Title
B Production at DO

Permalink
https://escholarship.org/uc/item/2c2025wb

Author
Trippe, T.G.

Publication Date
1993-06-01
Physics Division

Presented at the Twenty-Eighth Rencontres de Moriond, QCD and High Energy Hadronic Interactions, Les Arcs, Savoie, France, March 20–27, 1993, and to be published in the Proceedings

B Production at DØ

T.G. Trippe

June 1993
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
B. Production at DØ

T.G. Trippe

Physics Division
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

Presented at the Twenty-Eight Rencontres de Moriond,
QCD and High Energy Hadronic Interactions,
Les Arcs, Savoie, France, March 20–27, 1993,
and to be published in the Proceedings

This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Division of High Energy Physics of the U.S. Department of Energy, under Contract No. DE-AC03-76SF00098, and by the U.S. National Science Foundation under Agreement No. PHY-9015724.
ABSTRACT

The DØ detector is well suited for some aspects of B physics. The muon system is capable of triggering on muons with p_T down to 3 Gev/c, is dense and compact to suppress backgrounds from punchthrough and decay in flight, and covers a large pseudorapidity range $|\eta| < 3.3$. This allows the study of B production in muon and multimuon channels over a wide p_T and η range, which should provide information about gluon densities at small x. The muon inclusive p_T distribution is shown. Dimuon mass and charge correlations are analyzed to separate production and decay processes. B production in the inclusive mode $B \to J/\psi \ X$ as well as J/ψ and Y production are discussed. $B\bar{B}$ mixing is studied using like-sign dimuon events.
1. INTRODUCTION

While the DØ detector was designed primarily to do high \(p_T \) physics, it has some characteristics which allow it to make valuable measurements in low \(p_T \) physics, e.g. in \(B \bar{B} \) mixing, \(B \) production cross sections, and direct \(J/\psi \) and \(\Upsilon \) production. \(B \) production cross sections are of particular interest because next-to-leading order QCD hard scattering cross sections do not appear to fit the CDF bottom quark cross section.\(^1\) Also, data on \(p\bar{p} \rightarrow BX \) from UA1, CDF, and DØ will provide constraints on gluon density at small \(x \).\(^2\) DØ can cover a wide range of \(x \) because of its large \(\eta \) coverage. Preliminary results on \(B\bar{B} \) production and \(B \) mixing are presented.

2. THE DØ DETECTOR

DØ has central and forward tracking but no central magnetic field, so the charges of hadrons and electrons are not known and their energies are only determined by calorimetry, limiting the ability to measure exclusive final states. The muon system\(^3\) has magnetized iron toroids between the first two of three muon drift tube layers, providing a measurement of the muon momentum and sign. The momentum resolution for \(B \) decay muons is dominated by multiple scattering and is \(\Delta p/p = 20\% \) for \(p < 60 \text{ GeV/c} \).

The small size of the central detector, \(r = 75 \text{ cm} \), suppresses \(\pi, K \rightarrow \mu \) background by limiting the decay path. The 13-19 interaction lengths of calorimeter and muon systems suppresses punchthrough, allowing the detection of muons inside jets. Because DØ can identify muons more cleanly than electrons inside jets, can measure muon sign and momentum, and can trigger over a wide range of \(\eta \), \(B \) physics in DØ presently emphasizes muon channels. The muon system can trigger on muons with \(p_T \) down to about 3 GeV/c over a pseudorapidity range \(|\eta| < 3.3 \). This allows the study of muon and multimuon channels over a wide \(p_T \) and \(\eta \) range.

3. SINGLE MUON PRODUCTION

\(B \) production rates are high at the Tevatron; \(\sigma(p\bar{p} \rightarrow b) \sim 50 \mu b \) and \(\sigma(p\bar{p} \rightarrow b \rightarrow \mu) \sim 5 \mu b \) so that at luminosity \(4 \times 10^{30} \text{ cm}^{-2}\text{s}^{-1} \) we expect muons from \(B \) decays at a rate of about 20 Hz compared with the total 2 Hz band width of DØ. Therefore to avoid huge prescales, the trigger strategy for single muons from \(B \) decay must be to trigger on muons only in those kinematic regions which are rich in muons from \(B \) decay compared to background muons. This is done mainly by using a muon \(p_T \) trigger threshold. Background muons from \(\pi \rightarrow \mu \) and \(K \rightarrow \mu \) decay in flight swamp muons from \(B \) decay at low \(p_T \). The crossover where the muons from \(B \) decay exceed this background occurs at about 5 GeV/c \(p_T \). Background muons from charm decay also contribute at low \(p_T \) but are expected to fall below those from \(B \) decay for \(p_T \gtrsim 3 \text{ GeV/c} \). Other significant backgrounds include cosmic ray muons and noise from spray near the beamline. The DØ muon \(p_T \) trigger threshold is about 3 GeV with full efficiency above about 5 GeV/c.
Above 5 GeV/c the geometric acceptance of the muon system, requiring muons to hit three layers, is about 75%. The trigger efficiency for these muons is about 85% at level 1, the hardware trigger level. Central muons ($\theta \sim 90^\circ$) range out due to dE/dx losses before penetrating the muon system if p_T is less than about 4 GeV/c. Forward muons can penetrate the system at lower p_T. For example, at $\theta = 15^\circ$, muons with p_T as low as 2 GeV/c can penetrate the muon system. This means that in the future DØ has the potential to lower it's p_T threshold in the forward regions.

DØ has shown a p_T spectrum for non-isolated muons with $|\eta| < 1$ and $p_T > 7$ GeV/c. The shape of the spectrum was in agreement with lowest order QCD. The muon-jet separation and muon p_T relative to the jet axis were consistent with a sample rich in b decays. More recently DØ has extended its coverage into the forward region with its Small Angle Muon System (SAMUS). Fig. 1 shows the muon p_T spectrum for $2.2 < |\eta| < 3.3$ and $p_T > 2$ GeV/c. These data were from a short test run with integrated luminosity 6 nb$^{-1}$. The CDF data for $1.95 < |\eta| < 2.8$ are also shown. The $b \rightarrow \mu$ curve is from ISAJET with $\sigma(b) = 40 \mu$b. A Monte Carlo estimate of the background from $\pi \rightarrow \mu$ and $K \rightarrow \mu$ decay is also shown. In this η range, the decay/b crossover is at \sim3 GeV/c.

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{dimuon_mass_spectra.png}
\caption{Inclusive muon spectrum in the forward region}
\end{figure}

4. DIMUON PRODUCTION

Drell-Yan production of $\mu\mu$ and direct production of $J/\psi \rightarrow \mu\mu$ and $\Upsilon \rightarrow \mu\mu$ yield muons isolated from jet activity, while dimuons from heavy quark production and muonic decay yield non-isolated muons. Dimuons from $b\bar{b}$ production and semimuonic decays $b \rightarrow \mu^- X$ and $\bar{b} \rightarrow \mu^+ X$ yield opposite-sign non-isolated muons with high dimuon effective mass. $B\bar{B}$ mixing leads to like-sign dimuons with similar characteristics. $B \rightarrow \psi K$ with $\psi \rightarrow \mu^+\mu^-$ leads to opposite-sign dimuons associated with the same jet and with a ψ effective mass. Fig. 2 shows the isolated-dimuon mass spectrum for a sample with an integrated luminosity of 3.5 pb$^{-1}$ and both muons with $p_T > 3$ GeV and $|\eta| < 1$. The muons have a good track fit and vertex projection, cosmic rejection, and calorimeter
energy consistent with 1 MIP. Neither muon has a jet within 0.7 in \(\eta, \phi \) space, where a jet is defined as having \(E_T > 8 \) GeV in a 0.7 cone. The \(J/\psi \) and \(\Upsilon \) are seen with widths consistent with a \(p_T \) resolution of 20%. No peaks are seen in the like-sign dimuons.

Fig. 3 shows the non-isolated dimuon mass spectrum for the same sample except with at least one muon having a jet within 0.7 in \(\eta, \phi \) space. There are 130\(\pm \)28 \(J/\psi \) events in the peak. A roughly equal number of \(J/\psi \rightarrow \mu\mu \) have been found in the single-muon-plus-jet triggers. The number of \(J/\psi \) events is small primarily because most \(J/\psi \rightarrow \mu\mu \) events have at least one muon below our \(p_T \) threshold in the region \(|\eta| < 1 \). DØ is developing its \(\mu \) triggers at high \(|\eta| \) and low \(p_T \) to obtain more \(B \rightarrow J/\psi \rightarrow \mu\mu \) events.

To study mixing we cut \(J/\psi \) events from the non-isolated dimuons by requiring \(m(\mu\mu) > 6 \) GeV (see Fig. 3) and then form the ratio \(R = N(\text{same sign})/N(\text{opposite sign}) = 0.64 \pm 0.05 \) (statistical error only). Other processes such as \(b \rightarrow c \rightarrow \mu^+ \), \(\bar{b} \rightarrow \mu^+ \), can also produce like sign dimuons. From ISAJET without mixing, \(R = 0.35 \pm 0.06 \). CDF reported \(R = 0.556 \pm 0.048 + 0.035 - 0.042 \) from their \(e\mu \) sample. The preliminary DØ result indicates mixing and is consistent with the CDF result\(^6\).

*This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Division of High Energy Physics of the U. S. Department of Energy under Contract No. DE-AC03-76SF00098, and by the U.S. National Science Foundation under Agreement No. PHY-9015724.

5. "Forward \(\mu \) production in \(pp \) collisions at \(\sqrt{s} = 1.8 \) TeV," J.I. Skarha (Thesis), RX-1273 (Wisconsin) 1989.