Lawrence Berkeley National Laboratory
Recent Work

Title
WASTE DISSOLUTION WITH CHEMICAL REACTION, DIFFUSION AND ADVECTION

Permalink
https://escholarship.org/uc/item/28m3c6j5

Author
Chambre, P.L.

Publication Date
1987-06-01
To be presented at the American Nuclear Society Winter Meeting, Los Angeles, CA, November 15–19, 1987

WASTE DISSOLUTION WITH CHEMICAL REACTION, DIFFUSION AND ADVECTION

June 1987
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Waste Dissolution with Chemical Reaction, Diffusion and Advection*

Department of Nuclear Engineering & Lawrence Berkeley Laboratory
University of California, Berkeley, CA 94720

Our analytic equations1,2 predict the rate at which low-solubility species in a waste solid dissolves in groundwater, conservatively assuming that each dissolved species is at its saturation concentration in the liquid at the surface of the waste solid. We then considered3 the effect of a chemical-reaction-rate boundary condition, using empirical rate data determined from laboratory leach tests, and provided a means of calculating the time-dependent concentration of dissolved species near the waste surface and the time-dependent diffusive mass transfer into the surrounding rock. Surface-liquid concentrations of low-solubility species from borosilicate glass waste and spent fuel soon reach values close to saturation. The present paper extends the mass-transfer analysis to include the effect of advective transport in predicting the steady-state dissolution rate, with a chemical-reaction-rate boundary condition at the surface of a waste form of arbitrary shape. This new theory provides an analytic means of predicting the ground-water velocities at which dissolution rate in a geologic environment will be governed entirely by the chemical reaction rate.

As an illustration, we consider the steady-state potential flow of ground water in porous rock surrounding a spherical waste solid. Adopting a reaction-rate equation representing zero-order forward reaction and a first-order back reaction,3 Chambré has developed the steady-state concentration isopleths shown in Figure 1 as a function of the Peclet number $Pe \equiv U r_o / D$ and the reaction rate modulus $\alpha \equiv j_o r_o / \epsilon D C_s$, where U is the upstream pore velocity of the ground water, r_o is the radius of the spherical-equivalent waste solid, D is the coefficient for molecular diffusion in the pore water, j_o is the forward reaction rate per unit area of waste solid, ϵ is the rock porosity, and C_s is the saturation concentration of the dissolving species.

The rate of dissolution is obtained from the Sherwood number $Sh \equiv k r_o / \epsilon D$ where k is the coefficient for mass transfer from the waste solid to pore water in the rock, defined as the mass flux at the waste surface divided by the saturation concentration C_s. Figure 2 shows the Sherwood number as a function of the Peclet number, for various values of the reaction rate modulus α, obtained by an integral-method approximation and verified by asymptotic solutions in the large and small Pe ranges. For small values of Pe and large α, Sh is essentially independent of Pe because molecular diffusion controls. For $Pe > 10$, and for values of α of

*Work supported in part by U. S. Department of Energy via Contract DE-AC03-76SF00098
about 100 and greater, typical of borosilicate glass and spent fuel at 90°C and greater, \(Sh \) increases as the square root of the Peclet number, showing that diffusive-advective mass transfer controls. At much larger \(Pe \), well beyond the range of this figure, the curve levels out when the exterior-field mass transfer is so rapid that chemical reaction rate controls the net rate of dissolution.

For \(\alpha=1 \), as can obtain for small separated grains of dissolving solid or for dissolution at much lower temperature, chemical reaction rate reduces the Sherwood number over the entire range and causes the net dissolution rate to be less affected by advective transport.

This new theory provides an analytic means for predicting steady-state dissolution as affected by chemical reaction rate, diffusion and advection.

References

Figure 1 The concentration boundary layer for various values of the Peclet number and reaction rate modulus
Figure 2 The Sherwood number as a function of the Peclet number, with the reaction rate modulus as a parameter.