Globalization and the Sustainability of Large Current Account Imbalances: Size Matters

Joshua Aizenman and Yi Sun
UCSC & NBER; UCSC

Abstract

This paper evaluates the sustainability of large current account imbalances in the era when the Chinese GDP growth rate and current account/GDP exceed 10%. We investigate the size distribution and the durability of current account deficits during 1966-2005, and report the results of a simulation that relies on the adding-up property of global current account balances. Excluding the US, we find that size does matter: the length of current account deficit spells is negatively related to the relative size of the countries’ GDP. We conclude that the continuation of the fast growth rate of China, while maintaining its large current account/GDP surpluses, would be constrained by the limited sustainability of the larger current account deficits/GDP of courtiers that grow at a much slower rate. Consequently, short of the emergence of a new “demander of last resort,” the Chinese growth path would be challenged by its own success.

Joshua Aizenman
Economics E2
UCSC
Santa Cruz
CA, 95064
jaizen@ucsc.edu

Yi Sun
Economics E2
UCSC
Santa Cruz
CA, 95064
ysun@ucsc.edu

JEL classification: F15, F21, F32, F43
Keywords: current account imbalances, growth, size, adding-up property
1. **Introduction and overview**

The growing globalization of financial markets has led to a burgeoning debate about the sustainability and the desirability of global imbalances. While the rush to reform in the early 1990s was propagated by the hope that external financing would alleviate the scarcity of saving in developing countries, the record of the last two decades indicates that this has not been the case. Financial globalization has led to deeper financial diversification, a growing importance of foreign direct investment, but to no significant increase in the net resources available to finance the growth of developing countries. Intriguingly, faster growing emerging markets, on average, more than self-financed their growth, running overtime significant current account surpluses.\(^1\) Prime examples of this trend are the East Asian emerging markets, where China accelerated its GDP growth from about 7% at the end of the 1990s, to more than 10% in recent years, increasing its current account/GDP from about 2% to about 10% during that period, hoarding most of the recent surpluses in the form of international reserves. The mirror image of the growing current account surplus of China has been the growing current account deficit of the US, approaching about 7% of the US GDP in 2005.

The above developments have led to contentious discussions regarding the desirability and durability of these trends. The rosy view has been that these patterns reflect the superior capacity of the US to provide financial intermediation relative to that of emerging markets, and the viability of productive investment opportunities in the US at times when its saving rate has not matched its investment demand. In these circumstances, the high saving rates of China, exceeding its investment rates, conveniently finance the US excess demand for funds.\(^2\) A Panglossian view linked the Chinese current account surplus and its hoarding of international reserves to China’s desire to promote export-led growth by undervaluation, where international reserves serve as collateral that secures the continuation of FDI inflows. Accordingly, these imbalances reflect the differential comparative advantage of the parties involved, and are consistent with an efficient allocation of global savings, where the

\(^1\) See Aizenman, Brian and Radziwill (2007); Prasad, Rajan, and Subramanian (2007), and Gourinchas and Jeanne (2006) for discussions on the association between growth and current account patterns.

globalization of markets generates mutual gains for China, the US, and other involved parties.

A less buoyant interpretation pointed out that the East Asian saving glut has been partially driven by “investment draught” – the sizable drop of investment there in the aftermath of the East Asian Crisis of 1997-8. While these events allowed the US to finance its growing current account deficit at a relatively low cost, it put in motion forces that overtime could destabilize the global economy, especially if the US would overplay its ability to access cheap global credit. Accordingly, the sustainability of the recent global imbalances is conditional on the willingness of the US to be the “demander of last resort” - needed to accommodate the mercantilist drive of China, as well as the willingness of East Asia to hoard international reserves and to maintain large net saving positions.

The purpose of our paper is to point out that, in evaluating the sustainability of recent trends, size matters. A small country embarking on an export led growth, like China in 1980, can sustain it without imposing negative ripple effects as long as its relative size remains small. However, the long run success of the Chinese growth strategy put in motion forces that would curtail the sustainability of a high GDP growth rate and a large current account surplus path. By now, China has reached a critical mass of “an elephant running in a China store.” The continuation of the fast growth rate of China, while maintaining large current account/GDP surpluses, would be conditional on the sustainability of larger current account deficit/GDP of countries that grow at a much slower rate. We illustrate this point by investigating the size distribution and the durability of current account deficits, and by a simulation that relies on the adding-up property of current account balances, which, up to statistical discrepancies, should sum-up to zero. We find that, with the exception of the US, the duration of spells of current account deficits depend negatively on the relative size of a country, as measured by its GDP/World GDP. The simulation suggests that the continuation of the present path of the Chinese GDP growth, exceeding 10% a year while sustaining a current account/GDP of 10%, would require large increases in the current account/GDP of large players, like the US.

The above suggests that, short of the emergence of a new “demander of last resort,” one would expect the unwinding of global imbalances in the coming years. This follows the observation that the US is already facing the “stabilization blues.” The housing market weaknesses represent only one...

indicator that, in due course, will reduce consumption and increase saving, curtailing US current account
deficits. Some of the adjustment has started: the current account deficit of the US peaked at about 7% in
the last quarter of 2005, approaching now about 5%. The unwinding of global imbalances may be
facilitated by a gradual shift of China from export led growth, toward a balanced growth of internal
demand, a strategy that may be consistent with the continuation of Chinese employment and GDP
growth [see Feenstra and Hong (2007)]. The unwinding of the current account deficit of the US, the
growing pressure from Europe and the US regarding the Renminbi appreciation, and the greater tacit
protection from the EU and the US may provide a further impetus for Asian countries to switch towards
domestic demand policies.

2. Implication of global budget constraints

A fundamental consequence of the global budget constraint is that, up to statistical discrepancies, the
sum of all current account surpluses \([Cu.Ac_i] \) in a common currency adds up to zero:

\[
\sum_i Cu.Ac_i = 0
\]

This adding up property may also be expressed as a weighted average of current account/GDP ratios --
the current account/GDP of country \(i \) \([Cu.Ac_i / GDP_i] \) weighted by the global share of the GDP
of country \(i \) \((s_i = GDP_i / \sum_j GDP_j) \) should add up to zero, where all variables are measured in terms of
common currency:

\[
\sum_i s_i \frac{Cu.Ac_i}{GDP_i} = 0; \quad s_i = GDP_i / \sum_j GDP_j.
\]

This adding up condition has an important implication. Suppose that China would keep its high GDP
growth rate of 10%, while maintaining a current account surplus of 10% for the next twenty years, while
all GDP of all the other countries’ \([AOC] \) grow at their average growth rate during 1990-2005, at about

5 The speed of this adjustment depends on the lag with which consumers are internalizing changes in their house
equity and in their financial portfolio valuation. The growing fiscal uncertainty in the US and the declining
appetite for US bonds by foreign Central Banks suggests the continuation of the weak dollar until the resolution
of the underlying uncertainties. The sub prime crisis also suggests that the alleged superior intermediation
capacity of the US overstated the evidence.
The global budget constraint implies that this configuration is sustainable only if AOC would increase overtime their current account deficit as needed, matching the growing global share of China’s current account surplus. Specifically, denote the AOC and Chinese GDP at time zero by $GDP_{AOC,0}$ and $GDP_{C,0}$, respectively, and the current account/GDP ratio of AOC and China at time t by $cu_{AOC,t}$, $cu_{C,t}$, respectively. Under the above assumptions [Chinese and AOC GDP’s growth rates of 10% and 3%, respectively, China will maintain current account surplus/GDP of 10%], (1) implies that

$$(2) \quad 0.1GDP_{C,0} \exp(0.1t) + cu_{AOC,t} GDP_{AOC,0} \exp(0.03t) = 0$$

Hence,

$$(3) \quad cu_{AOC,t} = -0.1 \exp(0.07t) \frac{GDP_{C,0}}{GDP_{AOC,0}}.$$

The current account deficit/GDP of AOC would increase at a rate equal to the difference of China’s and AOC’s GDP growth rates (0.1 - 0.03=0.07), and is proportionate to the Chinese current account surplus/GDP ratio (0.1) times the initial relative scale of Chinese to AOC’s GDP ($GDP_{C,0} / GDP_{AOC,0}$).

Figure 1 projects the future current account deficit/GDP implied by equation (3) under several scenarios regarding the behavior of AOC. The lowest curve corresponds to the case where, with the exception of China, all countries will share equally the burden of the adjustment, hence $GDP_{AOC,0} / GDP_{WORLD,0}$ is about 0.95 [corresponding to the global GDP share of AOC in 2006, measured in current US dollar]. In this scenario, the current account deficit/GDP of AOCs will double in ten years, from about 0.55% to about 1.1%.

The resultant scenario, however, depends crucially on the relative size of the block of AOC. To grasp the issues at hand, Table 1 summarizes the average patterns of current account balances across countries during 1990-2005. Note that about half of the global GDP is produced by countries that run average current account deficits exceeding 0.5% during the last fifteen years. We presume that countries that run current account surpluses or small deficits (below 0.5% of their GDP) for prolonged

6 The GDP growth rates reported in the paper are in constant 2000 US$.

7 Interestingly, less than a quarter of all the countries run on average current account surpluses, yet they accounted for more than 40% of the global GDP. The combined GDP share of the countries that run an average current account deficit exceeding 2% was about 40% of the global GDP, and their growth rate about 3%.
periods do it by choice. Prolonged current account surpluses may reflect a social contract that opposes significant net imports, or supports net export positions. In these circumstances, the adjustment to the future Chinese current account surplus would be carried by countries whose combined global GDP share is about 0.5. Specifically, note that a generalization of (3) for the case of a large number of countries is

\[(4) \quad 0.1GDP_{C,0} \exp(0.1t) + \sum_{i \in C} c_{i,j} GDP_{i,0} \exp(g_t) = 0; \]

where \(g_i \) is the GDP growth rate of country \(i \). Equation (4) implies that, as long as the countries that run current account surpluses are not switching to running deficits, aggregating all the countries that run current account deficits into one block would understate the needed adjustment:

\[(4') \quad 0.1GDP_{C,0} \exp(0.1t) + \sum_{i \in C, c_i < 0} c_{i,j} GDP_{i,0} \exp(g_t) < 0. \]

Table 1 indicates that the average growth rate of the block of countries running current account deficits in 1990-2005 was about 3%, thus

\[(5) \quad \sum_{i \in C, c_i < 0} c_{i,j} \tilde{s}_{i,0} < -0.1 \exp(0.07t) \frac{GDP_{C,0}}{\sum_{i \in C, c_i < 0} GDP_{i,0}}, \]

where \(\tilde{s}_{i,0} = \frac{GDP_{i,0}}{\sum_{i \in C, c_i < 0} GDP_{i,0}} \) is the GDP share of country \(i \) in the block of countries that run current account deficits, hence \(\sum_{i \in C, c_i < 0} \tilde{s}_{i,0} = 1 \). Denoting the block of AOC that run deficits by AOCD,

and \(\sum_{i \in C, c_i < 0} c_{i,j} \tilde{s}_{i,0} \) by \(cu_{AOCD,t} \), we infer that

\[(6) \quad cu_{AOCD,t} < -0.1 \exp(0.07t) \frac{GDP_{C,0}}{GDP_{AOCD,0}} \frac{GDP_{AOCD,0}}{GDP_{AOCD,0}} \approx -0.2 \exp(0.07t) \frac{GDP_{C,0}}{GDP_{AOCD,0}} \]
The case where the current account adjustment is done by the AOCD block is portrayed in Figure 1 by the bold curve, which understates the needed adjustment of the deficit block. To start, the average current account/GDP deficit of the AOC block is about 1.1% [where the block is defined by the countries that run prolonged current account deficits, producing about half of the initial global GDP]. Accommodating Chinese GDP growth and its current account surpluses of 10% would imply that the current account deficit/GDP of the adjusting block will double within ten years, to about 2.2%. Yet, as Table 1 illustrates, the GDP share of the countries that run current account/GDP deficits above 2% during the last fifteen years was about 0.38, well below the assumed share of 0.5. If the bulk of the needed adjustment will be carried by this smaller block, it would imply that their current account deficit/GDP would approach 3% within ten years, as is portrayed by the top curve in Figure 1.

To get further insight about key players, we focus now on the distribution of the average current account/World GDP, dubbed “cursize,” of 151 countries during 1990-2005. Figure 2 provides the histogram of “cursize.” Closer inspection of the histogram indicates pronounced asymmetry in the tails of the size distribution. There are only six countries in the sample whose average current account deficit exceeded 0.025% of the global GDP (US, UK, Mexico, Australia, Spain and Brazil). Out of these countries, the US was the dominant “spender of last resort,” being the only country whose cursize approached -1% of the global GDP (-0.86% to be precise). The US current account deficit/World GDP dwarfed the deficits of each of the other 5 countries in the group by a factor exceeding 10, and the sum of the current account deficits/World GDP of the UK, Mexico, Australia, Spain and Brazil was about third of the US (-0.26% versus -0.86%). For more than half of the sample, 80 countries, their average current account deficit/World GDP was smaller than 0.0025%. The combined current account deficit of all these countries was about 0.06%, less than tenth of the US average current account deficit/World GDP.

On the flip side of the global current account balances, there were 10 countries whose average current account surplus exceeded 0.025% of the global GDP. Japan was the only country whose relative current account surplus approached 0.5% of the global GDP (it was 0.4%), followed by China, with a relative current account surplus of about fifth of Japan’s (0.085%). These calculations, however, are backward-looking, and thereby they tend to understate the future importance of China. These considerations also suggest that the continuation of the recent patterns of the Chinese fast GDP growth

8 The combined sum of the other 8 significant surplus countries was well below that of Japan, totaling 0.35%.
while running a large current account/GDP surplus depends critically on the willingness of some large countries to increase their current account deficit/GDP at a dramatic rate. Figure 3a plots the association between the average annual current account deficit/ WGDP (avgCAs) and the cumulative current account/WGDP during each spell of deficits, Cum.CAs (= avgCAs*length of the deficit spell). Figure 3b plots the association between avgCA and the sum of Cum.CAs. These graphs are based on the data of all current account deficit spells from our sample, 1966-2005 (429 episodes). Note the unique role of the US -- most of the points associated with sizable cumulative current account deficits, exceeding 0.1% of World GDP, were run by the US, accounting for more than half of the global cumulative current account deficits. To gain further insight, we turn now to an empirical analysis of the factors that determine the duration of sizable current account deficits.

2.1 Duration analysis of current account deficits

To start, we assembled the data about the duration of current account deficits of all countries, subject to data availability during 1966-2005 (see data appendix for more details about the sample). In order to verify the degree to which size matters, we constructed a variable “Avg.GDPs,” measuring the average ratio of a country’s GDP to world GDP (WGDP) during the current account deficit episode. Next, we run life survival regressions (used to account for censoring issues) explaining the duration of current account deficits on the relative size of a country. The results are reported in Table 2. Intriguingly, we found that there is a robust negative association between size and the duration of deficits for all countries excluding the US, but the association weakens considerably for all countries including the US. These results continue to hold, controlling for the countries’ net external asset position/GDP in the starting year of a current account episode [Ini.EWN], and the average growth rate of a country’s real GDP (Avg.GDPg). Interestingly, a higher net external asset position/GDP is associated with shorter spells of current account deficits, possibly reflecting self insurance and a more conservative management of demand policies.

2.2 Current account size and GDP growth

Table 3 reports the association between the current account/GDP and economic growth. Excluding 5 episodes of small countries experiencing collapsing GDP growth (below – 50%) or very large current account deficits (exceeding – 70%), we find a robust positive association between
economic growth and current account/GDP. Table 4 reports the association between economic growth and current account/GDP, reporting a similar positive association. These tables validate the finding that faster growth is associated, on average, with larger current account/GDP. The tables also suggest the possibility of a two-way feedback between growth and the current account. As we are not dealing with the direction of causality, we focus on the positive implications of these results regarding the sustainability of Chinese high growth while maintaining a large current account surplus. These findings reinforce the challenge posed by the growing current account surplus run by high growing countries, as they would require overtime larger current account/GDP deficits run by slower growing countries, deficits that tend to be unattainable for most. Thus, short of the emergence of new “demander of last resort” replacing the US, the Chinese growth path would be challenged by the limited appetite for prolonged current account deficits of most countries.

3. **Concluding remarks**

The results reported in the paper are consistent with the notion that, with the exception of the US, larger countries run shorter spells of current account deficits. It suggests that even after the collapse of the Bretton Woods system, the U.S. enjoyed global economic hegemony, enabling it to run large and long spells of current account deficits. Yet, as was frequently suggested by critics of the US policy in recent years, the gains from economic hegemony would be eroded if the leading country overplays its privileged position. Arguably, this explained the collapse of the Bretton Woods system, and may explain the future unwinding of the recent patterns of global imbalances.

9 The exclusion of small outliers is done because these countries are too small to impact the path of global imbalances, which is the focus of our interest. Yet, the pathological patterns of these outliers, some driven by wars, are strong enough to impact the significance of some of the coefficients in our regressions.
References

Figure 1

Projected current account/GDP of AOCs.

Plotted for the case where $cu_{C} = 0.1; \ d \log GDP_{e,C} / dt = 0.1; \ d \log GDP_{AOC_{j}} / dt = 0.03$. The three curves correspond to different assumptions about the relative size of the block of AOC that run current account deficits, $s_{AOC} = 0.95, 0.5$ and 0.38 from the bottom to the top curve.

Figure 2

Cross country patterns of average current account/ World GDP, 1990-2005

The sample: 151 countries that have at least 9 years data on their cursize during 1990-2005.
Figure 3b
The association between avg annual CA deficit/annual WGDP (avgCAs) and cumulative AvgCAs (Cum.CAs=avgCAs*length). The graphs are based on data of all deficit episodes from our sample, 1966-2005, subject to data availability (429 episodes).
Figure 4
The association between relative GDP size and the duration of current account deficits
Source: all current account deficit episodes during 1966-2005 in WDI data.
Table 1
Global Patterns of the average Current account/GDP, GDP growth and relative GDP ratios, 1990-2005
[145 countries, covering 96% of the global GDP]

<table>
<thead>
<tr>
<th>Current Account group (%GDP)</th>
<th># of countries in sample</th>
<th>Cumulative GDP size (% 90-05 WGDP)</th>
<th>Weighted average GDP Growth Rate</th>
<th>Cumulative GDP size (% 2006 WGDP)</th>
<th>Cumulative GDP size (2006 US$)</th>
</tr>
</thead>
<tbody>
<tr>
<td><-5%</td>
<td>48</td>
<td>1.112%</td>
<td>2.029%</td>
<td>1.120%</td>
<td>7.20404E+11</td>
</tr>
<tr>
<td><-3%</td>
<td>76</td>
<td>5.676%</td>
<td>2.872%</td>
<td>5.802%</td>
<td>3.32208E+12</td>
</tr>
<tr>
<td><-2.5%</td>
<td>82</td>
<td>37.999%</td>
<td>2.971%</td>
<td>38.386%</td>
<td>1.81071E+13</td>
</tr>
<tr>
<td><-2%</td>
<td>89</td>
<td>38.716%</td>
<td>2.981%</td>
<td>39.193%</td>
<td>1.85331E+13</td>
</tr>
<tr>
<td><-1.5%</td>
<td>96</td>
<td>44.527%</td>
<td>2.951%</td>
<td>44.993%</td>
<td>2.16495E+13</td>
</tr>
<tr>
<td><-1%</td>
<td>100</td>
<td>47.546%</td>
<td>2.933%</td>
<td>47.583%</td>
<td>2.30405E+13</td>
</tr>
<tr>
<td><-0.5%</td>
<td>107</td>
<td>50.344%</td>
<td>3.038%</td>
<td>50.872%</td>
<td>2.44019E+13</td>
</tr>
<tr>
<td><0%</td>
<td>111</td>
<td>53.116%</td>
<td>3.026%</td>
<td>53.693%</td>
<td>2.5973E+13</td>
</tr>
<tr>
<td>>0%</td>
<td>34</td>
<td>43.042%</td>
<td>2.439%</td>
<td>40.919%</td>
<td>1.97033E+13</td>
</tr>
<tr>
<td>All</td>
<td>145</td>
<td>96.158%</td>
<td>2.763%</td>
<td>94.612%</td>
<td>4.56763E+13</td>
</tr>
</tbody>
</table>

Data source: WDI, include countries that have data more than 10 years.
Table 2 Regression analysis of current account deficit duration and country size

<table>
<thead>
<tr>
<th>Parameter</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>2.64***</td>
<td>2.69***</td>
<td>2.35***</td>
<td>2.42***</td>
<td>2.79***</td>
<td>2.80***</td>
</tr>
<tr>
<td></td>
<td>(0.08)</td>
<td>(0.08)</td>
<td>(0.13)</td>
<td>(0.14)</td>
<td>(0.10)</td>
<td>(0.10)</td>
</tr>
<tr>
<td>avgGDPs</td>
<td>-3.01*</td>
<td>-16.45***</td>
<td>-2.01</td>
<td>-13.27***</td>
<td>0.08</td>
<td>-10.55*</td>
</tr>
<tr>
<td></td>
<td>(1.74)</td>
<td>(4.31)</td>
<td>(1.78)</td>
<td>(4.63)</td>
<td>(2.13)</td>
<td>(5.49)</td>
</tr>
<tr>
<td>ini.EWN</td>
<td>-0.52***</td>
<td>-0.44**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.20)</td>
<td>(0.20)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>avgGDPg</td>
<td>2.11</td>
<td>2.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.97)</td>
<td>(3.01)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>avgGDPpc</td>
<td></td>
<td></td>
<td>-0.33***</td>
<td>0.27**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.12)</td>
<td>(0.12)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

With US data yes no yes no yes no
No. of Censored 202 201 140 139 200 199
No. of obs 429 425 329 325 425 421
log likelihood -547 -538 -433 -425 -540 -532

* Notes: numbers in parenthesis are standard errors. *, ** and *** stand for 10%, 5% and 1% significant level respectively. The table reports the results of life survival regressions.

Definitions

Avg.GDPs measure the average ratio of country’s GDP to world GDP (WGDP) during the full episode.

\[
\text{avgGDPs} = \frac{\text{average}_{\text{startyear-endyear}} \left\{ \frac{GDP_i, t}{WGDP_t} \right\}}{}
\]

Avg.GDPg measure the average growth rate of country’s real GDP (constant 2000 US$) during the episode. Where GDP growth rate is measured by ln(GDP_{i+1})-ln(GDP_i).

Ini.EWN gives the EWN position (to its GDP) in the starting year of the episode.

Avg.GDPpc measure the average level of per capita GDP (unit in 10,000 US$, 2000 constant price).
Table 3 The association between current account and economic growth

<table>
<thead>
<tr>
<th>Dependent Var: CA ratio</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-0.036***</td>
<td>-0.054***</td>
<td>-0.036***</td>
<td>-0.045***</td>
<td>-0.055***</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.003)</td>
<td>(0.002)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>GDP growth rate</td>
<td>0.097**</td>
<td>0.109***</td>
<td>0.094**</td>
<td>0.074**</td>
<td>0.083***</td>
</tr>
<tr>
<td></td>
<td>(0.039)</td>
<td>(0.038)</td>
<td>(0.041)</td>
<td>(0.035)</td>
<td>(0.027)</td>
</tr>
<tr>
<td>GDP per capita</td>
<td>0.030***</td>
<td>0.024***</td>
<td>0.030***</td>
<td>0.032***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.002)</td>
<td></td>
</tr>
</tbody>
</table>

Data start from 1990 1990 1990 1990 1970
has population small countries yes yes yes no yes
has GDP size small countries yes yes no yes yes
of obs 2300 2286 1732 2023 4064
R square 0.0026 0.0951 0.092 0.106 0.0847

Note: 1. Numbers in parenthesis are standard errors in OLS regression. *, ** and *** stand for 10%, 5% and 1% significant level respectively.
2. GDP per capita is measured by 10,000 US dollar (base year=2000)
3. Small countries means population smaller than 0.5 million or GDP size is smaller than 0.01% of WGDP.
4. All regressions exclude 5 outliers associated with small countries, whose current account/GDP was below – 70%, or GDP growth rate was below – 50% (Kuwait 1991, Equatorial Guinea 1995, 1996; Rwanda 1994, and Kiribati 1980)

Table 4 The association between economic growth and current account

<table>
<thead>
<tr>
<th>Dependent Var: GDP growth</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>0.035***</td>
<td>0.036***</td>
<td>0.037***</td>
<td>0.036***</td>
<td>0.036***</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>CA ratio</td>
<td>0.027**</td>
<td>0.033***</td>
<td>0.032**</td>
<td>0.029**</td>
<td>0.029***</td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.012)</td>
<td>(0.014)</td>
<td>(0.014)</td>
<td>(0.009)</td>
</tr>
<tr>
<td>GDP per capita</td>
<td>-0.003**</td>
<td>-0.003***</td>
<td>-0.003***</td>
<td>-0.002**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td></td>
</tr>
</tbody>
</table>

Data start from 1990 1990 1990 1990 1970
has population small countries yes yes yes no yes
has GDP size small countries yes yes no yes yes
of obs 2300 2286 1732 2023 4064
R square 0.0026 0.0048 0.0063 0.0044 0.0029

Note: same as table 3.
Data Appendix

<table>
<thead>
<tr>
<th></th>
<th>All episode</th>
<th>CA deficit episode</th>
<th>CA surplus episode</th>
<th>Countries with avg Cur.size < -0.005%</th>
<th>High income countries ***</th>
<th>Low income countries ***</th>
</tr>
</thead>
<tbody>
<tr>
<td># of countries in sample</td>
<td>175</td>
<td>168</td>
<td>148</td>
<td>22</td>
<td>38</td>
<td>40</td>
</tr>
<tr>
<td># of episode</td>
<td>824</td>
<td>443</td>
<td>381</td>
<td>134</td>
<td>185</td>
<td>160</td>
</tr>
<tr>
<td># of episode be censored</td>
<td>324</td>
<td>211</td>
<td>113</td>
<td>43</td>
<td>42</td>
<td>55</td>
</tr>
<tr>
<td>length of episode</td>
<td>mean</td>
<td>5.154</td>
<td>6.941</td>
<td>3.076</td>
<td>5.341</td>
<td>4.978</td>
</tr>
<tr>
<td></td>
<td>max</td>
<td>33</td>
<td>33</td>
<td>25</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>GDP ratio to WGDP</td>
<td>mean</td>
<td>0.008</td>
<td>0.007</td>
<td>0.009</td>
<td>0.030</td>
<td>0.024</td>
</tr>
<tr>
<td></td>
<td>max</td>
<td>0.305</td>
<td>0.303</td>
<td>0.305</td>
<td>0.305</td>
<td>0.303</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.001</td>
<td>0.000</td>
</tr>
<tr>
<td>avg GDP growth</td>
<td>mean</td>
<td>0.032</td>
<td>0.032</td>
<td>0.031</td>
<td>0.028</td>
<td>0.033</td>
</tr>
<tr>
<td></td>
<td>max</td>
<td>0.302</td>
<td>0.146</td>
<td>0.302</td>
<td>0.089</td>
<td>0.136</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>-0.355</td>
<td>-0.126</td>
<td>-0.355</td>
<td>-0.121</td>
<td>-0.036</td>
</tr>
<tr>
<td>CA ratio to GDP_-i **</td>
<td>mean</td>
<td>-0.014</td>
<td>-0.062</td>
<td>0.043</td>
<td>-0.008</td>
<td>-0.009</td>
</tr>
<tr>
<td></td>
<td>max</td>
<td>0.434</td>
<td>0.000</td>
<td>0.434</td>
<td>0.062</td>
<td>0.384</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>-0.695</td>
<td>-0.695</td>
<td>0.000</td>
<td>-0.071</td>
<td>-0.240</td>
</tr>
<tr>
<td>CA ratio to WGDP</td>
<td>mean</td>
<td>0.0000</td>
<td>-0.0001</td>
<td>0.0001</td>
<td>-0.0002</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td>max</td>
<td>0.0040</td>
<td>0.0000</td>
<td>0.0040</td>
<td>0.0015</td>
<td>0.0040</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>-0.0095</td>
<td>-0.0095</td>
<td>0.0000</td>
<td>-0.0095</td>
<td>-0.0095</td>
</tr>
<tr>
<td>Ini EWN position **</td>
<td>mean</td>
<td>-0.286</td>
<td>-0.277</td>
<td>-0.241</td>
<td>-0.264</td>
<td>0.040</td>
</tr>
<tr>
<td>(net asset/GDP)</td>
<td>max</td>
<td>5.497</td>
<td>5.497</td>
<td>2.829</td>
<td>0.250</td>
<td>5.497</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>-2.922</td>
<td>-2.922</td>
<td>-2.153</td>
<td>-0.875</td>
<td>-1.095</td>
</tr>
<tr>
<td>avg EWN position **</td>
<td>mean</td>
<td>-0.310</td>
<td>-0.371</td>
<td>-0.296</td>
<td>-0.284</td>
<td>0.023</td>
</tr>
<tr>
<td>(net asset/GDP)</td>
<td>max</td>
<td>3.970</td>
<td>3.970</td>
<td>2.007</td>
<td>0.143</td>
<td>3.970</td>
</tr>
<tr>
<td>avg Per capita GDP</td>
<td>mean</td>
<td>0.5215</td>
<td>0.47313</td>
<td>0.5774</td>
<td>0.9244</td>
<td>1.5464</td>
</tr>
<tr>
<td>(10,000 US$)</td>
<td>max</td>
<td>4.482</td>
<td>3.3497</td>
<td>4.482</td>
<td>3.2731</td>
<td>3.3871</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>0.0101</td>
<td>0.0101</td>
<td>0.0109</td>
<td>0.0215</td>
<td>0.2934</td>
</tr>
</tbody>
</table>

Note: * Exclude Kwuit 1991 episode which have value -121.381%
** EWN is the ratio of net external assets relative to GDP
*** Definition of high and low income countries are the same as those in WDI.
Data sources: current account and GDP data are from WDI, EWN data are from Lane and Milesi-Ferretti’s online data on external wealth of nations (http://www.tcd.ie/iiis/pages/people/planedata.php)