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IntroDuctIon
Drug combinations are often used to achieve enhanced thera-
peutic efficacy in the treatment of diseases such as cancer1, viral  
infections2, diabetes, asthma and inflammatory disorders3,4. 
However, it is a challenge to identify optimal drug combinations 
because of the large number of possibilities; important factors 
in determining combination efficacy include not only drug 
selection, but also dosing, administration sequence and timing.  
An additional problem with combining drugs is toxicity, which 
is difficult to predict because of the inherent complexity of the 
underlying biological networks. A challenge in identifying opti-
mal drug combinations is that even a few drugs at several dose 
levels will end up in a large testing space. For instance, testing ten 
drugs for cytotoxicity in cancer cells at four different concentra-
tions would lead to the screening of 410 (>1 million) possible 
drug combinations, without taking sequencing or timing into 
consideration. This would make examining every possibility a 
laborious, lengthy and costly effort.

Current clinical practice in finding drug combinations is mainly 
through trial and error. As it is widely accepted that the improve-
ment of disease treatment can be achieved by the combination of 
drugs, we have developed a method called the Feedback System 
Control (FSC) technique to systematically search for optimal 
drug combinations. This drug screening method is based on 
the integration of experimental results and a search guided by 
the DE algorithm5,6. FSC can save several orders of magnitude 
in terms of time, cost, effort and numbers of test subjects, as 
compared with conventional drug-screening methods. The FSC 
technique7–17 does not focus on detailed pathway interactions, 
but it directly focuses on integrative system responses; i.e., the 
differences between desired and real system responses are used 
as optimization criteria by a search algorithm, which iteratively 
drives the system toward a desired phenotypic output.

FSC has been shown to be suitable for use in an array of differ-
ent applications, such as (i) the inhibition of infectious diseases18, 
(ii) the maintenance12 and differentiation10 of stem cells, (iii) the 
control7 of cancer growth and tumor angiogenesis14 and (iv) the 
optimization of the multiple compounds present in herbal medi-
cine19. These results have provoked great interest from clinicians, 
as well as from industry, in applying this approach to the design of 
new and efficient therapies in a wide spectrum of diseases.

The FSC platform
The FSC method is based on the closed-loop feedback control 
process outlined in Figure 1. The first step is the definition of 
an initial set of compounds to be tested. In the next step, broad 
dose-response curves are generated for each compound in the 
selected cellular bioassay. The bioassay is selected to provide a 
phenotypic output response that is used to assess the efficacy 
of the drugs and drug combinations on overall cell activity. The 
FSC technique comprises five main components: (i) the system 
to perform the optimization for, (ii) the inputs for modifying 
the system’s behavior, (iii) the phenotypic outputs of the system, 
(iv) the search algorithm and (v) a regression method for input-
output analysis.

Dose-response curves are used to select the drug-dose input for 
each compound to be used in combination (Fig. 1a). Next, drug 
combinations are tested on the basis of a cellular bioassay in the 
selected cell type, which is referred to as the system (Fig. 1b). The 
output response is used as an indicator of the drug combination 
efficacy in vitro (Fig. 1c). The FSC optimization is thus based on 
integrative system responses, wherein the difference between the 
desired and real system response is used as optimization criterion 
to be fed into a search algorithm. The search algorithm there-
fore uses the difference between the results of the tested drug  
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We describe a protocol for the discovery of synergistic drug combinations for the treatment of disease. synergistic drug 
combinations lead to the use of drugs at lower doses, which reduces side effects and can potentially lead to reduced drug 
resistance, while being clinically more effective than the individual drugs. to cope with the extremely large search space for 
these combinations, we developed an efficient combinatorial drug screening method called the Feedback system control (Fsc) 
technique. starting with a broad selection of drugs, the method follows an iterative approach of experimental testing in a relevant 
bioassay and analysis of the results by Fsc. First, the protocol uses a cell viability assay to generate broad dose-response curves 
to assess the efficacy of individual compounds. these curves are then used to guide the dosage input of each drug to be tested in 
combination. Data from applied drug combinations are input into the differential evolution (De) algorithm, which predicts new 
combinations to be tested in vitro. this process identifies optimal drug-dose combinations, while saving orders of magnitude 
in experimental effort. the complete optimization process is estimated to take ~4 weeks. Fsc does not require insight into the 
disease mechanism, and it has therefore been applied to find combination therapies for many different pathologies, including 
cancer and infectious diseases, and it has also been used in organ transplantation.
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combinations and the desired optimization 
goals to predict new combinations to be 
tested in vitro, and to iteratively drive the 
system to a desired systemic fate (Fig. 1d).  
The DE algorithm was chosen for our 
protocol. A regression method for input-
output analyses can be used to aid in the 
elimination of antagonistic drugs from the 
mixture, if the desired system output is not reached or too many 
drugs are present in the optimized combination (Fig. 1e). Each of 
these components must be defined before starting the optimiza-
tion; we describe these components in the subsequent sections.

Experimental design
Input definition. A broad selection of drugs that target varying 
nonoverlapping pathways should be considered. In the example 
presented in this protocol, nine drugs that target a broad spec-
trum of endothelial cell signaling pathways were selected for FSC-
based screening. This selection covered tyrosine kinase inhibitors, 
specific anti-angiogenic antibodies, an anti-angiogenic-specific 
designer peptide, a histone inactivator and a mechanistic target of 
rapamycin (mTOR) inhibitor (see Supplementary Note).

In an optimization targeting a specific cancer cell line, for 
example, one should consider, but not be limited to, the drugs 
that target known genetic aberrations or driving mutations in 
the cell line. This should preferentially include current clinical 
drugs or drugs in an advanced stage of clinical development. 
The inclusion of a broader spectrum of drugs and a wider range 
of drug doses will increase the chances of identifying optimal  
synergistic drug combinations. An important attribute of FSC 
is that it can rapidly select a subgroup of efficacious drugs from 
a large pool of drug candidates. Hence, the initial search should 
cover a broad spectrum of drug candidates that may well include 
drugs that were originally not used in treating the target disease. 
These candidates can serve the goal of possible repurposing of 
drugs for different applications.

The input drug-dose concentrations to be used in the opti-
mization procedure are defined by first producing a single drug 
dose-response curve for each of the selected compounds in the 
selected bioassay. The number of drug doses selected per com-
pound should be decided based on the optimization goal, and it 
might be limited by the number of compounds being considered 
in the optimizations. For an initial screen of 5–10 drugs, unless a 
particular drug shows a steep dose-effect curve, it is appropriate 
to use three dose levels for each compound, as this is adequate to 
cover both the linear contributions (owing to single-drug dose 

change) and the synergistic contributions (owing to drug-drug 
interactions) of the drugs in the study.

System definition. The next step in the optimization is to define 
the system in which the optimization of a desired behavior will 
be performed. In the protocol described here, we will focus on an  
in vitro scenario in which the system of interest is an immortalized 
human endothelial cell line (ECRF24) and the desired output is 
inhibition of cell viability. Of course, the process is valid for other 
complex systems both in vitro and in vivo.

Efficient propagation and maintenance standards for the 
selected cell type should be implemented. This includes culturing 
in an optimal medium and proper subculturing (PROCEDURE 
Steps 1–11). Constant cell maintenance and preparation methods 
(i.e., splitting ratio and timing, confluence and cell density at the 
start of the experiment) will help to ensure maximal reproduc-
ibility of the bioassay. Depending on the system, a relevant control 
cell line may be included in the optimization. This allows the 
optimization to be based on the therapeutic index (i.e., the ratio 
of the effect on the cancer cell versus that of the healthy matched 
control cell) of the treatment administered. This facilitates the 
identification of drug combinations and minimizes the chances 
of inducing side effects or toxicities.

Output selection. An output response must be selected to quan-
tify the response of cells to each drug or drug combination.  
The output must be able to accurately reflect the phenotypic 
cell behavior being optimized, and it is therefore important to 
the overall success of the optimization (e.g., when optimizing  
anticancer drug combinations, cancer cell viability will be a pre-
ferred output over cell migration). To facilitate the FSC screen, it 
is also necessary that the assay generating the output is robust and 
that it can be performed reliably and with little variation.

An optimization based on more than one output response can 
also be performed—i.e., on the basis of both cell viability and cell 
migration. Alternatively, the effect on multiple cell types may be 
taken into consideration—e.g., a cancerous and a healthy tissue 
cell type—to define the therapeutic index, or one can consider  
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Figure 1 | A schematic representation of the FSC 
technique, showing the five main components 
of the optimization process. (a) The input—i.e., 
drug combinations with defined drug doses. 
(b) The system—i.e., the selected cell type 
representation of the disease to be studied (c). 
The system output—i.e., the cellular response 
to the defined drug combination input in the 
selected cell bioassay. (d) The search algorithm 
that iteratively drives the system output toward 
the desired response. (e) The statistical analysis 
used for input-output analysis to guide drug 
elimination. 
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multiple cells with different genetic characteristics. In such an 
optimization, all outputs must be incorporated into a single 
overall output response, which is provided by an equation inte-
grating all the outputs to be optimized. The overall output must 
be able to describe the efficacy of each drug combination. The 
most common way to integrate all the outputs into one formula 
is to assign a weighing factor (indicating the relative importance 
of the output) for each output and to summarize the weighted  
output together. The decision on the weight factor for each output  
response needs to reflect the relative significance of these out-
put responses. This requires prior mechanistic insight into the  
process being optimized, and it should therefore be determined 
on a case-by-case basis.

Stochastic search algorithm. Although many stochastic algo-
rithms could be implemented in the FSC technique, we describe 
the use of the DE algorithm20,21. The DE algorithm is a population- 
based stochastic search algorithm. DE has been previously 
proven to adequately and efficiently search for the effective drug  
combinations after only 10–20 iterations of experimental efforts 
by testing 15–20 different drug combinations per iteration12. DE 
is a genetic algorithm, which was originally developed by Storn in 
1995 (ref. 20). Similarly to other evolutionary algorithms, DE is a  
stochastic simulation of biological evolution through iterative 
updates that increase individual adaptation to the surviving con-
ditions requested by the environment (Fig. 2). The DE-guided 
search strategy drives the exploration of the entire search space, 
while avoiding becoming trapped in a local optimum.

In each iteration of the DE algorithm, a new set of trial drug 
combinations (UG), which are generated by the steps of mutation 
and cross-over, are tested and compared with the original set of 
drug combinations (XG; Fig. 2). Drug combinations with better 
overall efficacy are selected to form the next iteration of target 

drug combinations (XG + 1), whereas the ones with worse overall 
efficacy are abandoned. This iterative process is repeated until the 
optimal drug combination is identified or no further significant 
improvements in cell viability inhibition can be found. The lat-
ter is called an improvement-based stopping criterion22 (i.e., the 
improvement in the output value of the best-performing drug 
combination, the average improvement in all combinations or 
the number of trial combinations (referred to as ‘U’ in Fig. 2)  
is accepted over the target combinations (referred to as ‘X’ in Fig. 2)  
in each iteration). If the optimal drug combination identified 
by the DE algorithm is not desirable (i.e., it contains too many 
compounds or does not have a high enough efficacy), one should 
proceed to data modeling and analysis.

Data modeling. The data from all previous FSC-based studies 
have demonstrated that the drug-dose combination versus drug 
efficacy landscape surface is smooth, which permits the DE algo-
rithm to rapidly identify the global optimum.

When starting with a sizable number of test compounds, regres-
sion analysis is used to select the most potent drug contributions, as 
well as to indicate synergistic, additive or antagonistic drug interac-
tions. Regression analysis can be performed in MATLAB23 (Box 1;  
Supplementary Software using the file ‘RegressionAnalysis.m’),  
R (Supplementary Software using the file ‘RegressionDemo.R’) or 
other appropriate programs. By using all data points obtained dur-
ing the preceding optimization, a stepwise regression model24 can 
be generated, which mathematically describes the cellular activity 
(in terms of the selected bioassay output) in response to the drug 
combinations administered to the cells (i.e., the system input). 
The second-order regression model includes terms that describe 
the contributions of each single drug (first and second order,  
βi and βii, respectively), as well as those of the two-drug interac-
tions (βij)7,8,14,25 to the overall cell output response.

D1

D2

D3

D4

D5

1. Mutation

2. Cross-over

3. Selection

Pool of drugs and doses
…

Dose

Vi = Xr1 + F (Xr2 –Xr3) 

Vi,j if (rand ( j) ≤ c

Ui if output (Ui ) ≥ output (Xi )
Xi

Xi
G+1=

Ui,j =

Xi
G Vi

G

Ui
G

Xi
G

Xi
G+1Ui

G
Ui

G

Xi,j if (rand ( j ) > c

Otherwise

Figure 2 | Illustration of the differential 
evolution algorithm. The overall aim is to  
find the drug combination that yields the  
best therapeutic effect from an initial pool 
of drugs tested at certain doses. The first 
step involves randomly selecting three drug 
combinations (referred to as Xr1, r2 and r3) from  
the initial pool of drugs and doses, and using 
them to generate the mutation vectors  
(termed V) based on the equation presented (1). 
The parameter F represents how strongly the 
difference of the two randomly selected vectors 
will be weighed when added to the first randomly 
selected vectors during the mutation step.  
F will have an effect on how quickly the  
algorithm converges, as it is one of the key 
factors affecting how much trial combinations 
will vary from the target combinations. A good 
starting value of 0.5 for F has been suggested46. 
In the cross-over step (2), a new set of combinations (UG) is designed by including randomly chosen elements from the original vectors XG and the  
mutation vectors VG. The random selection is performed based on comparing the value of a randomly generated number to the cross-over constant  
(C; equation in step 2). The cross-over constant essentially determines how many of the components from the mutated combination will be included in  
the new trial combination (UG). The cross-over constant will also have an effect on how much trial vectors vary from target vectors and therefore have an 
effect on the rate of convergence of the algorithm. The value of C can range from 0 to 1. A value of 0.5 for C is implemented47. Hence, UG will generally consist 
of 50% drug-dose combinations from each XG and VG. In the last step, which is the selection step, the new combinations (UG) are experimentally tested and 
their performance is compared with the original vectors (XG). The vector that performs better becomes the next original vector (XG + 1, equation in step 3).  
The entire process is then repeated (i.e., performed iteratively).
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A complete second-order regression model is represented by 
equation 1: 

y x x x xo
i

k

i i
i

k

ii i
i

k

j i

k

ij i j= + + + +
= = = = +
∑ ∑ ∑ ∑b b b b e

1 1

2

1 1

where β0, βi, βii and βij represent the coefficients of the intercept, 
linear, quadratic and bilinear (or interaction) terms, respectively, 
y represents the response variable (the output), xi and xj are inde-
pendent variables (the inputs, which represent the drugs) and ε 
is an error term with a mean close to zero26.

The main assumptions of a linear regression model should 
be verified—i.e., weak exogeneity, linearity, constant variance, 
independence of errors and lack of multicolinearity. This will 
ensure the model’s accuracy and the reliability of model-based 
predictions. Confirmation of model accuracy requires moder-
ate statistical knowledge, and it can be performed on the basis 
of the assessment of the following analyses (Fig. 3): the fitted 
efficiency (based on R2 value and a plot of the experimental 
versus the fitted data), residual analysis (residual distribution, 
normal probability plot and residual histogram) and analysis  
of outliers (Cook’s distance). Finally, the predictive poten-
tial of the model is to be verified by testing predicted drug  
combinations in vitro.

Several improvements to the original FSC system have evolved. 
After exploring the iterative search strategy in FSC, we discovered  

(1)(1)

that the drug combination efficacy is related to the applied drug 
doses by a quadratic algebraic response surface7. Figure 4 pro-
vides a visual representation of the response surfaces between the 
system output (z axis, labeled output) and the varying dose of 
only two drugs in the combination (x and y axis, labeled inputs 
1 and 2). The smoothness of these surfaces is the fundamental 
reason for the ability of FSC to identify the most potent drug 
combination from a large parameter space with only about ten 
iterations, thus making it an efficient drug combination screening 
method18,24. This is an important observation, as it is expected 
to markedly simplify the in vitro to in vivo translation in which  
differences in pharmacokinetics and dynamics may strongly  
perturb the optimal combination.

Applications of FSC
As FSC facilitates the identification of optimal drug combina-
tions without requiring mechanistic insight8, it is attractive 
for many applications. It has been used for the identification 
of optimal drug combinations in various complex biological  
systems (Fig. 5).

FSC has previously been used in drug optimizations for the 
treatment of infectious disease, including vesicular stomatitis virus 
(VSV) infection in NIH 3T3 fibroblast cells15 and Kaposi’s sar-
coma–associated herpes virus re-activation17. HIV, hepatitis C virus 
and influenza infections have been shown to be effectively treated 
by combinations of antiviral drugs. For instance, Ding et al.18  

 Box 1 | Data modeling and analysis ● tIMInG 2 h 
 crItIcal step The data modeling and regression analysis step is only needed if the primary optimization does not identify a desired  
optimal drug combination (i.e., there may be strong antagonism between certain agents) or if drug elimination is desired.
1. Open the code in order to perform linear regression analysis in either MATLAB or R programs (supplementary software).  
Steps 2–4 below describe how to implement the MATLAB code, whereas the implementation of the R code is described in the  
supplementary tutorial.
2. Download the MATLAB file called ‘RegressionAnalysis’ from supplementary software and open it in MATLAB.
3. Run MATLAB code (press F5 on the keyboard or select Debug and select ‘Run RegressionAnalysis.m’).
4. Insert the data for the regression analysis in the command window. The drug combinations should be entered as a matrix  
of dimension [D × N] surrounded by brackets (with D representing the number of drugs and N representing the number of drug  
combinations), where each column represents a drug combination. The efficacy of each drug combination should be entered as  
an [N × 1] vector.

? trouBlesHootInG
5. Analyze the results of modeling in the command window in the form of the regression coefficients. Note that two models are  
generated: the first model containing all data points and the second model with outliers removed based on the criteria of Cook’s  
distance. Two figures are automatically generated for each regression model: the real versus predicted observations, and the residual 
plots (Fig. 3).
 crItIcal step For the removal of outliers, the code provides three options. MATLAB code can be manipulated in the ‘.m’ file pro-
vided in the supplementary software. The file can be opened in the file editor by double-clicking on the ‘.m’ file from the ‘Current 
Folder’ (generally located above the command window). Lines of code can be deactivated by inserting a ‘%’ at the beginning of each 
line (nonactive lines of code will appear in green text). To remove only the largest outlier, activate line 71 of the code and deactivate  
line 66; to remove all outliers with a cook’s distance greater than three times the average Cook’s distance value, activate line 66 and 
deactivate line 71; or to remove no outliers from the data set, deactivate both sections of the code (lines 66 and 71).
6. Analyze regression coefficients and concentrations to eliminate the least prominent compounds from the search. If the desired  
goal is to minimize the system output, negative regression coefficients (first-order and second-order single drug terms, and two-drug 
interaction terms) represent the more desirable drug activity. If the optimization goal is to maximize the system output, positive 
regression coefficients represent desirable drug activity.
7. Once the compounds have been eliminated, return to the optimization process (Step 43 to re-define drug doses and Steps 44–58  
for DE optimization) using the refined set of drugs.
8. If optimal drug combination is identified by Step 58, stop the optimization; otherwise, repeat the data modeling and analysis steps 
described in this box.
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showed that FSC rapidly identified optimal drug combinations  
that inhibit herpes simplex virus-1 infection, by testing only  
several hundred drug combinations.

One of the important problems in stem cell–mediated regen-
erative medicine is the development of defined culture systems for 
the maintenance of clinical-grade human embryonic stem cells. 
The FSC technique has proven to be helpful in the optimization 
of the conditions for the maintenance15 or differentiation10,12 of 
stem cells. Another successful application of the FSC method was 
in the optimization of a flavonoid-based herbal drug combina-
tion19. This strategy allowed an effective drug combination to be 
identified, which was composed of four synergistic drugs with 
doses reduced by approximately tenfold as compared with those 
found in the original herbal extract.

In another example, FSC was used to establish the differen-
tial response of cancer (non-small-cell lung cancer) and normal 
cells to combinations of three chemical agents7. The authors 
found a combination of drugs that led to a significant difference 
in the responses of different cell types, clearly increasing the dif-
ferential targeting of cancer and normal cell lines with the best  
drug combinations.

A similar goal was achieved by Wang et al.8, in which differ-
ential response of breast cancer and multiple control cells was 
optimized. The final drug combination in that case consisted 
of three nanodiamond-immobilized drugs and one unmodi-
fied drug. Again, the therapeutic efficacy and selectivity of 
the optimized combination was significantly higher for the 
best mixture as compared with that of the individual drugs  
by themselves.

Recently, we applied the FSC technology to the identification 
of an effective low-dose angiostatic drug combination14. After a 
few optimization cycles—i.e., only a few hundred measurements 
in total—a second-order equation was fitted to the ‘landscape’ 
of drug-combination input and drug-viability output data. The 

coefficients in the ‘best-fit’ equation permitted the elimination of 
several drugs. With the remaining most active drugs, and a few 
more measurement cycles, we then identified the final optimal 
drug mixture containing only three drugs. These interacted syn-
ergistically27, so that only very low concentrations are needed for 
effective antiangiogenic activity. Interestingly, the combination of 
drugs enhanced the specificity for endothelial cells. The in vivo 
validation showed that the optimized drug combination was quite 
effective in two preclinical models of tumor growth inhibition 
as compared with that of individual drugs by themselves, which 
were administered at much higher doses.

In all the applications mentioned above, only testing of a small 
percentage of total drug combination possibilities was required 
to accurately establish a predictive model that was capable of  
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Figure 3 | Regression analysis of combinatorial data. (a–f) Plots for  
residual analysis of a data set are presented before (a–d) and after (e,f)  
the removal of an outlier, including residual plots (a,e); Cook’s distance  
plots (b,f; outlier indicated by a yellow circle in b); normal Q-Q plots (c,f); 
and residual histograms (d,h). Data outliers can be identified based on the 
plot of Cook’s distance (b,f). The largest outlier or any data points with 
a Cook’s distance greater than three times the average Cook’s distance 
(represented by the dotted line in b) can be eliminated. In this example, 
removal of the data point with the largest Cook’s distance improved the 
residual plots for the data set. 
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Figure 4 | Schematic drawing of a smooth response surface. We examined 
drug-dose-response surfaces using the data acquired from the FSC 
optimization process in various biological systems (e.g., cancerous cells). 
In all of the systems that we have previously studied, smooth response 
surfaces were observed. 
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simulating the effect of all possible combinations in the domain 
of the drug concentrations investigated.

Comparison with other methods
Over recent years, there has been a growing interest in the 
development of methods for identifying optimal drug combi-
nations28–30. In a clinical setting, drug combinations are still 
mainly selected on the basis of empirical approaches, which are 
largely guided by clinical experience with individually admin-
istered drugs31,32. However, many optimization methods have 
been and are being evaluated preclinically29,33,34. They can be  
classified as follows:

	 (i)  Exhaustive searches—testing all possible drug combi-
nations with a high-throughput screening technique35.  
This approach is limited, as it requires extensive labor, 
time and cost, which can be prohibitive when the number  
of drugs and the dose levels increase. As a result, most  
studies are limited to only testing pairwise combinations 
of drugs36.

 (ii)  Statistical approaches—linear combinations of known 
input-output relations and desired phenotype are devel-
oped, neglecting the nonlinearity in biological networks. 
In these models, the system is treated as a black box,  
and it does not require a complete characterization of the 
biological networks37,38.

 (iii)  Model-based combinations in which biological measure-
ments are used to build explicit models of a target network 
using simulations39,40. This approach seems to be one of the 
most successful in multidrug design. It should, however, be 
emphasized that we do not fully understand most drugs and 
their pathways and targets, thus limiting this approach.

 (iv)  A biological search algorithm. In this case, model-based 
predictions of effective perturbations are combined with a 
closed-loop iterative experimental search34.

It is important to note that modeling cell behavior is lim-
ited by the complexity of the cellular signaling pathways, and 
in cancer, by inter-patient and intratumoral heterogeneity41. 
Although it is possible to make generalized conclusions about 
cell mechanisms and their interactions on the basis of mathe-
matical models, these models are inherently constrained by the 
information given to the system and the assumptions used in  
generating the models.

The FSC technique is not an algorithm. The second-order alge-
braic drug response surface, equation (1), is the mathematical 
foundation that seems to be verified by the ‘good fits’ found in all 
systems in which this has been tested up thus far. It is the reason 
for the ultra-effective searches for optimal drug combinations 
with a small number of converging iterations. In each iteration, a 
small number of drug combinations are experimentally tested to 
measure cellular (or organism) phenotype in response to a drug 
combination. The Gur-Game algorithm or a genetic algorithm 
generates new candidate combinations to be tested, on the basis 
of the previous results. The limitation of statistical model-based 

techniques is that they attempt to approximate the control land-
scape using training data and then optimize the approximated 
response, whereas the FSC moves on a simple quadratic algebraic 
surface and therefore efficiently reaches the optimal value with a 
small number of iterations. The model-free method is particularly 
advantageous in dealing with a biological system, which involves a 
large set (≥10) of drug candidates, in which traditional modeling 
would require a large amount of data to provide a robust model. 
Another major advantage of the FSC approach is that it is phe-
notypically driven, and therefore it does not require mechanistic 
information about the system, as is required for model-based 
approaches. Moreover, the response surfaces show a relatively 
smooth response when doses of the given drugs are varied. In 
some cases, we have found that a large reduction in the dose of 
one of the drug in a combination will not proportionally decrease 
its efficacy. This finding implies that the radius along this drug 
dose and the efficacy on the smooth surface is fairly large.

Advantages of FSC
The approach presented here provides a reliable platform for rapid 
and effective drug combination screening. This can be attributed 
to several unique features of the approach.

First, the method is phenotypically driven unlike many other 
approaches, which are genotypically driven. This greatly reduces 
the amount of background and mechanistic information that 
needs to be known about the system before the start of the opti-
mization. It also minimizes the chances that the search is led astray 
because of incorrect or incomplete information. In addition, as 
it is phenotypically driven, it may increase the likelihood of iden-
tifying unexpected drug synergies. This may also lead to drug 
repurposing, which can allow for new effective therapies while 
bypassing the time-consuming and costly process of new drug 
development. Moreover, through the identification of synergistic 
drug combinations, highly effective combinations using reduced 
drug doses will hopefully reduce the chances of side effects  
or toxicity.

Second, this approach combines the use of a search algorithm 
and regression modeling to aid in the assessment of drug com-
binations and the elimination of antagonistic mixture compo-
nents when needed. The use of these two approaches allows for 
more rapid exploration of the search space (generally an opti-
mum can be identified after exploring  < 0.2% of the entire search 
space). The use of the DE algorithm also aids in the analysis of 
the nonlinear complex system by searching in a manner that  
incorporates both a stochastic and an improvement-based guided 

Lumen

Viral infection

Endothelial cell viability
Stem cell maintenance

and differentiation

Cancer cell
viability

Herbal medicine

Feedback System Control

Figure 5 | Schematic drawing of reported FSC applications. FSC technology 
has been instrumental in endothelial cell viability inhibition, stem cell 
maintenance and differentiation, viral infections, herbal medicine or cancer 
cell viability inhibition.
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search based on the population dynamics. Unlike competing 
methods, the computational complexity and experimental data 
required for effective analysis of the search space does not grow 
exponentially when more drugs or drug doses are included in 
the search. This allows for the possibility to effectively explore 
increasingly complex problems.

In all studies conducted so far, we have always been able to identify 
synergistic drug combinations. Among these were both expected and 
unexpected synergies. The main challenge is to identify the optimal 
synergistic combination from an initial selection of drugs. The com-
bined use of the search algorithm and regression analysis drives the 
search toward the optimal region of the search space corresponding 
to the optimal activity, which subsequently leads to the elimination 
of antagonistic drugs. The probability of identifying novel syner-
gies is mainly dependent on the initial experimental design and 
starting conditions (i.e., drug and dose selection). Data modeling 
analysis helps to identify antagonistic drug mixture components, 
and it will therefore aid the user to re-define the experimental 
design in the case that synergies are not identified. Subsequently, 
the refined search is designed to identify the synergies, once noise  
presented by other drugs has been removed from the system.

Altogether, FSC allows rapid converging upon an experimen-
tally verifiable optimal drug combination15, and it can facilitate 
the development of new drug combination from in vitro to in vivo 
preclinical models to clinical testing.

Limitations
If experimental error or variation in the experimental bioassay is 
too large, it will prevent the algorithm from being able to identify 
the optimal combination.
Visualization of drug interactions by response surfaces is limited 
to 3D representation of a multidimensional surface.
The discretization of drug doses (i.e., the selection of distinct 
drug doses) can result in limitations. This may be the case in 
high-dimension optimizations, in which many drugs are con-
sidered, thus limiting the number of doses that can reasonably 
be included for each drug. Alternatively, if the sensitivity of the 
system is unknown and too few drug doses are used, information 
about drug interactions may be lost30. We address this limitation 
by producing dose-response curves for each compound.
For initial drug selection, the possibility exists that synergistic 
interactions within the selected compounds do not exist. In this 
case, the user should consider performing a new optimization 
with a wider initial selection of compounds or other drug con-
centrations.

Level of expertise needed to implement the protocol
The FSC protocol requires intermediate cell culture knowledge 
and skills, moderate understanding of statistical analysis and 
regression modeling, as well as basic understanding of MATLAB 
and the ability to implement the MATLAB or R codes provided.

•

•

•

•

MaterIals
REAGENTS

DMEM (1×)  +  GlutaMAX-I (Gibco, cat. no. 31966-021)
RPMI 1640 medium (1×)  +  GlutaMAX-I (Gibco, cat. no. 61870-010)
DMSO (99.9%; Sigma-Aldrich, cat. no. D8481)
FBS (Sigma-Aldrich, cat. no. F2442)
Gelatin solution type B, 2% (wt/vol) in H2O (Sigma-Aldrich, cat. no. G1393)
PBS, pH 7.4 (1×) without Ca2 +  and Mg2 +  (Gibco, cat. no. 10010-015)
Trypsin-EDTA, 0.05% (wt/vol) (1×; Gibco, cat. no. 25300-054)
Penicillin-streptomycin (penicillin 10,000 IU/ml; streptomycin  
10,000 µg/ml; Amimed, cat. no. 4-01F00-H)
CellTiter-Glo luminescent cell viability reagents (Promega, cat. no. G7571)  
! cautIon The reagent is hazardous; avoid contact with body parts.  
 crItIcal Avoid light exposure.
Appropriate cell line. This procedure is optimized for use with ECRF24  
(human immortalized umbilical vein endothelial cell line; VU Medical 
Center, available on request). It can be adapted for use with other cell lines 
 crItIcal For these experiments, non-immortalized endothelial cells 
can be used as well ! cautIon If you are using cell lines in your research, 
they should be regularly checked to ensure that they are authentic and not 
infected with Mycoplasma.

EQUIPMENT
CO2 cell culture incubator (Sanyo, model MCO-18AC)
Inverted microscope (Leica, cat. no. DMI3000)
Sterile biosafety cabinet (Skan AG, model VSA-180)
Cell culture flask, T75 (TPP, cat. no. 90075)
Cell culture plates, 96 wells, sterile, flat-bottom (Corning, Costar, cat. no. 3596)
Opaque-walled, flat-bottom 96-well cell culture plates, sterile  
(Corning, Costar, cat. no. 3603)
Sealing film, 10 cm × 38 m (Parafilm M, cat. no. 52858-000)

•
•
•
•
•
•
•
•

•

•

•
•
•
•
•
•

•

Sterile serological pipettes, 2 ml (VWR International, cat. no. 612-1243),  
5 ml (cat. no. 612-1248) and 10 ml (cat. no. 612-1245)
Eppendorf Safe-Lock tubes, 1.5 ml, colorless (Eppendorf International,  
cat. no. 0030 120.086)
Eppendorf Easypet 3 (Eppendorf AG, cat. no. 4430000.018)
Multichannel Pipetman Neo (Gilson, cat. no. P200)
Sterile filter tips, 200 µl (StarLab, cat. no. S1111-0706)
Luminometer (Tecan Infinite F500)
Orbital plate shaker (Thermo Scientific, cat. no. 88880023)
Premium aluminum foil (VWR International, cat. no. 89107-732)
Sterile filters (Cell Tricks, cat. no. 04-004-2328)
MATLAB version R2012a or higher (can be purchased from MathWorks)
R version 3.2.1 (×64) (can be downloaded from http://www.r-project.org)

REAGENT SETUP
Cell medium DMEM/RPMI (1:1), supplemented with 10% (vol/vol) FBS and  
1% (vol/vol) antibiotics Under laminar flow, combine 450 ml of sterile DMEM 
(1×)  +  GlutaMAX-I and 450 ml of sterile RPMI 1640 medium (1×)  +  GlutaMAX-I,  
and then add 90 ml of sterile FBS and 10 ml of sterile penicillin-streptomycin  
(penicillin 10,000 IU/ml; streptomycin 10,000 µg/ml). Store the medium at 4 °C  
for up to 3 weeks.  crItIcal The ECRF24 cell line grows substantially better  
in cell medium DMEM/RPMI mixture (1:1) than in DMEM or RPMI alone.
Gelatin solution, 0.2% (wt/vol) Dilute 2% gelatin solution in sterile H2O to 
make a 0.2% (wt/vol)) solution. The stock solution is sterilized by filtration by 
using a 0.22-µm membrane filter. Store the solution at 4 °C for up to 2 months.
CellTiter-Glo (CTG) solution Thaw the CTG buffer solution at room tempera-
ture (~21 °C) in the dark, and mix it gently until it is dissolved with the CTG sub-
strate to prepare CTG solution. Store the solution in the dark at  − 20 °C until use. 
This reagent can be frozen and thawed up to ten times, losing  < 10% of its activity.

•

•

•
•
•
•
•
•
•
•
•

proceDure
cell culture and passaging ● tIMInG 20–30 min
1| Precoat the cell culture flask with 0.2% (wt/vol) gelatin solution. To do this, add 2 ml of gelatin solution to a T75 cell 
culture flask, and tilt the flask from side to side until the entire bottom of the flask is coated. Incubate the plastic flask with 
gelatin solution for a minimum of 20 min in the incubator (37 °C).

http://www.r-project.org
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2| In the meantime, prewarm trypsin solution, cell culture medium (supplemented, refer to Reagent Setup) and PBS in a 
water bath at 37 °C for 10 min.

3| Aspirate and discard the culture medium from the ECRF24 cells in the tissue culture flask in a sterile laminar  
flow cabinet.

4| Wash the cells twice with 5 ml of prewarmed PBS.

5| Add 2 ml of trypsin and incubate for ~2–5 min at 37 °C.

6| Remove the remaining 0.2% (wt/vol) gelatin solution from the precoated flask prepared in Step 1 by standing the flask 
upright and pipetting away the gelatin solution that falls to the bottom of the flask (this gelatin solution can be reused). 
Place the flask to one side.
? trouBlesHootInG

7| Verify cell detachment with an inverted microscope.
 crItIcal step The time for enzymatic detachment of cells can vary between cell lines, and it should be monitored  
carefully. Leaving cells in the presence of trypsin for too long may affect cell viability.

8| Stop the reaction by adding 2 ml of prewarmed, supplemented cell culture medium while working in the laminar  
flow cabinet.

9| Mix the cells gently and transfer a selected fraction of cells to the prepared gelatin-coated T75 cell culture flask from 
Step 6. A cell passage ratio between 1:3 and 1:4 is recommended twice per week.
 crItIcal step Mixing of cells should be thorough and gentle to ensure disaggregation of cell clumps.
? trouBlesHootInG

10| Fill the flask with additional prewarmed, supplemented cell culture medium to reach a final volume of 15 ml.

11| Mark the cell culture flask appropriately with cell type, passage ratio, date and experimenter’s initials; incubate the cells 
at 37 °C until use.
 crItIcal step It is better to avoid allowing the cells to reach 100% confluency, as this may reduce viability or cause the 
cells to leave the exponential growth phase.
? trouBlesHootInG

cell seeding in a 96-well plate ● tIMInG 40 min
12| Prewarm trypsin, supplemented cell culture medium and PBS in a water bath at 37 °C for 10 min.

13| Prepare a 96-well plate by precoating each well with 30 µl of 0.2% (wt/vol) gelatin solution. Gently tap the edges of 
the plate to ensure that the wells are completely covered. Incubate the plate for 20 min at 37 °C.

14| Fill the outer wells (wells A1–A12; B1; B12; C1; C12; D1; D12; E1; E12; F1; F12; G1; G12 and H1–H12) of the flat- 
bottomed, 96-well, cell culture plate with 100 µl of PBS in the laminar flow cabinet. This procedure will prevent excessive 
evaporation in the plate and edge effects.

15| Take a flask of cells at ~80% confluency (from Step 11) and dissociate the cells (from Steps 2–5, 7 and 8) to transfer 
them to a sterile 15-ml tube.

16| Determine the cell concentration (cells per ml) by using a cell counting chamber or Coulter counter according to the 
manufacturer’s guidelines.
 crItIcal step Minimize the time that the cells are in suspension.

17| A cell seeding density of 10,000 cells per well (or 100 µl per well at a density of 0.1 million cells per ml) is  
recommended. Dilute the cell suspension prepared in Step 15 to the desired concentration with prewarmed,  
supplemented cell culture medium.
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18| Remove additional gelatin solution from the 96-well plate prepared in Step 13 by tilting plate and pipetting  
out additional liquid using a multichannel pipette.

19| Seed the cells with a multichannel pipette into the interior wells of the 96-well cell culture plate (rows B–G, columns 
2–11) while continuously mixing the cell suspension to ensure that the desired number of cells is suspended in a volume of 
100 µl of cell culture medium.

20| Label the 96-well cell culture plates by noting the cell line, plate number, cell density, experimenter’s name and the date 
of preparation.

21| Incubate the seeded 96-well cell culture plates at 37 °C for 24 h.

Drug stock and aliquot preparation ● tIMInG 10 min per drug
22| Weigh out the desired weight of the given compound using an analytical balance.

23| Add the required amount of drug solvent to the weighed out drug volume taken from the previous step, while  
working in the sterile laminar flow cabinet. Dissolve the drug in the solvent.
 crItIcal step Ensure that the solvent concentration in the final working solutions does not influence the readout  
(i.e., cell viability) or include appropriate controls.
? trouBlesHootInG

24| Divide the stock solution into aliquots with a minimum liquid volume of 20 µl (to minimize the effects of solvent  
evaporation) in sterile Eppendorf Safe-Lock tubes.
 crItIcal step Ensure that the volume of stock solution is sufficient for each experiment.

25| Carefully mark all aliquots with the drug name, stock concentration and preparation date, and then store them at the  
appropriate temperature until use. For drugs that have a short-lived stability in solution, prepare stock solutions directly 
before use (according to Steps 22 and 23).
 crItIcal step Carefully monitor the date of drug stock preparation and storage temperature.
 pause poInt Stock solutions can be stored according to the manufacturer’s recommendations.

cell viability assay ● tIMInG 2  +  72 h for incubation time per iteration
26| Prewarm supplemented cell culture medium and PBS in a water bath at 37 °C for 10 min.

27| Prepare the test solutions by adding the desired drug at the appropriate concentration to the prewarmed supplemented 
cell culture medium.

28| Place the seeded 96-well cell culture plate from Step 21 in the laminar flow cabinet.

29| Aspirate and discard the cell culture medium and wash the cells once with prewarmed PBS.

30| Administer 50 µl of prepared test solution per well.
 crItIcal step Each test plate should contain control wells, and each condition should be performed at least in triplicate.

31| Incubate 96-well cell culture plates at 37 °C for 72 h.

32| After 72 h, remove the plates from the incubator and allow the contents to equilibrate to room temperature for 30 min.
 crItIcal step Before starting the readout, visualize the cells under an inverted microscope. Check for drug precipitates 
and monitor the morphology, as well as the confluency, of the cells in the control wells.

33| In the meantime, prepare (refer to Reagent Setup) and add 50 µl of CTG solution to each well using a multichannel 
pipette in order to lyse the cells. Cover the plate with aluminum foil to protect the well contents from light.

34| Mix the plate contents for 2 min on an orbital shaker to allow completion of cell lysis.

35| Store the plate at room temperature for 10 min to allow the luminescent signal to stabilize.
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36| Transfer the liquid to the opaque-walled 96-well cell culture plates, while preventing the introduction of bubbles to the 
solution by reverse pipetting.
 crItIcal step If the cells are already cultured in opaque-walled 96-well cell culture plates, this step is not necessary.

37| Record the luminescence signal using a luminometer. The manufacturer provides the instrument settings. It is  
recommended to use an exposure time of 0.25–1 s per well.
 crItIcal step Limit light exposure, as the CTG reagents are light-sensitive.
 crItIcal step The plate should be compatible with the luminometer used.
 pause poInt Data can be stored and analyzed at a later time point.

Dose-escalation study of individual compounds ● tIMInG 72 h per experiment
38| Prewarm the supplemented cell culture medium at 37 °C for 10 min.

39| Prepare and label sterile Eppendorf Safe-Lock tubes.

40| Prepare serial drug dilutions from the stock, as prepared in Steps 22–25.
 crItIcal step The range of dilutions tested should cover the maximal possible dose range of the cell response. Note that 
all drugs will have different response profiles.
 crItIcal step Carefully monitor the stability of the prepared solutions before adding to the cultures.

41| Perform a new cell viability assay using the seeded 96-well cell culture plate (as prepared in Step 21) based on the cell 
viability assay procedure (Steps 26–37).

42| Repeat the cell viability assays until a dose-response curve is generated for each compound covering its entire range of 
activity (reaching maximal inhibitory activity).
 crItIcal step A minimum of two independent experiments (each in triplicate) per data point is recommended. The s.d. of 
data from independent experiments should not be >5%; otherwise, additional experiments should be performed.
? trouBlesHootInG
 pause poInt Data can be stored and analyzed at a later time point.

Drug-dose selection and coding ● tIMInG 1 h
43| On the basis of the dose-response curves generated in Steps 38–42, select the number of drug doses and drug  
concentrations for the required dose efficacy for each compound. Use the dose-response curves generated for each compound 
in the selection. For an initial screening, test three or more dosage levels (including the dose of zero drug being added)  
for each compound, as it allows for both the linear contributions (owing to single drug-dose change) and the synergistic  
contributions (owing to drug-drug interactions) of the drugs to be studied. More dosage levels may be considered if the 
drugs show a serrated dose-effect curve.
 pause poInt Data can be stored and analyzed at a later time point.

Initiation of the De search ● tIMInG 5 min
44| Download the MATLAB file called ‘RandomGen_Initiation’ (supplementary software) and open it in MATLAB.

45| Define the variables D (number of drugs in the optimization), N (number of drug combinations tested per iteration) and 
C (the number of drug doses tested per drug).
 crItIcal step In the file provided here, the drug doses will be generated as coded doses (0, 1, 2 and so on). For pur-
poses of the MATLAB code provided, drug doses should always be introduced as coded values.
 crItIcal step The MATLAB code provided may need to be adapted in the following manner depending on the optimiza-
tion goal and parameters. These manipulations can be performed in the ‘.m’ file provided in the supplementary software. 
The file can be opened in the file editor by double-clicking on the ‘.m’ file from the ‘Current Folder’ (generally located above 
the command window). Lines of the code can be deactivated by inserting a ‘%’ at the beginning of each line (nonactive lines 
of code will appear in green text). First, lines 77–83 should be activated if the optimization goal is to maximize the value of 
the output response; alternatively, lines 87–93 should be activated if the optimization goal is to minimize the value of the 
output response (the default setting is for the output value to be maximized). Second, the code is currently written for three 
coded drug doses; if more or fewer doses are included, the code lines 176–186 must be adapted accordingly. Third, data 
labels for the results can be adapted in lines 192 and 193.
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46| Run the MATLAB code (press F5 on the keyboard or Debug and select ‘Run RandomGen_Initiation.m’).

47| Results will appear in the command window. The values of the drug combinations to be tested in the first iteration  
will appear as a matrix called P with the dimension [D × N], such that each column represents a particular drug combination 
(1 through N) composed of D drugs whose doses are indicated by the coded values in each row.
 pause poInt Data can be stored and analyzed at a later time point.

preparation of drug combinations ● tIMInG 2–4 h
48| Prewarm supplemented cell culture medium at 37 °C for 10 min.

49| Prepare and label sterile Eppendorf Safe-Lock tubes.

50| Starting from stock solutions prepared in Step 25 or freshly prepared stocks, prepare desired drug concentrations.
 crItIcal step Each condition and each plate should be properly controlled.

51| Perform a new cell viability assay using the seeded 96-well cell culture plates (as prepared in Step 21) based on the cell 
viability assay procedure (Steps 26–37).

52| Determine the cell viability effect for each drug combination and use it as an input for the DE algorithm in Step 56.
 crItIcal step A minimum of two independent experiments, each in triplicate, per data point is recommended. The s.d. 
between data from independent experiments should not be >5% (compared between experiments as a percentage of the 
control wells); otherwise, additional experiments should be performed.
 pause poInt Data can be stored and analyzed at a later time point.

Implementation of De algorithm to design combination candidates ● tIMInG 1 h
53| Download the MATLAB file called ‘DifferentialEvolution’ from supplementary software and open in MATLAB.

54| Define the variables D (number of drugs in the optimization) and N (number of drug combinations tested per iteration).
 crItIcal step N indicates the number of drug combinations to be tested per iteration of the FSC. This value is dependent 
on the size of the search space, and it can be determined on the basis of the number of dimensions (D) in the optimization.  
In our situation, each drug represents a unique dimension. Studies indicate that values of N from 3×D to 8×D can be effective42.
 crItIcal step ‘F’ and ‘c’ (Fig. 2) are constants, which are set at 0.5. Adapting these constants affect the rate and  
efficacy of the algorithm’s convergence.

55| Run the MATLAB code (press F5 on the keyboard or Debug and select ‘Run DifferentialEvolution.m’).

56| Introduce the following data in the command window: P (the [D × N] matrix from the previous iteration, Step 47 in  
first iteration or Step 57 in later iterations), OutputP (a [1 × N] vector containing the in vitro output response corresponding 
to each of the drug combinations provided in matrix P), T (the [D × N] matrix from the current iteration; this contains only 
zeros in the first iteration or from Step 57 in later iterations), OutputT (a [1 × N] vector containing the output response  
corresponding to each of the drug combinations provided in matrix T, Step 52).
 crItIcal step An error comment appears in the command window if the dimension of the data introduced  
does not match.

57| See the results in the command window as two matrices with the dimensions [D × N], P and T, where the matrix P  
represents the new population of drug combinations and T represents the new trial drug combinations to be tested in the 
subsequent iteration.

58| Repeat Steps 48–57 until the stopping criterion is reached (refer to ‘Stochastic search algorithm’ in the INTRODUCTION).
 crItIcal step If the first optimization does not result in the identification of a desirable drug combination, or if it is 
desired to identify a combination containing fewer compounds (i.e., to eliminate compounds from the optimization), a data 
modeling step followed by further search refinement steps can be implemented (Box 1; see also supplementary tutorial  
and supplementary software).
? trouBlesHootInG
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? trouBlesHootInG
Troubleshooting advice can be found in table 1.

● tIMInG
Steps 1–11, cell culture and passaging: 20–30 min
Steps 12–21, cell seeding in a 96-well plate: 40 min
Steps 22–25, drug stock and aliquot preparation: 10 min per drug
Steps 26–37, cell viability assay: 2  +  72 h for incubation time per iteration
Steps 38–42, dose-escalation study of individual compounds: 72 h per experiment
Step 43, drug-dose selection and coding: 1 h
Steps 44–47, initiation of the DE search: 5 min
Steps 48–52, preparation of drug combinations: 2–4 h
Steps 53–58, implementation of DE algorithm to design combination candidates: 1 h
Box 1, data modeling and analysis: 2 h

antIcIpateD results
The FSC procedure discovers efficient drug combinations for the treatment of disease. The major advantage of the presented 
method is the large reduction in the required experimental effort as compared with testing all possible combinations. FSC 
not only allows for the identification of optimal combinations, but it also gives insight into which drugs synergize and which 
ones display antagonistic activities. This provides information on the working mechanisms of the used drugs. Ultimately, FSC 
facilitates the selection of mixture components and their dose ratios.

A major finding in all of the experimental cases was that the response surfaces of the drug combinations were smooth  
near the optimal response14 (Fig. 4). This is considered a benefit, as this means that small changes in the dose of drugs  
are not expected to result in major changes in the response of the system. This finding is believed to be related to the fact 
that complex and interconnected biological systems have redundant or compensatory signaling pathways leading to the 
maintenance of cellular response to external stimuli. Smooth response surfaces near the optimum are expected to have a 
major impact on translating the in vitro results to in vivo application. Indeed, the translation of optimal angiostatic drug 
combinations for the treatment of cancer to application in preclinical models was recently shown to be successful in a  
mouse tumor model14. It is expected that translation into clinical studies in cancer patients is therefore feasible as well.

taBle 1 | Troubleshooting table.

step problem possible reason solution

6 Cells do not detach Old trypsin solution; cells were not  
left long enough in solution

Open a fresh trypsin bottle; return the cells 
to the incubator to allow a longer time for 
detachment

9 Cell clumps do not  
disaggregate

Cells are not fully separated Mix by gently pipetting

11 Cells reach full confluency Cells are growing faster than expected Passage cells at a lower density

23 Drug does not fully dissolve 
in solvent

Stock concentration is too high;  
incorrect solvent or preparation  
procedure

Adapt the stock concentration (check with 
the manufacturer to determine the maximum 
solubility in solvent)

42 Results between experiments 
are not reproducible

Problem with drug stock solutions;  
cells are not being cultured in a  
repeatable way

Check all drug stock solutions for precipitants 
and dates of preparation, and prepare new 
stock solutions if needed. Monitor both the 
activity of control cells and the doubling rate; 
check for cell infections

58 The algorithm does not 
optimize (output does not 
improve over iterations)

Experimental error is too large; original 
selection of drugs for the optimizations 
was inappropriate

Repeat experiments; select new drugs

Box 1, step 4 Error message appears in  
the command window

The number of drug combinations and 
combinations outputs do not match

Run the program again and input data again
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The regression analysis approach includes second-order terms, allowing for some incorporation of nonlinearity in the 
system analysis. In our experience, this method has been sufficient to accurately describe cell behavior in response to drug 
combinations43. Moreover, others have also described the contribution of higher-order terms (third order and above) as 
being minimal (representing  < 3% of the data variation)25. Various other groups have also described the response surface 
of cells to drug combinations as “highly nonlinear”28,30 where “sometimes nonlinear curve fitting is desirable or actually 
required”44—for example, the in use of a polynomial fit for the response to a combination of anesthetic drug interactions45.

An example data set is provided in the supplementary Data. The raw data provided in the first tab of the Excel file  
represent the results of in vitro cell viability inhibition assays performed in the ECRF24 cell line, as described in the protocol 
above. The drug combinations tested were generated by applying the DE algorithm over multiple iterations while testing 
four different compounds at the five doses indicated (in supplementary Data, referred to in coded doses as 0–4). The drug 
combinations and their efficacy are analyzed based on regression analysis using the MATLAB code provided. The results of the 
regression analysis can be found in the second tab labeled ‘Model’. The regression coefficient generated in MATLAB is visual-
ized in a bar graph to facilitate the interpretation of drug contributions. Regression plots for residual analysis are provided 
(supplementary Data).

It should be noted that in order to limit the search space, our protocol omits the variable timing required for the  
application of individual drugs. This implies that there may well be, in some cases, a substantial set of possibilities for  
further future improvement of the best-optimized drug mixtures that we find at present.

Finally, it is expected that the use of low-dose combination therapies—owing to the synergistic effects of drugs and  
the related reduction of doses—can enhance therapeutic efficacy, while reducing toxic side effects, which may also reduce 
acquired resistance to the therapy. A future goal of this approach would be the development of personalized treatment  
approaches, which would be most relevant for the treatment of cancer. The large genetic variation among patients demands 
the development of patient-tailored medicine. In addition, the rapid genetic drift of tumor cells during the course of  
therapy can also be addressed by renewed identification of optimal treatment strategies throughout the duration of therapy.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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