Lawrence Berkeley National Laboratory
Recent Work

Title
Single ion impact effects on semiconductor and insulator surfaces induced by slow, very highly charged ions

Permalink
https://escholarship.org/uc/item/29t0p0h0

Authors
Schenkel, T.
Hamza, A.V.
Newman, M.W.
et al.

Publication Date
2001-04-23
Single ion impact effects on semiconductor and insulator surfaces induced by slow, very highly charged ions

T. Schenkel1, A. V. Hamza2, M. W. Newman2, J. W. McDonald2, D. H. Schneider2, A. Kraemer1, and A. Persaud2

1Lawrence Berkeley National Laboratory, Berkeley, CA 94720
2Lawrence Livermore National Laboratory, Livermore, CA 945550

The interaction of slow (<5 keV/u), very highly charged ions, such as Xe44+ and Au69+, with solid surfaces is dominated by the deposition of potential energy, rather than the kinetic energy of the ions \cite{1, 2}. For Au69+, the sum of the binding energies of the electrons that were removed when forming the ion is 170 keV. This energy is deposited into a nanometer scale area within about 10 fs when an Au69+ ion impinges on a surface \cite{3}. In our presentation we will report on the characterization of undoped silicon after exposure to low doses ($\sim 10^{11}$ cm-2) slow, highly charged ions. We recently observed strong photoluminescence at ~ 565 nm from irradiated silicon surfaces \cite{4}. Possible microscopic mechanisms for this effect will be discussed. We will compare atomic force microscopy data from surface defects induced by single ion impacts on mica, self-assembled monolayers and silicon in light of model descriptions of the materials response to the impact of slow, highly charged ions.

Acknowledgements:
This work is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. Part of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract No. W-7405-ENG-48.

References: