(\pi'_{12})^2$. Note that the (12) amplitudes have additional weight in the cross sections.

Fig. 9. Imaginary parts of the nucleon-nucleon amplitudes at 8 GeV/c for full NN_π vertex zero $t_0 = -0.05$.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig7.png}
\caption{Fig. 7.}
\end{figure}
Fig. 8
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method; or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.