The reaction of hydrogen atoms with ozone as a source of vibrationally excited OH(X 2π i)ν = 9 for kinetic studies

Permalink
https://escholarship.org/uc/item/28m9v5x8

Journal
The Journal of Chemical Physics, 74(10)

ISSN
00219606

Author
Finlayson-Pitts, B. J

Publication Date
1981

DOI
10.1063/1.440928

Peer reviewed
The reaction of hydrogen atoms with ozone as a source of vibrationally excited OH(X
2Π i , v = 9) for kinetic studies

B. J. Finlayson-Pitts and T. E. Kleindienst

Citation: The Journal of Chemical Physics 74, 5643 (1981); doi: 10.1063/1.440928
View online: http://dx.doi.org/10.1063/1.440928
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/74/10?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Collision dynamics of OH(X 2Π, v=9)

Formation and vibrational relaxation of OH (X 2Π i , v) by O2 and CO2
J. Chem. Phys. 95, 5752 (1991); 10.1063/1.461597

Vibrational energy transfer in OH X 2Π i , v=2 and 1
J. Chem. Phys. 92, 7258 (1990); 10.1063/1.458211

Vibrational relaxation of OH(X 2Π i , v=1–3) by O2

Vibrational relaxation of OH (X 2Π i , v=2)

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:
128.200.102.124 On: Sat, 07 Feb 2015 00:12:55
The reaction of hydrogen atoms with ozone as a source of vibrationally excited OH($X^2 \pi_g$) for kinetic studies

B. J. Finlayson-Pitts and T. E. Kleindienst

Department of Chemistry, California State University, Fullerton, Fullerton, California 92634

(Received 22 July 1980; accepted 3 February 1981)

The reaction of measured initial concentrations of hydrogen atoms with ozone was used to produce vibrationally excited OH($X^2 \pi_g$) in a fast flow discharge system at 1.1 ± 0.1 Torr total pressure in argon at 300 ± 3 K. The kinetic behavior of the highest vibrational level of OH$^+$ produced ($v = 9$) [designated OH(9)] was characterized by a variety of experiments including (1) determination of both its rates of formation and decay under conditions of excess H, as well as excess O$_3$, (2) examination of the effects of added quenchers/reactants, and (3) determination of the absolute concentrations of OH(9) using published Einstein A factors. In addition, the change in these concentrations of OH(9) for a given set of initial conditions was examined when the total pressure, nature of the carrier gas, coating of the flow tube walls, and concentration of initial, excess hydrogen atoms were varied. The results of these studies indicate that OH(9) is removed sufficiently rapidly from the system that pseudo-first-order kinetics cannot be applied to obtain absolute rate constants for its reactions and energy transfer processes. However, relative rate constants can be obtained and are reported for O$_3$, Ar, and N$_2$ relative to O$_3$. These data are interpreted in light of the two published sets of values for the Einstein A factors, which differ by more than an order of magnitude. The need for accurate values of these A factors in order to convert our relative rate constants into absolute values, as well as to use in understanding the chemistry of the upper atmosphere, is discussed. The rotational temperature of OH$^+$ is shown to be 308 ± 18 K in both excess H and excess O$_3$.

INTRODUCTION

The rates and mechanisms of interaction of vibrationally excited species are of current interest for a number of reasons. Thus, in a chemical reaction, elucidation of the effects of reactant vibrational excitation may help to clarify the detailed nature of the potential energy hypersurface on which the reaction occurs.\(^2\)\(^-\)\(^8\) Additionally, experimentally determined quenching rates of vibrationally excited species can be used to test current theories of energy exchange.\(^9\)\(^-\)\(^18\) Finally, both these reactive and nonreactive rates of removal of vibrationally excited species are of interest in determining the feasibility of development of certain lasers,\(^13\)\(^-\)\(^18\) and of their proposed applications to such areas as isotope separation and catalysis.\(^19\)

The hydroxyl radical OH, in both the ground and vibrationally excited states,\(^21\)\(^-\)\(^22\) is of particular interest because of its importance as a chain carrier in a number of systems. These include hydrocarbon combustion,\(^23\) as well as the low (296 K) temperature oxidation of olefins by O$_3$,\(^24\) and O$(3P)$,\(^25\). In addition, it plays an important role in the chemistry of both the lower\(^26\)\(^-\)\(^29\) and upper atmosphere.\(^30\)\(^-\)\(^34\) Indeed, atmospheric OH in the ground state ($v = 0$) has been measured\(^35\) recently and vibrationally excited OH has been identified in the upper atmosphere,\(^36\)\(^-\)\(^38\) in auroras,\(^39\) and in the Comet Kohoutek.\(^40\)

The reaction of hydrogen atoms with ozone

\[H + O_3 \rightarrow OH(X^2 \pi_g) + O_2 \]

(1)

produces OH primarily in its upper vibrational levels, efficiently channeling ~ 90% of the reaction exothermicity into vibration.\(^37\)\(^-\)\(^39\) The exothermicity ($\Delta H_{298}^o = -76.8$ kcal/mole) is just sufficient to populate $v = 9$ at 74.9 kcal above the ground ($v = 0$) state but not $v = 10$ at 80.7 kcal.\(^44\) Indeed, this reaction was first discovered three decades ago from the chemiluminescent emission of the vibrationally excited OH [designated here as OH(v)] observed\(^45\) by Meinel in the spectrum of the night sky. The source of the emission, now known as the Meinel bands, was subsequently shown\(^46\)\(^-\)\(^48\) to be Reaction (1), which occurs in the mesosphere.

Several groups of workers\(^39\)\(^-\)\(^42\) have used Reaction (1) as a source of highly vibrationally excited OH$^+$ to study its reaction kinetics. The rate constants obtained by the various groups, however, differed substantially. For example, while the rate constants for removal of OH(9) by O$_3$\(^39\)\(^-\)\(^42\) differed by only 30%, for all other molecules they differed by at least one order of magnitude (e.g., for N$_2$\(^39\)\(^-\)\(^42\) and often by two (e.g., for N$_2$).\(^39\)\(^-\)\(^42\)

These discrepancies for such simple quenchers are so large that it appeared essential to first characterize the behavior of OH(9) formed by Reaction (1) before investigating the effects of added quenchers/reactants. The present work was therefore undertaken to define the formation and loss processes of OH(9) in a conventional fast flow discharge system and then to extend this work to kinetic studies of the reactions and deactivation processes of OH(9) by a variety of atoms and small molecules. In these and associated\(^31\)\(^-\)\(^44\) studies, we have directly measured as many reactants, intermediates, and products as possible, including H, O$_3$, O$(3P)$, and HO$_2$, and the absolute as well as the relative emission intensities from two of the Meinel bands originating in $v = 9$. In addition, the effects on the absolute OH(9) emission intensities of changes...
in the total pressure, nature of the inert gas, and the type of coating of the flow tube walls have been examined.

We show here that OH(9) is removed very rapidly from the system compared to its rate of formation in Reaction (1) so that pseudo-first order kinetics cannot be applied to obtain absolute rate constants. However, accurate relative rate constants can be obtained and several are reported here. To convert these to absolute rate constants, the radiative lifetime of OH(9) (i.e., the Einstein A factors) must be accurately known. The implications of the two published sets of A factors, one experimental and one theoretical, for this work are discussed.

EXPERIMENTAL

The fast flow discharge system is shown in Fig. 1. It consists of a 2.5 cm diam. flow tube with a double concentric movable inlet whose two ports A and B are separated by 3.3 cm. The two detection systems, operating in the vacuum ultraviolet (VUV) and the visible/near UV, respectively, are fixed at the downstream end of the flow tube. The visible/near UV photomultiplier (EMI 9659QB) is used to measure ground state OH by resonance fluorescence and is also equipped with interference filters to isolate the Meinel band emissions from the (9, 3) transition of OH(X^21Σ_u) at 626 nm (half-bandwidth of 3 nm) and the (9, 2) transition at 519 nm (half-bandwidth of 3 nm). The data on OH(9) reported here were all recorded using the more intense (9, 3) band; however, the (9, 2) band was also followed in selected runs to ensure that no interfering emissions were present at 626 nm. This photomultiplier viewed a circular area of 6 mm diam. in the center of the flow tube, corresponding to ~0.6 msec reaction time. The Meinel band emissions were generally followed from 4 to 40 msec depending on the rate of decay and thus the signal intensity.

A third interference filter at 762 nm (half-bandwidth of 5 nm) is used with this photomultiplier in the determination of initial hydrogen atom concentrations > 5 x 10^12 atoms cm^-3 by titration with NOCl. (Unless otherwise stated, all concentrations and rate constants are given in units of molecules cm^-3 and cm^3 molecules^-1 s^-1, respectively, throughout.) This reaction produces NO:

H + NOCl = HCl + NO,

producing electronically excited HNO* which is detected by its emission at 762 nm. A plot of I_{res}/[NOCl] vs [NOCl], where I_{res} is the emission intensity from HNO*, extrapolates to zero at [NOCl] = [H].

The VUV detection system, consisting of a Minuteman model 302VM 0.25 m evacuated vacuum monochromator with a 600 grooves/mm grating (40 Å/mm) and a EMR solar blind photomultiplier (model 541G-09-18), was used to measure initial H(2S) concentrations < 5 x 10^15 by resonance fluorescence at 121.6 nm during its titration with NO2. In addition, concentrations of O(1P) formed from the reaction of nitrogen atoms with nitric oxide (see below) were measured by resonance fluorescence of the triplet around 130 nm. A slit width of 0.4 mm was used in all runs.

Emission spectra when H and O2 were mixed were scanned from 200 to 700 nm in the presence of Ar only, and with added O2, H2, and CO2, respectively, using a Jarrell-Ash monochromator (model 82-410, 1180 grooves/mm, resolution 6 Å) and the EMI 9659QB photomultiplier. Comparison to literature spectra confirmed that OH(X^21Σ_u) was the only emitting species present.

The rotational distribution of the vibrationally ex-
protected OH+ was determined from the (8, 3) and (7, 2) overtone bands. The intensities of the peaks were corrected for the spectral response of the detection system determined using an NBS 1000 W quartz iodine lamp (Epply Laboratory, Inc.) for which the absolute spectral irradiance was known.

Mixtures of \text{O}_2 in \text{O}_3 were generated by passing \text{O}_3 through a commercial ozonizer and further diluting with \text{O}_2 prior to entering the flowmeter and \text{O}_3 measurement system. \text{O}_3 in \text{He} was generated by trapping the \text{O}_3 from an \text{O}_3--\text{O}_2 mixture on silica gel (Davison PA-400, Grade 407, mesh size 8-20) at -77°C. The \text{O}_3 was pumped off and the \text{O}_2 eluted by passing \text{He} through the trap at 1 atm pressure. The composition of the mixture was determined from its absorbance at 253.7 nm using published extinction coefficients.62

The \text{Ar}, \text{O}_3, and \text{H}_2/\text{Ar} mixture were all U.H.P. grade (>99.9999%) while the \text{N}_2 and \text{CO}_2 were 99.98% and 99.96%, respectively. The \text{Ar} and \text{O}_3 were used as received while the \text{H}_2/\text{Ar} mixture and the \text{N}_2 were passed through a catalyst (BASF Corp. Catalyst R3-11) to remove \text{O}_3 prior to entering the discharge. The \text{CO}_2 was passed through a glass-wool-packed trap at -50°C before use.

Mixtures of \text{NO}_3 in \text{Ar} were made as needed and stored in the dark to prevent photolysis by room lights. The \text{NO}_3 (\geq 99.5%) was first purified by trap-to-trap distillation (-78°C) until only a white solid remained. This was then allowed to evaporate to a known pressure in a 5 liter mixing bulb and \text{Ar} was added to the desired total pressure. The composition of the mixture, calculated from the pressure measurements, was corrected for the \text{NO}_3=2\text{NO}_2 equilibrium as described elsewhere.58 The composition of selected mixtures was checked by measuring the absorbance due to \text{NO}_2 at 400 nm using a Cary 15 spectrophotometer; the results of the two methods were always within 1%. The flow rate of this mixture was determined by measuring its pressure drop in a calibrated volume.

\text{NO}/\text{Ar} mixtures were made by passing \text{NO} through a molecular sieve (Linde 13X) to remove \text{NO}_2, \text{CO}_2, and \text{H}_2\text{O} and then through either a glass-wool-packed trap at -160°C or a silica gel trap at -77°C into a mixing bulb. Argon was added to give the desired concentration. The flow rate of this mixture was also determined by the pressure drop in a calibrated volume.

\text{NOCl}/\text{Ar} mixtures were similarly prepared and the flow rates measured after trapping the \text{NOCl} (>97%) in a liquid nitrogen trap and diluting with \text{Ar}.

All studies were carried out at 300 ± 3 K and, except as described below, at 1.1 ± 0.1 Torr in \text{Ar}. The flow tube was coated with a halocarbon wax, except for one study in which a boric acid coated wall was used.

The linear flow speed was typically 1000 cm/sec1. Corrections were made to the observed first order rates of decay k' of \text{OH}(9) for deviation from plug flow55,64 and for the effects of axial diffusion.64 Correction factors for the former were estimated from the literature55 using calculated values of \alpha = D/k' R2, where D, the diffusion coefficient, was estimated65 to be 219 cm2sec-1 at 1 Torr and R is the flow tube radius; this correction was \pm 14%. The correction64 for axial diffusion was \pm 20%. Because the rate constant for wall removal of \text{OH}(9), i.e., k\textsubscript{w}, could not be determined independent of quenching by \text{Ar} (see below) and because these corrections may be sensitive to the absolute value of k\textsubscript{w}, they must be considered approximate. However, the absolute values of the first order rate constants reported here are not used to derive absolute rate constants, but rather as confirmation of the type of kinetic analysis which is applicable in this system. Since the appropriateness of the kinetics applied here is supported by other experimental evidence as well (see below), any errors in the magnitude of the corrections made will not alter the conclusions or the relative rate constants derived in this paper.

RESULTS

Rotational temperature

The emission intensity of a vibration–rotation line for a Boltzmann distribution of multiplet levels is given by56

\[I(J', v', J, v) = N_J A \frac{[2J' + 1]}{Q_{J, v'}} \exp \left[-E_{v' J'}/kT_R \right] \]

I is the emission intensity, \text{N}_J is the total concentration of molecules in the \text{v}' vibrational level, \text{A} is the Einstein coefficient for that transition, \text{Q}_{J, v'} is the electronic–rotational partition function for the \text{v}' level which depends on \text{T}_R, \text{E}_{v' J'} is the rotational energy of the emitting state, and \text{T}_R is the rotational temperature for this distribution. Thus, if the rotational distribution is Boltzmann, a plot of \ln[I / \text{A}(2J' + 1)] against the rotational energy should be linear with a negative slope of \((kT_R)^{-1}\). The rotational energies used here were those summarized by Krassovsky \textit{et al.}34

Six experiments were carried out in which the \text{P}_1–\text{P}_3 lines of the (8, 3) or (7, 2) band of the \text{OH}(X^2\Sigma_g^+), state were scanned. Using the most recent theoretical values of the \text{A} factors,56 \ln[I / \text{A}(2J' + 1)] was found to vary linearly with the rotational energy. (Although, as discussed below, there is considerable disagreement between the theoretical56 and experimental56,67 absolute values of the \text{A} factors, the relative values predicted theoretically56 appear to be in good agreement with a variety of experimental data in the literature and hence were used here.) A typical plot is shown in Fig. 2 and the reaction conditions and results are summarized in Table I, where the average rotational temperature is shown to be 308 ± 18 K.

Reaction scheme

Table II shows a simplified reaction scheme for the production and loss of \text{OH}(9) in the \text{H} + \text{O}_3 system. Removal of \text{OH}(9) by interaction with the initial reactants \text{H} and \text{O}_3 is included because of the results of initial studies of the \text{OH}(9) decay at a constant, initial hydrogen atom concentration. As the concentration of an
added O$_3$–O$_2$ mixture increased, the (9,3) band emission intensity first increased rapidly to a peak. Increasing the O$_3$–O$_2$ flow further resulted in slowly decreasing signal intensities. These observations are qualitatively consistent with a rapid removal of OH$^-(9)$ by H and a slower removal by O$_3$–O$_2$.

Kinetic analysis

From the reaction scheme in Table II, the following kinetic expression for removal of OH$^-(9)$ is derived:

$$\frac{d[OH^-(9)]}{dt} = k_1[H][O_3] - \frac{k_2}{T}[OH^-(9)]$$

(1)

B is the sum of the first order removal rates, i.e.,

$$B = k_1[H] + k_2[O_3] + k_3[A] + k_4[O_2] + h_{rad} + k_w + k_{rad}[OH^-(0→9)] + k_{rad}[X]$$

(II)

and $k_3 = (k_{2a} + k_{2b})$, etc.

TABLE I. Summary of experiments to determine rotational distribution of OH$^X(v=9)$

<table>
<thead>
<tr>
<th>Vibrational band</th>
<th>$10^{12}[H]_0$ (cm$^{-3}$)</th>
<th>$10^{12}[O_3]_0$ (cm$^{-3}$)</th>
<th>Reaction time (msec)</th>
<th>$T_R = 2\sigma_T$ (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(8,3)</td>
<td>2.5</td>
<td>2.5</td>
<td>0.4</td>
<td>281 ± 58</td>
</tr>
<tr>
<td>(8,3)</td>
<td>2.7</td>
<td>2.6</td>
<td>0.4</td>
<td>337 ± 43</td>
</tr>
<tr>
<td>(8,3)</td>
<td>2.7</td>
<td>2.6</td>
<td>0.4</td>
<td>283 ± 60</td>
</tr>
<tr>
<td>(8,3)</td>
<td>2.5</td>
<td>2.5</td>
<td>0.4</td>
<td>302 ± 28</td>
</tr>
<tr>
<td>(8,3)</td>
<td>2.5</td>
<td>2.5</td>
<td>0.4</td>
<td>297 ± 42</td>
</tr>
<tr>
<td>(8,3)</td>
<td>15</td>
<td>0.15</td>
<td>0.5</td>
<td>306 ± 66</td>
</tr>
</tbody>
</table>

σ_T is the external consistency value$^{61-63}$ of the standard deviation of the slope of plots such as Fig. 2.

*Each T_R was weighted (Refs. 67-69) by $w = 1/\sigma_T^2$.

TABLE II. Reaction scheme for OH$^Y(9)$ produced in H + O$_3$ system.

<table>
<thead>
<tr>
<th>Reaction scheme for OH$^Y(9)$ produced in H + O$_3$ system.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) H + O$_3$ \rightarrow OH$^Y(9)$ + O$_2$</td>
</tr>
<tr>
<td>(2) OH$^Y(9)$ + H \rightarrow OH$^Y(0→8)$ + H</td>
</tr>
<tr>
<td>(3) OH$^Y(9)$ + O$_3$ \rightarrow OH$^Y(0→8)$ + O$_2$</td>
</tr>
<tr>
<td>(4) OH$^Y(9)$ + Ar \rightarrow OH$^Y(0→8)$ + Ar</td>
</tr>
<tr>
<td>(5) OH$^Y(9)$ + O$_3$ \rightarrow OH$^Y(0→8)$ + O$_2$</td>
</tr>
<tr>
<td>(6) OH$^Y(9)$ + H + O$_3$ \rightarrow OH$^Y(0→8)$ + H</td>
</tr>
<tr>
<td>(7) OH$^Y(9)$ + X + OH$^Y(0→8)$ + k$_{rad}$ X</td>
</tr>
<tr>
<td>(8) OH$^Y(9)$ \rightarrow wall loss</td>
</tr>
<tr>
<td>(9) OH$^Y(9)$ + H + OH$^Y(0→8)$ + [H$_2$O] + H</td>
</tr>
<tr>
<td>(10) OH$^Y(9)$ + X + OH$^Y(0→8)$ + X + [H$_2$O] + H</td>
</tr>
</tbody>
</table>

Assuming that the formation term $k_1[H][O_3]$ is negligible compared to the loss term $B[OH^-(9)]$ after most of the limiting reagent in Reaction (1) is consumed, and that the bimolecular reaction (9) can be ignored (see below), Eq. (1) can be integrated to yield the following:

$$\ln[OH^-(9)] = -Bt + \text{const.}$$

(III)

To test whether such an analysis was appropriate, we evaluated the two terms in Eq. (1) representing formation and loss, respectively. The rate constant k_1 is known from studies in this and other$^{26-29}$ laboratories. Furthermore, a number of groups$^{37-39}$ have determined the initial rotational distribution of OH$^Y(9)$ from Reaction (1). From the work of Polanyi et al.,37 we estimate that ~45% of the reaction produces OHY in $v = 9$. Thus, $k_1 = 0.45k_1 = 1.08 \times 10^{11}$, assuming33 $k_1 = (2.4 \pm 0.4) \times 10^{11}$. In a great excess of H, $[H] = [H]_0$, and $[O_3]$ at a particular reaction time t can be calculated from k_1 and $[H]_0$. This then gives the formation term $k_1[H][O_3]$ at time t.

The concentration of OH$^Y(9)$ was estimated using Eq. (AIII) (derived in the Appendix):

$$[OH^Y(9)] = 2.73 \times 10^{15} \frac{[O][NO]}{I_{NO}} A_{2p,3}$$

(AIII)

I_{NO} is the signal from the O+ NO reaction observed through the 626 nm filter when known concentrations of O and NO are present. $A_{2p,3}$ is the signal observed from the OH$^Y(9)$ through the same filter, and $A_{2p,3}$ is the Einstein A factor for the (9, 3) transition. [As discussed in the Appendix, the (9, 2) transition and the 519 nm filter were also used in some runs as a check.] The results from a typical experiment to determine $[O][NO]/I_{NO}$ are shown in Fig. 3.
FIG. 3. Relative NO\(_2\) emission intensities through 626 nm filter (6) and through 519 nm filter (9) when excess NO is added to N atoms. [N] \(_0\) - [O] measured simultaneously by resonance fluorescence was 1.6 \(\times \) 10\(^{11}\) atoms cm\(^{-3}\).

Two values of \(A_{9,3}\) are reported in the literature. One is derived from the studies of Potter and co-workers,\(^{46,47}\) who experimentally determined the radiative lifetime \((\tau_9)\) of OH\(_t\)(9) and used Cashions' tabulations\(^{24}\) of relative transition probabilities for OH\(_t\) (corrected to more recent band origin frequencies) to obtain the lifetimes of various OH\(_t\) transitions. From this work, \(A_{9,3} = 3.9 \times 10^{-3}\) sec\(^{-1}\) was derived.

Mies calculated\(^{56}\) \(A\) factors for the various vibrational transitions using a theoretically derived dipole moment function. The relative values of the thermally averaged \(A\) factors obtained are in reasonable agreement with the results of a number of experimental studies, but the absolute values are much larger than those derived by Potter et al. Thus, Mies reports \(A_{9,3} = 0.13\) sec\(^{-1}\) at room temperature, a factor of 33 larger than the experimentally determined value.

Throughout the following discussion, our data are treated in terms of each value of \(A_{9,3}\) individually and the implications of each discussed. However, this is merely to illustrate the consequences of each value and should not be taken to imply that either one or the other is necessarily correct. Indeed, the true value may not necessarily even lie between these two published values.

Using each value of \(A_{9,3}\), then, the measured calibration factors \([O]/[NO]/[NO_2]\) and the observed emission intensities \(I_{9,3}\), concentrations of OH\(_t\)(9) were calculated from Eq. (AIII). A typical semilog plot of [OH\(_t\)(9)] against reaction time is shown in Fig. 4, where the left axis gives the concentrations derived using \(A_{9,3} = 3.9 \times 10^{-3}\) sec\(^{-1}\) (Refs. 46 and 47) and the right axis gives those obtained using \(A_{9,3} = 0.13\) sec\(^{-1}\).\(^{56}\)

Given \(k_{1e}, k_{1b}, [H]_0,\) and \([O]_0,\) the first order loss \(B\) needed to match the observed absolute concentrations of OH\(_t\)(9) can then be calculated (see below). For the conditions of Fig. 4, \(B = 1.4 \times 10^3\) and \(4.2 \times 10^4\) sec\(^{-1}\) gave the best fit to the data for \(A_{9,3} = 3.9 \times 10^{-3}\) and 0.13 sec\(^{-1}\), respectively. Comparing the formation and loss terms at 8 msec, for example, \(k_{1e}[H][O] = 10^{12}\) and \(B [OH_t(9)] = 10^{13}\). Thus, the formation term cannot be ignored and both formation and decay are occurring simultaneously. As a result, one cannot assume the simplified pseudo-first order kinetic analysis of Eq. (III).

Because of the variety of reaction paths available when OH\(_t\) reacts with \(O_3\), and the possible complications this introduces (see below), the kinetic scheme and analysis for the system is simpler under conditions of excess H. Considering then only conditions where \([H]_0 \geq 10[O_3]_0\) and where \([O_3]_0\) is sufficiently small that bimolecular reactions of OH\(_t\) such as (9) can be ignored (see below), a simplified reaction scheme consisting of Reactions (1), (2), and (4)-(8) is obtained. The differential equations describing these reactions can then be integrated to yield the time dependence of [OH\(_t\)(9)] in the absence of added quencher/reactants X:

\[
[OH_t(9)] = \frac{k_{1e}[H][O]_0}{B - k_{1e}[H]} (e^{-k_1[H]t} - e^{-Bt}).
\]

If \(Bt > 2.5\) and \(k_{1e}[H] < 0.1B\), then \(e^{-Bt} < 0.1 e^{-k_1[H]t}\) and Eq. (IV) reduces to

\[
[OH_t(9)] = \frac{k_{1e}[H][O]_0}{B} e^{k_1[H]t}.
\]

As discussed below, in all experiments \(B \approx 5 \times 10^2\) sec\(^{-1}\),

![Graph showing relative emission intensity vs. log of [NO] (molecules cm\(^{-3}\))](image)

FIG. 3. Relative NO\(_2\) emission intensities through 626 nm filter (6) and through 519 nm filter (9) when excess NO is added to N atoms. [N] \(_0\) - [O] measured simultaneously by resonance fluorescence was 1.6 \(\times\) 10\(^{11}\) atoms cm\(^{-3}\).

![Graph showing concentrations of OH\(_t\)(9) vs. reaction time](image)

FIG. 4. Concentrations of OH\(_t\)(9) as a function of reaction time when \([H]_0 = 7.5 \times 10^{12}\) atoms cm\(^{-3}\), \([O_3]_0 = 4.3 \times 10^{11}\) molecules cm\(^{-3}\), \([O]_0 = 0\), total pressure 1.1 Torr in Ar. Line is calculated best fit with \(B = 1.4 \times 10^3\) sec\(^{-1}\) for \(A_{9,3} = 3.9 \times 10^{-3}\) or \(4.2 \times 10^4\) sec\(^{-1}\) for \(A_{9,3} = 0.13\) sec\(^{-1}\) (see the text).
TABLE III. Typical values of R (sec^{-1}) for $\text{OH}^\dagger(9)$ decay at various initial, excess hydrogen atom concentrations (halocarbon wax coated tube).

<table>
<thead>
<tr>
<th>Experiment number</th>
<th>10^{-13} [HI_0] (atoms cm$^{-3}$)</th>
<th>10^{-12} [OII_0] (molecules cm$^{-3}$)</th>
<th>$R \pm 2\sigma_R$ (sec^{-1})</th>
<th>$R \pm 2\sigma_R$ (sec^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.3</td>
<td>2.9</td>
<td>1074 ± 16</td>
<td>1082 ± 28</td>
</tr>
<tr>
<td></td>
<td>2.3</td>
<td>1169 ± 73</td>
<td>1100 ± 38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td>1100 ± 38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3.4</td>
<td>2.1</td>
<td>659 ± 76</td>
<td>698 ± 69</td>
</tr>
<tr>
<td></td>
<td>1.3</td>
<td>767 ± 37</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.1</td>
<td>673 ± 49</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>602 ± 52</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>815 ± 151</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2.6</td>
<td>2.4</td>
<td>730 ± 7</td>
<td>769 ± 43</td>
</tr>
<tr>
<td></td>
<td>2.3</td>
<td>652 ± 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>666 ± 6</td>
<td>679 ± 43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>752 ± 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.1</td>
<td>646 ± 9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.7</td>
<td>2.1</td>
<td>319 ± 14</td>
<td>310 ± 35</td>
</tr>
<tr>
<td></td>
<td>1.4</td>
<td>275 ± 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>333 ± 33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.75</td>
<td>0.85</td>
<td>136 ± 4</td>
<td>132 ± 14</td>
</tr>
<tr>
<td></td>
<td>0.61</td>
<td>108 ± 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.43</td>
<td>154 ± 43</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

σ_R is one standard deviation of the slope. (Because the standard deviations were generally greater than the external consistency values, these were used throughout the data analysis.) These weighting factors were then used in least squares analysis of R against $[H\text{I}]_0$.

Kinetic behavior observed experimentally

The first order rate constants for decay of $\text{OH}^\dagger(9)$ in excess $\text{H}[H\text{I}_0 \approx 10^{14} \text{O}_2]$ were studied as a function of $[H\text{I}]_0$ at concentrations from 2×10^{14} to 4×10^{15}. A total of 46 runs with 15 different initial hydrogen atom concentrations were carried out. Some typical data are given in Table III.

It is seen that for one value of $[H\text{I}]_0$, R does not vary significantly with $[O\text{II}_0]$, consistent with Eq. (V). Thus, the observed values of R at one $[H\text{I}]_0$ were averaged and plotted in Fig. 5.

In these studies, the increasingly rapid decay of $\text{OH}^\dagger(9)$ as $[H\text{I}]_0$ increased necessitated the addition of larger concentrations of the limiting reagent O_2 to produce a detectable signal over measurable reaction times. This produced larger quantities of OH, and increased the possibility that bimolecular reactions such as Reaction (9) are important. Thus, at the lower values of $[H\text{I}]_0$, and hence $[O\text{II}_0]$, OH^\dagger-OH interactions will be minimized and the kinetic analysis leading to Eq. (V) will be most valid. A weighted least squares analysis of the data in Fig. 5 for which $[H\text{I}]_0 \gtrless 1 \times 10^{14}$ and $[O\text{II}_0] \gtrless 1 \times 10^{15}$ leads to a slope of $(2.4 \pm 0.8) \times 10^{-11}$ and an intercept of $(-12 \pm 38) \text{sec}^{-1}$. This is in excellent agreement with Eq. (V), which predicts a slope of $k_1 = (2.4 \pm 0.4) \times 10^{-11}$ and an intercept of zero. (The errors quoted here and throughout the paper are two standard deviations.)

The effect on the decay of $\text{OH}^\dagger(9)$ of adding increasing concentrations of the deactivator $X = \text{CO}_2$ is shown in Fig. 6. It is seen that, consistent with Eqs. (V) and (VI), the intensity of the (9, 3) band [i.e., the concentration of $\text{OH}^\dagger(9)$] decreases as increasing concentrations of CO$_2$ are added, but the observed slope, i.e., R, remains essentially unchanged.

In summary, under conditions of a great excess of...
This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 128.200.102.124 On: Sat, 07 Feb 2015 00:12:55

Reaction of hydrogen atoms with ozone

hydrogen atoms, a variety of experiments including determination of (1) absolute concentrations of OH(9), (2) first order rate constants for decay of OH(9) as a function of [H]o, and (3) effects of added quenchers all indicate that even though Reaction (1a) forming OH(9) is fast, the removal of OH(9) is also rapid. Thus, a pseudo-first order kinetic analysis cannot be used and expressions such as Eqs. (V) and (VI) must be applied.

Relative rate constants for removal of OH^+(9)

Equations (V) and (VI) can be combined to yield

\[\frac{[OH^+(9)]}{[OH(9)]} = \frac{I_9}{I_9^v} = 1 + \frac{r_{OH}[X]}{B} \]

(VII)

where \(I_9^v \) and \(I_9 \) are the observed emission intensities from OH^+(9) at a particular reaction time in the presence and absence, respectively, of a known concentration \([X]\) of the deactivator/reactant \(X\). A plot of \(I_9/I_9^v \) against \([X]\) should thus be linear with a slope of \(k_{OH}/B \) and an intercept of 1.0. Figure 7 shows such plots for \(X = CO_2 \) and \(X = O_2 \), respectively, for (a) two different \(O_2 \) concentrations and (b) for the (9, 3) and (9, 2) bands.

To obtain absolute rate constants \(k_{OH} \) from the slope of the lines in Fig. 7, \(B \) must be known. As discussed in detail below, this depends on the value of the Einstein \(A \) factors and is highly uncertain. As a result we prefer to use the data in Fig. 7 to obtain accurate relative rate constants. Taking \(Q_X \) as the reference, the average ratio of the slopes of plots such as Fig. 7 gives \(k_{OH}(CO_2)/k_{OH}(O_2) \), where the quoted error is our estimate of the total possible errors due to both systematic and random errors. Upper limits have also been placed on this ratio for \(X = Ar \) and \(N_2 \). The results are given in Table IV.

Reaction(s) removing OH^+(9) in the absence of \(X \)

Although it is clear that OH^+(9) is being removed rapidly compared to its rate of formation in the absence of an added quencher/reactant, it is of interest to determine what reactions are responsible. Because initial studies indicated that \(H_2 \) was much less efficient than \(O_2 \) in deactivating OH^+(9), and the concentrations of \(H_2 \) remaining after the discharge were \(\leq 10^{-15} \), Reaction (6) was ignored. Similarly, if mixtures of \(O_2 \) in \(He \) are used, the concentration of \(O_2 \) is sufficiently small that Reaction (5) must be negligible.

As discussed above, \(H \) is much more effective in removing OH^+(9) than \(O_2 \) and \(O_3 \). In a great excess of \(H \), then, Reaction (3) can also be ignored. For reasons discussed in detail below, the bimolecular reactions of OH^+(9) either leading to loss or production of OH^+(9) were also assumed to be negligible.

This leaves the interaction with \(H \) and \(Ar \) as well as radiation and wall loss as candidates for the removal of OH^+(9). (Even though \(Ar \) is a relatively inefficient quencher of OH^+(9) as seen in Table IV, it is present in such large concentrations (~3\times10^9) compared to all other species that even a low value of \(k_{Ar} \) may lead to substantial first order removal rates, \(k_{Ar}[Ar] \).

To test the relative contributions of Reactions (2), (4), (7), and (8) to the removal of OH^+(9), studies were

TABLE IV. Comparison of relative rate constants \(k_{OH}(X)/k_{OH}(O_2) \) to literature values.

<table>
<thead>
<tr>
<th>Quencher</th>
<th>This work</th>
<th>Refs. 46–49</th>
<th>Ref. 38</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O_2)</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>(CO_2)</td>
<td>2.7 ± 0.1 b</td>
<td>2.4</td>
<td>n.d.</td>
</tr>
<tr>
<td>(Ar)</td>
<td>≤0.02</td>
<td>negligible</td>
<td>0.3</td>
</tr>
<tr>
<td>(N_2)</td>
<td><0.05</td>
<td>0.4</td>
<td>1.3</td>
</tr>
</tbody>
</table>

*The relative rate constants were obtained by dividing the absolute values reported by the value for \(O_2 \) obtained by that group.

bError is two standard deviations of the weighted mean of seven experiments carried out at different initial hydrogen atom and ozone concentrations; the weighting factors used were \(\sigma_i = 1/\sigma_i^2 \), where \(\sigma_i \) is the standard deviation of the ratio of the slopes of plots such as Fig. 7. Total error including systematic and random errors is estimated to be ±15%.
FIG. 7. Relative emission intensities of OH(I) bands at a fixed reaction time as O$_2$ and CO$_2$ are added (see the text for definitions of $I_9/I_{9/3}$. $[H]_0=1.6\times10^{13}$ atoms cm$^{-3}$, total pressure 1.05 Torr in Ar (a) (9,3) band and \bullet, $[O_3]_0=1.7\times10^{11}$; \star, $[O_3]_0=2.9\times10^{11}$ molecules cm$^{-3}$; (b) $[O_3]_0=2.9\times10^{11}$ and \bullet, (9,3) band at 626 nm; \circ, (9,2) band at 519 nm.

carried out to obtain absolute concentrations of OH(I) as a function of reaction time under various conditions. For each of these runs, where the initial concentrations of H, O$_3$, and Ar were measured, the simultaneous first order differential equations describing the concentration of each species as a function of reaction time were solved by numerical integration. Hammings' modified predictor–corrector method, in which the four preceding points are used to compute the next, was used. The initial increment is adjusted, and the starting values computed using a fourth order Runge–Kutta method. An integration step of 1×10^{-6} sec was used to ensure an absolute precision of 1×10^6 molecules cm$^{-3}$ in the predicted concentrations of reactants and products; lowering the step size by a factor of 10 did not significantly change these predicted concentrations. Results using this integration technique were compared to those using the Gear algorithm and were found not to differ significantly.

This numerical integration technique was used to find a best match to the [OH(I)] data as a function of reaction time for the initial conditions of each run by varying the first order loss of OH(I), i.e., B, which is now given by

$$B = k_H[H] + k_{Ar}[Ar] + k_{rad} + k_w.$$ \hspace{1cm} (VIII)

The effect on the "best fit" value of B of changing the following parameters was then measured: (1) initial concentration of hydrogen atoms, (2) total pressure, (3) nature of the carrier gas, and (4) coating of the flow tube walls. The results are shown in Tables V and VI for the two assumptions $A_{g,3}=3.9\times10^{-3}$ and 0.13 sec$^{-1}$, respectively.

For unknown reasons, the scatter in the values of B obtained for one value of $[H]_0$ but different $[O_3]_0$ is unexpectedly large, especially since all other experimental observations on the system are highly reproducible. This may be partly due to the fact that the observed rates of decay were not always exactly $2.4\times10^{-3}[H]_0$ (Fig. 5) as predicted by Eq. (V). The best match then depends on which of the OH(I) data, i.e., at short or long reaction times, one fits. In these studies B was varied until the predicted OH(I) concentration matched that at the midpoint (in time) of our observations.

However, within the uncertainty the scatter imposes on the results, the following observations can be made: First, the initial concentration of H markedly changes B. As shown in Table V, as $[H]_0$ increases from 1×10^{12} to 2×10^{13}, B increases from 0.5×10^3 to $\sim 4 \times 10^3$ sec$^{-1}$ if $A_{g,3}=3.9 \times 10^{-3}$ sec$^{-1}$, or from $\sim 1 \times 10^4$ to $\sim 1 \times 10^5$ sec$^{-1}$ if $A_{g,3}=0.13$ sec$^{-1}$. Figure 8 shows B as a function of $[H]_0$ for the case where $A_{g,3}=3.9 \times 10^{-3}$ sec$^{-1}$. A least squares analysis of the data of
TABLE V. Values of B (sec$^{-1}$) giving best fit to observed OH$^+$ concentrations in 1.1±0.1 Torr Ar.

<table>
<thead>
<tr>
<th>Experiment number</th>
<th>$10^{12} [H_2]$ (atoms cm$^{-3}$)</th>
<th>$10^{11} [O_2]$ (molecules cm$^{-3}$)</th>
<th>Best fit $10^3 B$ (sec$^{-1}$) for A_{h_3} = 3.9×103 sec$^{-1}$</th>
<th>0.13 sec$^{-1}$</th>
<th>Average $10^3 B$ (sec$^{-1}$) for A_{h_3} = 3.9×103 sec$^{-1}$</th>
<th>0.13 sec$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0</td>
<td>1.9</td>
<td>0.60</td>
<td>16</td>
<td>0.5</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>2.9</td>
<td>2.4</td>
<td>1.20</td>
<td>32</td>
<td>0.9</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>2.6</td>
<td>1.7</td>
<td>0.70</td>
<td>21</td>
<td>0.5</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>3.8</td>
<td>3.3</td>
<td>0.35</td>
<td>10</td>
<td>0.5</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>4.9</td>
<td>0.35</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>5.7</td>
<td>4.2</td>
<td>1.20</td>
<td>35</td>
<td>1.2</td>
<td>35</td>
</tr>
<tr>
<td>7</td>
<td>7.5</td>
<td>8.5</td>
<td>1.00</td>
<td>35</td>
<td>1.2</td>
<td>40</td>
</tr>
<tr>
<td>8</td>
<td>9.7</td>
<td>8.5</td>
<td>1.10</td>
<td>42</td>
<td>1.1</td>
<td>32</td>
</tr>
<tr>
<td>9</td>
<td>11.6</td>
<td>3.8</td>
<td>1.10</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>17.2</td>
<td>20.6</td>
<td>1.95</td>
<td>66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>14.3</td>
<td>11.6</td>
<td>1.90</td>
<td>56</td>
<td>2.6</td>
<td>80</td>
</tr>
<tr>
<td>12</td>
<td>11.6</td>
<td>7.0</td>
<td>3.90</td>
<td>118</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>20.4</td>
<td>11.6</td>
<td>5.20</td>
<td>166</td>
<td>4.3</td>
<td>128</td>
</tr>
<tr>
<td>14</td>
<td>7.0</td>
<td>26.4</td>
<td>3.50</td>
<td>114</td>
<td>3.5</td>
<td>114</td>
</tr>
</tbody>
</table>

TABLE VI. Values of B (sec$^{-1}$) giving best fit to observed OH$^+$ concentrations when total pressure, nature of carrier gas, and wall coating are changed.

<table>
<thead>
<tr>
<th>Experiment number</th>
<th>$10^{12} [H_2]$ (atoms cm$^{-3}$)</th>
<th>$10^{11} [O_2]$ (molecules cm$^{-3}$)</th>
<th>Best fit $10^3 B$ (sec$^{-1}$) for A_{h_3} = 3.9×103 sec$^{-1}$</th>
<th>0.13 sec$^{-1}$</th>
<th>Average $10^3 B$ (sec$^{-1}$) for A_{h_3} = 3.9×103 sec$^{-1}$</th>
<th>0.13 sec$^{-1}$</th>
</tr>
</thead>
</table>

Halocarbon wax coated walls

$P_{tot} = 0.56$ Torr Ar

<table>
<thead>
<tr>
<th>Experiment number</th>
<th>$10^{12} [H_2]$ (atoms cm$^{-3}$)</th>
<th>$10^{11} [O_2]$ (molecules cm$^{-3}$)</th>
<th>Best fit $10^3 B$ (sec$^{-1}$) for A_{h_3} = 3.9×103 sec$^{-1}$</th>
<th>0.13 sec$^{-1}$</th>
<th>Average $10^3 B$ (sec$^{-1}$) for A_{h_3} = 3.9×103 sec$^{-1}$</th>
<th>0.13 sec$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.2</td>
<td>1.9</td>
<td>0.45</td>
<td>12</td>
<td>0.45</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>5.0</td>
<td>0.45</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$P_{tot} = 2.5$ Torr Ar

<table>
<thead>
<tr>
<th>Experiment number</th>
<th>$10^{12} [H_2]$ (atoms cm$^{-3}$)</th>
<th>$10^{11} [O_2]$ (molecules cm$^{-3}$)</th>
<th>Best fit $10^3 B$ (sec$^{-1}$) for A_{h_3} = 3.9×103 sec$^{-1}$</th>
<th>0.13 sec$^{-1}$</th>
<th>Average $10^3 B$ (sec$^{-1}$) for A_{h_3} = 3.9×103 sec$^{-1}$</th>
<th>0.13 sec$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1.9</td>
<td>2.1</td>
<td>0.60</td>
<td>17</td>
<td>0.55</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>4.8</td>
<td>0.50</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$P_{tot} = 1.1$ Torr He

<table>
<thead>
<tr>
<th>Experiment number</th>
<th>$10^{12} [H_2]$ (atoms cm$^{-3}$)</th>
<th>$10^{11} [O_2]$ (molecules cm$^{-3}$)</th>
<th>Best fit $10^3 B$ (sec$^{-1}$) for A_{h_3} = 3.9×103 sec$^{-1}$</th>
<th>0.13 sec$^{-1}$</th>
<th>Average $10^3 B$ (sec$^{-1}$) for A_{h_3} = 3.9×103 sec$^{-1}$</th>
<th>0.13 sec$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1.5</td>
<td>1.9</td>
<td>0.90</td>
<td>24</td>
<td>0.75</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>2.1</td>
<td>2.6</td>
<td>0.80</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>5.7</td>
<td>0.55</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Boric acid coated walls, 1.1 Torr Ar

<table>
<thead>
<tr>
<th>Experiment number</th>
<th>$10^{12} [H_2]$ (atoms cm$^{-3}$)</th>
<th>$10^{11} [O_2]$ (molecules cm$^{-3}$)</th>
<th>Best fit $10^3 B$ (sec$^{-1}$) for A_{h_3} = 3.9×103 sec$^{-1}$</th>
<th>0.13 sec$^{-1}$</th>
<th>Average $10^3 B$ (sec$^{-1}$) for A_{h_3} = 3.9×103 sec$^{-1}$</th>
<th>0.13 sec$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>2.2</td>
<td>5.9</td>
<td>1.23</td>
<td>39</td>
<td>1.6</td>
<td>53</td>
</tr>
<tr>
<td>9</td>
<td>5.9</td>
<td>5.0</td>
<td>2.20</td>
<td>72</td>
<td>1.6</td>
<td>53</td>
</tr>
<tr>
<td>10</td>
<td>5.0</td>
<td>2.7</td>
<td>1.50</td>
<td>48</td>
<td>1.6</td>
<td>53</td>
</tr>
<tr>
<td>11</td>
<td>6.6</td>
<td>4.8</td>
<td>1.10</td>
<td>33</td>
<td>2.0</td>
<td>67</td>
</tr>
<tr>
<td>12</td>
<td>4.2</td>
<td>4.8</td>
<td>1.18</td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>4.8</td>
<td>2.4</td>
<td>3.60</td>
<td>133</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3.2</td>
<td>2.2</td>
<td>1.00</td>
<td>31</td>
<td>1.5</td>
<td>49</td>
</tr>
<tr>
<td>15</td>
<td>3.5</td>
<td>2.6</td>
<td>2.05</td>
<td>67</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 8 and the comparable plot assuming $A_{R,2} = 0.13$ sec$^{-1}$ gives a slope of $(16 \pm 4) \times 10^{-11}$ and an intercept of (188 ± 498) sec$^{-1}$ if $A_{R,2} = 3.9 \times 10^{-9}$ sec$^{-1}$, or for $A_{R,2} = 0.13$ sec$^{-1}$, a slope and intercept of $(5 \pm 1) \times 10^{-9}$ and $(4 \pm 14) \times 10^{-8}$ sec$^{-1}$, respectively.

From Eq. (VIII), the slope of Fig. 8 should be k_2 and the intercept ($k_A[Ar] + k_{rad} + k_w$). Thus, $k_2 = (16 \pm 4) \times 10^{-11}$, assuming $A_{R,2} = 3.9 \times 10^{-9}$ sec$^{-1}$, or $(5 \pm 1) \times 10^{-9}$, assuming $A_{R,2} = 0.13$ sec$^{-1}$. The errors quoted represent 2σ; our estimate of the total uncertainty in the slope, however, is approximately a factor of 2.

While the intercept is within two standard deviations of zero, the results of the quenching studies of OH$^+$ by CO$_2$ support the existence of a significant intercept. Thus, if $B > k_A[H]$, corresponding to a zero intercept in Fig. 8, increasing [H]$_0$ should increase B and hence decrease the slope of plots such as Fig. 7 proportionally (see Eq. (VII)). However, increasing [H]$_0$ from 1.8×10^{25} to 3.9×10^{25} did not significantly lower the slope. In addition, when the conditions were reversed so that $[O_3]_0 = 10[H]_0 \approx 3 \times 10^{12}$, the slope did not change significantly. Only increasing [H]$_0$ to $\approx 10^{12}$ resulted in a substantially lowered slope. Thus, while the uncertainty in the intercept is large, it does appear to be nonzero.

A nonzero intercept of the line in Fig. 8 implies that one or more of Reactions (4), (6), and (8) must be important as [H]$_0$ is lowered to $\approx 10^{12}$. There are two observations which must be considered under these conditions, i.e., that changing the pressure of Ar by a factor of ~ 5 (Table VI, experiments 1–4) and changing the carrier gas from Ar to He (Table V, experiments 1–4 and Table VI, experiments 5–7) did not substantially alter the observed B values. This suggests that either (1) quenching by the carrier gases is negligible and wall loss is relatively slow so that diffusion to the walls is not rate determining, or (2) loss at the walls is relatively fast and is affected by diffusion rates, and quenching by the carrier gas is significant. In the latter case, the net changes in B caused by changing Ar pressure or carrier gas could cancel out.

The net rate of removal at the halocarbon wax coated walls must occur with a surface recombination coefficient γ defined as the fraction of the total number of collisions with the surface which lead to deactivation) which is < 1. Otherwise, the observed B values would not increase when the walls were coated with boric acid as was observed (see Table V, experiments 3–8 and Table VI, experiments 8–15). Boric acid has been shown to deactivate OH$^+$ in $\nu = 1, 2$ relatively rapidly, and Potter and co-workers suggested that deactivation of OH$^+(9)$ occurred on every collision with their boric acid coated walls. (A more recent analysis of these data, however, suggests that only about one collision in 100 leads to relaxation.) In any event, it seems reasonable to assume that wall loss of OH$^+(9)$ will be substantially increased for a boric acid wall coating where energy transfer to the polar B–OH groups can occur. The increase in B observed here in a boric acid tube is consistent with the work of Spencer and Glass on the lower vibrational levels $v = 1, 2$, where $k_w < 80$ sec$^{-1}$ in a halocarbon wax coated tube but increased substantially in a boric acid coated tube.

While the wall loss of OH$^+(9)$ is then less than on every collision in the wax coated tube, suggesting explanation (1) above for the lack of effect of P_{Ar} and changing the carrier gas, k_w could not be determined independent of quenching by the carrier gas in these experiments. This, combined with the large uncertainty in the intercept of Fig. 8, precludes further discussion of the loss processes of OH$^+(9)$ at low ($\leq 10^{12}$) [H]$_0$.

Removal of OH$^+(9)$ in excess O$_3$

Removal of OH$^+(9)$ in excess O$_3$ is more complicated than in excess H because even with $[O_3]_0/[H]_0 > 10$, H can still be a significant quencher of OH$^+(9)$. Thus, computer kinetic modeling of the system under these conditions suggests that much of the curvature in the plots of $\ln[OH]^+(9)$ vs reaction time which we observed in excess O$_3$ could be attributed to a rapid removal by H, the limiting reagent, whose concentration is changing. In addition, however, it is known from studies in this and other laboratories that H is generated in excess O$_3$ when $[H]_0 \geq 2.5 \times 10^{11}$ in the absence of O$_3$ and when $[H]_0 \geq 4 \times 10^{11}$ in its presence, although the reaction(s) responsible are not clear.

The observed first order rate constants for decay of OH$^+(9)$ in a great excess of O$_3$ are plotted against $[O_3]_0$ in Fig. 9. The slope of the line is $(1.4 \pm 0.8) \times 10^{-11}$.

and probably unrealistic, value of 1 x 10^-10 s sec^-1.

Because of these indications that a simple reaction scheme analogous to that in excess O_3 may not be applicable in excess O_3, we have not carried out detailed studies under these conditions. It should be noted, however, that the kinetic behavior observed upon addition of a quencher/reactant was the same as that in excess H, i.e., the concentration of OH(9) fell, but R remained constant.

Discussion

Possible contribution of bimolecular reactions of OH\(^+(v)\)

In the data analysis, the reactions of two OH\(^+(v)\) (often referred to as the bimolecular reaction of OH\(^+\)), leading either to the production or to the loss of OH(9), were assumed to be negligible. The effect of the bimolecular reaction (9) removing OH(9) was tested using the computer kinetic model for the conditions of Fig. 4 (experiment 11, Table V) by including the reactions of OH(9) with itself, with OH(1-8) (treated as one species), and with ground state OH. No decrease in the OH(9) concentrations due to Reaction (9) is predicted from this model if k_b is increased from zero to 1 x 10^-10, assuming the first order rate of removal of OH(9) by all other processes is 1400 sec^-1 and using A_{5,3} = 3.9 x 10^3 sec^-1. Even increasing k_b to the extremely large, and probably unrealistic, value of 1 x 10^-4 s sec^-1 lowers the predicted concentrations by 12%. If A_{5,3} = 0.13 sec^-1 and B = 4.2 x 10^4 sec^-1 is used, increasing k_b to 1 x 10^-3 s sec^-1 has essentially no effect on the OH(9) concentrations because of the high rate of removal by other processes needed to match the low OH(9) concentrations predicted.

For higher concentrations of the limiting reagent O_3, such bimolecular reactions may become significant. For example, for the conditions of experiment 14, Table V, increasing k_b from 0 to 1 x 10^-10 with a first order rate constant for removal by other processes of 1950 sec^-1 (i.e., assuming A_b = 3.9 x 10^3 sec^-1) lowers the predicted OH(9) concentrations by 14% and increasing it further to 1 x 10^-9 decreases it by an additional 2%. While this effect should be manifested in increased B values as [O_3]_0 increases at a constant [H_2O], the scatter in the results (Tables V and VI) is too large to detect the smaller trend anticipated. Again, little effect (2%) on the OH(9) concentrations is predicted if the larger A_{5,3} and corresponding B values are used.

However, the results of the computer kinetic model show that at least for [O_3]_0 < 1 x 10^12, the contribution of Reaction (9) should be negligible and hence can be ignored.

A similar situation applies to the bimolecular reactions of OH(1) which lead to the production of OH(9) via energy transfer. Except at the highest concentrations of O_3 used, this source of OH(9) is expected to be negligible since all vibrational levels of OH are removed very rapidly by H. In addition, the spacing of the vibrational levels rapidly decreases with increasing vibrational level so that in order to be resonant or near resonant, such processes must involve simultaneous multiquantum rotation changes as well, which makes them less probable. For example, for the conditions of Fig. 4, assuming A_{5,3} = 3.9 x 10^3 sec^-1, the peak concentration of OH(1-8) predicted for first order rate constants for removal of OH(9) and OH(1-8) of 1400 and 700 sec^-1, respectively, is ~6 x 10^9, which occurs at 3 msec. Assuming an extremely large rate constant for the bimolecular reaction to produce OH(9) of 6 x 10^-10, the instantaneous rate of production of OH(9) at 3 msec from this reaction is 2 x 10^{12} radicals cm^-3 sec^-1 while its rate of formation from Reaction (1a) at this point is an order of magnitude greater. Only for [O_3]_0 > 1 x 10^12 could this reaction become a significant source of OH(9). If A_{5,3} = 0.13 sec^-1 is assumed, the peak concentration of OH(1-8) predicted is substantially lower and the bimolecular reaction is predicted to be even less important.

At the higher concentrations, the contribution to the production of OH(9) from the bimolecular energy transfer, if it occurs, should be greatest at the shortest reaction times where the concentrations of OH(1-8) are the largest. At longer reaction times, the contribution of this process becomes negligible because of the rapid removal of OH(1-8). Thus, a substantial contribution to the formation of OH(9) by the bimolecular energy transfer process should lead to increased concentrations of OH(9) at short reaction times. The apparent rate constant for decay R of OH(9) should thus be larger if such processes are important. A slight trend to higher values of R at
Effect of $O(3P)$ production on these results

It is known that under these conditions, substantial concentrations of $O(3P)$ (~30% of the O_2 reacted) are produced. Their source is not known but may be either Reaction (2b) and the analogous reactions of $O^+(1S)$ or possibly a second channel in the reaction of H with O_2, forming $HO_2+O(3P)$. Because the bulk of the evidence at the present time is against the latter possibility, we did not include it in the computer matching studies of $[OH(9)]$. The results of studies on the lower vibrational levels ($v=1,2$) of OH suggest the rate constant for removal of $OH(9)$ by $O(3P)$ is likely to be similar to that for removal by H. However, the net contribution of $O(3P)$ to the observed rate of removal of $OH(9)$ is expected to be small under our conditions since H is in great excess and the peak $O(3P)$ concentration is not reached until the $OH(9)$ emission intensity is undetectable. As a result, quenching by $O(3P)$ was ignored. If subsequent studies show that the second reaction channel does exist, the major effect on the results of this work will be to lower the rate of production of $OH(9)$ by Reaction (1a) in this system. The values of B needed to match the $[OH(9)]$ data will then decrease by the same factor as the decrease in k_{1a} [see Eq. (V)].

Comparison to other work

In the first kinetic studies of $OH(9)$ formed in Reaction (1), Potter, Coltharp, and Worley applied pseudo-first order kinetics to its decay in a fast flow discharge system similar to that used here. By studying the rates of decay of $OH(9)$ as a function of the added quencher/reactant concentration, they obtained absolute rate constants for deactivation plus reaction, where possible. In addition, as discussed above, the radiative lifetime of $OH(9)$ was determined and rate constants for the reaction of the lower vibrational levels $v=2–8$ with ozone were obtained.

The experimental system used in the present studies is similar to that of Potter and co-workers, except that the flow tube diameter is smaller (2.5 vs 9.5 cm) and the wall coating for most of our experiments was halocarbon wax rather than boric acid. In addition, their experiments were carried out in excess O_2 and in He carrier gas at total pressures of ~0.3 Torr. The similarity between the two systems, however, is such that it is puzzling that they observed a change in the first order rate constant for decay upon addition of most quencher/reactants, consistent with pseudo-first order kinetics, whereas we find that R remains constant and only the concentrations of $OH(9)$ decrease. They report behavior similar to that observed here when SO_2, H_2S, or H_2O were added but attribute it to a reaction with one of the initial reactants, probably ozone. However, all of these species react with O_3 extremely slowly ($k < 10^{-14}$). The limiting reagent H also reacts slowly with SO_2 and H_2O and its rate constant for reaction with H_2S is not extremely large ($k_{H_2S} = 7 \times 10^{-15}$).

To test the kinetic behavior expected under their reaction conditions, we input to our computer kinetic model initial concentrations of H and O_2 of 3×10^{12} and 1×10^{13}, respectively, typical of their experiments, and their rate constant for removal of $OH(9)$ by O_3 of 7.7×10^{-12}. The effect of an added quencher/reactant was then mimicked by adding various first order rate constants for decay from 0 to 1000 sec$^{-1}$, on top of that due to its reaction with O_3. The observed rates of decay of $OH(9)$ predicted by the computer study increased as the additional first order rate constants for decay R increased from 0 to 100 sec$^{-1}$; however, the change in R predicted was less than that used as input. For example, inputs of 10, 23, and 50 sec$^{-1}$ on top of that due to reaction with O_3 gave predicted changes in R of only 8, 18, and 39 sec$^{-1}$, respectively. With $R \geq 300$ sec$^{-1}$, the predicted first order rate constants for decay essentially remained constant and only the concentrations decreased.

The observation of Potter and co-workers that R changed upon addition of an added quencher/reactant thus implies that, in their system, losses of $OH(9)$ other than that due to reaction with O_3 were < 300 sec$^{-1}$. However, our computer studies indicate that even then their observed changes in R for $OH(9)$ may be too low. In addition, it should be noted that the changes in R that they observed were all relatively small (<23 sec$^{-1}$) on top of decay rates in the absence of added quencher/reactant of 60–80 sec$^{-1}$. Such relatively small changes may limit the accuracy of the measurements.

However, it is seen in Table IV that the relative rate constants derived here are consistent with those of Potter and co-workers for $X = CO_2$ and Ar although our value for N_2 is much smaller than theirs.

Our upper limits derived for $X = Ar$ and N_2 relative to O_2 are much smaller than those of Streit and Johnson, however. In the latter study, the chemiluminescent emission intensities from various vibrational levels produced when H and O_2 were mixed at low pressures (10^{-3}–10^{-1} Torr) in a large sphere in the presence of added quenchers/reactants were studied to obtain absolute rate constants for removal of $OH(4–9)$. The concentration of hydrogen atoms was not measured, and because rapid quenching of OH^* by H had not yet been observed, removal of OH^* by this species was not included in the reaction scheme. The results of our studies indicate that it is in fact significant, but why this would lead to high values of the relative rate constants is not clear.

The rotational temperature at their relatively low pressures was ~ 1500 °K whereas ours is room temperature (Table I). While this might account for the differences in absolute values of the rate constants, the discrepancy in the relative values, especially for such simple deactivators as Ar and N_2, is surprisingly large.
Mechanisms of removal of OH$^+(9)$ by H

Several efficient mechanisms exist for deactivation of OH$^+(9)$ by H. For example, OH$^+(v = 1, 2)$ has been shown to be relaxed by H with rate constants of 2.7 and 3.3×10^{-10}, respectively. As discussed above, the rate constant for removal of OH$^+(9)$ by H obtained from the present studies depends on the absolute value of $A_{9/3}$ and for the two particular values considered here one estimate $k_2 = 2 \times 10^{-10}$ and 5×10^{-9} assuming $A_{9/3} = 3.9 \times 10^{-3}$ and 0.13 sec$^{-1}$, respectively. The latter value is approximately ten times the gas kinetic collision frequency. While this is somewhat surprising, extremely large rate constants, faster than diffusion-controlled, have also been observed for the deactivation of such species as HF$^+$ by strongly interacting collision partners. This unusual result has been proposed to arise from a rapid, collision-induced, $V \rightarrow R$ intramolecular energy redistribution within the vibrationally excited species. This type of mechanism was suggested some years ago and has been observed in electronically excited OH (A $^2 \Sigma_+$). Of direct relevance to this work, Robinson and co-workers have shown that the relative intensities of pure rotational laser emissions from $v = 0$ of OH($X^2 \Pi_{1/2}$) and from $v = 0$ of OD($^2 \Pi_{1/2}$) are consistent with a rapid transition from lower rotational levels of an upper vibrational state into higher rotational levels of a lower vibrational state, where the two states are close to each other in total energy. Any small energy mismatch between the two levels is thought to be removed by collisional $R \rightarrow T$ processes.

In the case of OH$^+(9)$, several rotational levels of lower vibrational states ($v = 0$--8) lie within 30 cm$^{-1}$ of one of the rotational levels $K = 1$--10 of $v = 9$ which are populated in the initial reaction so that such a mechanism, resulting in extremely large values of k_2, is not implausible.

On the other hand, the lower value of k_2 of 2×10^{-10}, which results if $A_{9/3} = 3.9 \times 10^{-3}$ sec$^{-1}$ is assumed, is approximately equal to that for OH$^+(v = 1, 2) + \text{H}$ when our estimate of the factor of 2 uncertainty in k_2 is taken into account. A rate constant for the order of 10^{-10} is reasonable if deactivation occurs via the formation of a bound, highly excited HOH intermediate which would serve to randomize the vibrational energy before re-dissociation. Such a mechanism is consistent with the rapidity with which ground state OH undergoes an exchange reaction with D ($k = 1.3 \pm 0.3) \times 10^{-10}$. In addition, there is a body of experimental and theoretical evidence showing that similar deactivating processes, such as O$+$ NO which in intermediate complex formation can occur, generally proceed quite rapidly. A rate constant for relaxation of $v = 9$ which is not substantially greater than that for v = 1 and 2, while somewhat unexpected, might be possible if the highly excited intermediate complex dissociated so rapidly that randomization of the energy was not complete. This has been suggested, for example, in the relaxation of OH$^+(v)$ by NO.

Range of absolute rate constants

The absolute magnitude of the rate constants for removal of OH$^+(9)$ by O$_3$ and CO$_2$ is important in assessing likely mechanisms of energy transfer. As discussed above, absolute values of k_2 cannot be obtained from this work unless $A_{9/3}$ is known. An estimate of the absolute values of k_2 assuming each of the two values of $A_{9/3}$ followed in this paper can be calculated from Figs. 7 and 8. For example, the slopes of the lines in Fig. 7(a) for $X = \text{CO}_2$, and CO_2 are 2.0 and 0.72×10^{-11}, respectively. From Fig. 8, under these conditions, $B = 5 \times 10^3$ sec$^{-1}$ and $B = 1.2 \times 10^4$ sec$^{-1}$ if $A_{9/3} = 0.13$ sec$^{-1}$. From Eq. (VII), then, $k_2 = 1 \times 10^{-12} (A_{9/3} = 3.9 \times 10^{-3}$ sec$^{-1})$ or $2 \times 10^{-11} (A_{9/3} = 0.13$ sec$^{-1})$ for CO$_2$ and $k_3 = 4 \times 10^{-13}$ (3.9 $\times 10^{-3}$ sec$^{-1})$ to $1 \times 10^{-12} (A_{9/3} = 0.13$ sec$^{-1})$ for O$_2$. It is stressed, however, that these values may not necessarily even place a limit on the true values of k_2 since the true value of $A_{9/3}$ may not lie between the two published values used to derive these estimates for k_2.

If these estimates do bracket the true values of k_2, they imply that energy transfer from OH$^+(9)$ to both O$_3$ and CO$_2$ is relatively efficient. In the case of O$_3$, this may be due to the energy transfer process

$$\text{OH}^+(9) + \text{O}_3(X^2 \Sigma^+_2) - \text{OH}^+(4) + \text{O}_2(b^2 \Sigma^+_g), \quad \Delta E = 291 \text{ cm}^{-1},$$

which may become near resonant when possible rotational changes are taken into account. No such process is possible for OH$^+(1)$, which has been shown to be only slowly deactivated by O$_3$ ($k < 4 \times 10^{-15}$). In the case of CO$_2$, a one quantum energy transfer from OH$^+$ in $v = 9$ to $v = 8$ could produce the (0001) state or the (2000) state, with band center energy defects (i.e., the difference in energy between the quantum being transferred and the vibrational quantum of the acceptor quenching gas, assuming a rotationless transition) of only -112 and $+100$ cm$^{-1}$. These energy discrepancies may be even smaller when possible simultaneous rotational transitions are taken into account, and thus efficient energy transfer from OH$^+(9)$ is not unreasonable.

CONCLUSIONS

OH$^+(9)$ formed by the reaction of H with O$_3$ is removed sufficiently rapidly in a fast flow discharge system that the observed exponential decays reflect a combination of continuing formation and decay. Thus, pseudo-first order kinetics cannot be applied to obtain absolute rate constants for removal of this highly vibrationally excited species. However, accurate relative rate constants can be obtained and values are reported for CO$_2$, N$_2$, and Ar relative to O$_3$.

Removal of OH$^+(9)$ by H predominates at higher values of $[\text{H}]/(10^{-15})$. The absolute rate constant for this process as well as for quenching by O$_3$, CO$_2$, etc. depends on the value assumed for the Einstein C_2, for the (9, 3) transition, which is controversial. Since the Einstein A factors are used in computer kinetic models of the upper stratosphere and mesosphere to determine the role of OH$^+$ in the chemistry of this region, as well as to estimate the concentration of other species such as H, an independent experimental determination of these A factors is extremely important.
ACKNOWLEDGMENTS

The authors are grateful to the National Science Foundation (Grant No. CHE 76-23577) and to The Donors of the Petroleum Research Foundation administered by the American Chemical Society (Grant No. 3080-G2) for support of this work. We also thank G. C. Pimentel for helpful discussions, R. Ammari for the calculation of the rotational energy levels within each vibrational manifold, W. P. L. Carter and W. Rucker for computer assistance, and J. N. Pitts, Jr. and M. J. Ezell for comments on the manuscript.

APPENDIX

The emission intensity from

\[O + NO(+) + M \rightarrow NO_2^+(+) + h\nu(+), \]

(A1)

follows the relationship

\[I_{NO_2^+} = \beta T [O][NO], \]

(A1)

where \(\beta \) is a geometrical factor taking into account that only a small portion of the total light emitted is detected. This ultimately cancels out in the analysis, as does \(T \) which corrects for the fact that the filter does not transmit 100% of the light over its range. (\(T \) was, however, estimated to be \(\approx 0.36 \) using the transmittance of the filter measured in this laboratory.)

\(I_0 \) has been measured\(^{98-101} \) from 387.5 nm to 3.3 \(\mu \)m by several groups. Taking \(I_0 = 11, 2 \times 10^{-17} \) over the entire spectral range,\(^{100} \) \(I_0 \) was estimated to be \(1.42 \times 10^{-14} \) in the region 622.5–830.0 nm, the limits of our 626 nm filter. (The experiments in which \(I_0 \) was determined over the entire spectral region were carried out in \(O_2 \), while the carrier gas in these experiments was \(Ar \). However, the values of \(I_0 \) in \(O_3 \) and \(Ar \) are sufficiently similar\(^{101} \) that no correction was made to the literature value of \(I_0 \).)

The emission intensity from \(O^+ (9) \) observed through the 626 nm filter is given by

\[I_{9,3} = I_{9,3}^{\text{true}} \beta TP = A_{9,3} [O^+(9)] \beta TP, \]

(A11)

where \(A_{9,3} \) is the Einstein A factor for the (9, 3) transition, \(\beta \) and \(T \) are as defined above, and \(P \) is the fraction of the total (9, 3) band falling within the limits of the filter. \(P \) was estimated to be 0.52 from a spectrum of the (9, 3) band taken using the Jarrell-Ash monochromator and EMI 9659QB photomultiplier. This spectrum was corrected for the spectral response of the detection system which was measured using an NBS calibrated quartz iodine lamp.

Combining Eqs. (A1) and (A11), one obtains

\[[O^+(9)] = 2.73 \times 10^{-18} \frac{\beta}{I_{9,3}^{\text{true}}} \frac{I_{NO_2^+}}{A_{9,3}}. \]

(A11)

Thus, if \([O][NO]/I_{NO_2^+} \) and \(I_{9,3} \) are measured and \(A_{9,3} \) is known, \([O^+(9)]\) can be calculated.

The factor \(([O][NO]/I_{NO_2^+}) \) was determined by measuring the observed emission intensity from \(NO_2^+ \), i.e., \(I_{NO_2^+} \) at known concentrations of \(O \) and \(NO \). The concentration of oxygen atoms was determined by calibrating the VUV resonance lamp for \(O(P) \) by adding small, known amounts of \(NO \) to an excess of \(N \) atoms as described in detail elsewhere.\(^{51,54} \) The flow of \(N_2 \) through the microwave discharge was then lowered until \([N] = (1-3) \times 10^{12} \) and excess \(NO \) was added through the movable inlet to convert all of the \(N \) to \(O(P) \). Care was taken to ensure that a sufficiently large excess of \(NO \) was present to bring

\[\text{N} + \text{NO} \rightarrow \text{N}_2 + \text{O}_2 \]

to completion upstream of the detection port. The \(O(P) \) signal observed in excess \(NO \) could then be converted to a concentration using the calibration curve generated under the reverse conditions. The concentrations of \(O(P) \) so obtained generally agreed well with those obtained by extrapolating a plot of \(I_{NO_2^+} \) vs \([NO]\) back to zero emission intensity, at which point \([N_2] = \frac{[NO]}{[O]} \) (Fig. 3). The plots of \(I_{NO_2^+} \) against \([NO]\) were all linear over the range of \(NO \) concentrations used since the loss of \(O(P) \) due to reactions (A1) and

\[\text{NO}_2 + \text{O} \rightarrow \text{NO} + \text{O}_2 \]

was always <2% and the \(NO \) remains essentially constant because it is regenerated by Reaction (A3).

A similar calibration was carried out using the 519 nm filter. The \(O^+(9) \) data so obtained were used mainly as a check on the 626 nm data since the intensity of the (9, 2) band at 519 nm was approximately a factor of 10 weaker than the (9, 3) band.

2R. D. Levine and R. B. Bernstein, Molecular Reaction Dynamics (Oxford University, New York, 1974) and references therein.
11J. D. Lambert, Vibrational and Rotational Relaxation in Gases (Clarendon, Oxford, 1977) and references therein.
Throughout this paper, vibrationally excited OH in level \(v \) is written as \(\text{OH}^v \); \(\text{OH}^v \) refers to vibrationally excited \(\text{OH} \) in all levels \(v > 0 \) and \(\text{OH} \) is used to designate ground state \(\text{OH} \).

R. E. Murphy, J. Chem. Phys. 54, 4852 (1971) and references therein.

The Einstein A factors \(A_m \) for the transition from the \(m \)-th to the \(m+1 \)-th level are related to the mean radiative lifetime of the \(m \)-th level by \(\tau_m = \frac{h}{m} A_m \).

B. J. Finlayson-Pitts and T. E. Kleindienst: Reaction of hydrogen atoms with ozone

15G. C. Pimentel (personal communication).