UC Irvine
UC Irvine Previously Published Works

Title
Lead Selenide Nanowires Prepared by Lithographically Patterned Nanowire Electrodeposition

Permalink
https://escholarship.org/uc/item/2cb6k79p

Journal
The Journal of Physical Chemistry Letters, 1(7)

ISSN
1948-7185 1948-7185

Authors
Hujdic, Justin E
Taggart, David K
Kung, Sheng-Chin
et al

Publication Date
2010-04-01

DOI
10.1021/jz100173a

Peer reviewed
Lead Selenide Nanowires Prepared by Lithographically Patterned Nanowire Electrodeposition

Justin E. Hujdic,‡ David K. Taggart,‡ Sheng-Chin Kung,‡ and Erik J. Menke*†‡

†School of Natural Sciences, University of California, Merced, California 95343 and, and ‡Department of Chemistry and Institute for Surface and Interface Science, University of California, Irvine, California 92697-2025

ABSTRACT We describe the electrochemical deposition of lead selenide (PbSe) nanowire arrays by the lithographically patterned nanowire electrodeposition (LPNE) method. The nanowires were electrodeposited using a constant potential method from an aqueous solution containing Pb$^{2+}$ and HSeO$_3^-$ at room temperature onto an electrode that had been photopatterned in unfiltered laboratory air. The resulting polycrystalline nanowires were stoichiometric, face-centered cubic PbSe and had a rectangular cross section with lengths >1 mm, widths between 80 and 600 nm, and heights between 40 and 80 nm. The synthesized nanowires were characterized by scanning electron microscopy (SEM), energy dispersive X-ray fluorescence (EDX), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and powder X-ray diffraction (XRD). The electrical resistivity of the nanowires is comparable to that of other PbSe nanowires.

SECTION Nanoparticles and Nanostructures

Lead selenide is a 0.27 eV direct band gap material used in devices including infrared detectors,¹−⁶ thermal-imaging systems,⁷−⁹,ⁱ⁰⁻¹³ and mid-IR lasers.⁰⁻¹⁸ Its small band gap and relatively large exciton Bohr radius of 46 nm also make it a useful model system for studying quantum confinement effects in nanoribbons, nanowires, and nanoparticles. As a practical result of these quantum effects, lead selenide nanoparticles have been proposed as a possible material for future-generation, high-efficiency solar cells,¹⁹⁻²⁵ although it is still unclear how efficient these effects are at improving solar cells.²⁶⁻³¹

Due to these potential uses for PbSe nanowires, a number of research groups have prepared PbSe nanowires using a variety of synthetic methods, including (1) vapor−liquid−solid synthesis,²²−²⁴ (2) electrochemical reduction of Pb$^{2+}$ and HSeO$_3^-$,²⁵⁻²⁷ (3) chemical reduction of Pb$^{2+}$ in the presence of Se,²⁸⁻³⁰ and (4) chemical vapor transport synthesis.³¹ All of these methods have two common drawbacks. The first drawback is that the nanowire length produced by these methods is limited to less than 100 μm in the best cases, with the majority of these methods producing nanowires with lengths less than 1 μm. The second drawback is that these methods generally produce nanowires that are randomly oriented and dispersed on a surface. The net result of these two drawbacks is that any integration or electrical characterization of the nanowires requires nontrivial postsynthesis processing, such as e-beam lithography.

To address these issues, we have prepared lead selenide nanowires via lithographically patterned nanowire electrodeposition (LPNE). LPNE is a multistep nanowire deposition process, developed by the Penner group, that uses photolithography to create a template for nanowire deposition and has been used to prepare gold, platinum, palladium, bismuth, and lead telluride nanowires.³²⁻³⁴ Briefly, the LPNE method, shown in Scheme 1, consists of seven-steps, (1) Evaporate nickel onto a piece of float glass, (2) coat the nickel film with photoresist, (3) pattern the photoresist, (4) chemically etch away the exposed nickel, undercutting the photoresist to create the deposition template, (5) electrodeposition desired material into the template, (6) remove excess photoresist, and (7) chemically etch away the excess nickel, leaving a freestanding nanowire.

Of these seven steps, the electrodeposition step (step 5) is the most important as it dictates the nanowire material. We synthesized lead selenide nanowires by a constant potential...
Figure 1. Cyclic voltammograms (20 mV s⁻¹) for solutions containing (a) lead ([Pb²⁺] = 10 mM) with 0.1 M EDTA at pH = 4 in aqueous solution, (b) selenium ([HSeO₃⁻] = 1 mM) with 0.1 M EDTA at pH = 4 in aqueous solution, and (c) lead and selenium ([Pb²⁺] = 10 mM; [HSeO₃⁻] = 1 mM) with 0.1 M EDTA at pH = 4 in aqueous solution. The voltammetric waves are assigned to the following reactions: wave (i), Pb²⁺ + 2 e⁻ → Pb; wave (ii), HSeO₃⁻ + 5 H⁺ + 4 e⁻ → Se⁰ + 3 H₂O; wave (iii), 2 H₂O₂ + 2 e⁻ → H₂ + 2 H₂O; wave (iv), Se⁰ + 3 H₂O → HSeO₃⁻ + 5 H⁺ + 4 e⁻; wave (v), Pb²⁺ + HSeO₃⁻ + 5 H⁺ + 6 e⁻ → PbSe + 3 H₂O; wave (vi), PbSe + 3 H₂O → Pb²⁺ + HSeO₃⁻ + 5 H⁺ + 6 e⁻.

Figure 2. (a) Low-magnification SEM image showing an array of parallel PbSe nanowires with 5 μm separation (scale bar = 50 μm). (b) High-magnification SEM image of a single nanowire after 150 s of deposition (scale bar = 500 nm). (c) Calibration curve of the nanowire width as a function of electrodeposition time. (d) EDX spectra of a single nanowire showing the presence of lead and selenium. The Pb/Se atomic ratio measured by EDX is 50/50.

The pitch of the nanowire arrays, such as the one shown in Figure 2a, is controlled by the photomask and is ultimately limited by the diffraction limit of the light used for the photolithography. However, both the height and width of the nanowires are independent of the photolithography, as well as each other. The height of the individual nanowires is equal to the thickness of the nickel film that is deposited in step 1 of the LPNE method over a wide range of nickel film thicknesses. However, the nanowire width is dependent on the electrodeposition time, with a rate that depends on the electrodeposited material. In addition, PbSe nanowires have protrusions on the side opposite the nickel electrode, as can be seen in Figure 2b, which grow larger over time, resulting in a larger variation in wire width at longer deposition times. Figure 2c demonstrates that even with this increasing roughness, the width of the resulting nanowires is dependent on the deposition time with a high degree of control over the resulting nanowire width. The EDX analysis shown in Figure 3d offers evidence of stoichiometric PbSe nanowires, as lead and selenium are present, and they are in an atomic ratio of approximately 1:1.

A single PbSe nanowire, approximately 40 nm in height and 200 nm in width, is shown in the transmission microscope image in Figure 3a. This image displays the nanocrystaline nature of these nanowires, with grain sizes between 20 and 100 nm. Note that the grains closer to the nickel edge (left side of the nanowire) are smaller, as has also been seen in Pd nanowires grown by the LPNE method. Selected area electron diffraction was also performed on this nanowire, with the resulting diffraction pattern shown in Figure 3b. All of the peaks in the diffraction pattern can be indexed to a reference cubic PbSe diffraction pattern, (JCPDS 06-0354, shown in the inset to Figure 3b), demonstrating that the nanowire is made of cubic PbSe. To further ensure that the electrodeposited material was PbSe, an array of 500 nm wide nanowires was prepared, and X-ray diffraction on the resulting array was collected. The resulting diffraction pattern is compared to the standard cubic PbSe diffraction pattern in Figure 3c, again showing that only cubic PbSe is electrodeposited. In addition, Scherrer analysis on the peak widths predicts grain diameters of 53 nm, similar to what was observed by TEM.

Rather than etching the remaining nickel after the electrodeposition step to leave isolated nanowires, an additional photolithography step can be added to selectively etch away only some of the nickel, resulting in a nanowire with nickel contacts, as shown in Figure 4a. This provides a way to perform IV measurements on a single PbSe nanowire with...
Figure 3. (a) TEM image of a single nanowire showing grain sizes in the 20–100 nm range (scale bar = 50 nm). (b) Selected area electron diffraction of the nanowire with the inner five rings indexed to cubic PbSe (JCPDS 06-0354). (c) X-ray diffraction patterns from an array of 500 nm wide PbSe nanowires and a reference XRD stick pattern for cubic PbSe (JCPDS 06-0354).

Figure 4. (a) SEM image of a single PbSe nanowire with two nickel contacts. (b) Large bias I–V curve of a single 40 nm (h) × 158 nm (w) × 64 μm (l) PbSe nanowire showing diode-like behavior. (c) Small bias I–V curves of a single PbSe nanowire with dimensions of 40 nm (h) × 158 nm (w) × 64 μm (l) (blue circles), 40 nm (h) × 395 nm (w) × 68.5 μm (l) (green squares), 80 nm (h) × 486 nm (w) × 138 μm (l) (red diamonds), and 80 nm (h) × 574 nm (w) × 98.5 μm (l) (black crosses). The resistivity values for these nanowires are presented in Table 1.

Table 1. Comparison of Electrical Resistivity for PbSe Nanowires with Different Aspect Ratios

<table>
<thead>
<tr>
<th>sample</th>
<th>height (nm)</th>
<th>width (nm)</th>
<th>length (μm)</th>
<th>resistivity (10⁻⁷ Ω m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40</td>
<td>158</td>
<td>64</td>
<td>6.0</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>395</td>
<td>68.5</td>
<td>3.0</td>
</tr>
<tr>
<td>3</td>
<td>80</td>
<td>486</td>
<td>138</td>
<td>1.4</td>
</tr>
<tr>
<td>4</td>
<td>80</td>
<td>574</td>
<td>98.5</td>
<td>2.2</td>
</tr>
<tr>
<td>ref 39</td>
<td></td>
<td></td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td>ref 46</td>
<td></td>
<td></td>
<td></td>
<td>1.5</td>
</tr>
</tbody>
</table>

heights ranging from 40 to 80 nm, widths ranging from 100 to 600 nm, and lengths from 65 to 150 μm. The IV curve on a single nanowire over a large voltage range, shown in Figure 4b, shows diode-like behavior, suggesting that the nickel–PbSe contact is not ohmic. However, over a small bias range, the IV curve is linear, as can be seen for four separate nanowires with different aspect ratios in Figure 4c. The resistivities calculated from these IV curves are shown in Table 1 and are similar to, although larger than, both the resistivity of a single-crystal PbSe nanowire prepared via VLS by Fardy et al.39 and a nanowire-like assembly of PbSe nanoparticles prepared via chemical reaction by Sashchuk et al.46 The differences between resistivity values are likely due to a combination of grain boundary scattering and oxidation in the LPNE-prepared nanowires as these nanowires are highly nanocrystalline and wires were exposed to ambient air for at least 5 days before the IV curves were collected.

In summary, nanocrystalline PbSe nanowires have been prepared by LPNE with independent control over the length, width, and height of the nanowires. These nanowires are stoichiometric and single-phase, with electrical resistivities comparable to those of PbSe nanowires prepared via alternative methods. This opens the door to new opportunities for studying both the optical and electronic properties of PbSe nanowires and their potential application in a variety of systems.

EXPERIMENTAL DETAILS

Microscope slides where cut into 1 in. × 1 in. squares and soaked in a Nochromix solution for 24 h. These slides were then rinsed with NANOpure water (resistivity = 18.0 MΩ cm), dried with compressed air, and then placed in a Denton BTT-IV evaporator. Nickel was thermally evaporated at a rate of 0.1 nm sec⁻¹ while the nickel thickness was monitored with a SQM-160 film thickness monitor (INFICON). After the nickel had reached the desired thickness, the nickel-coated slides were removed from the evaporator coated with S1808 photoresist (ROHM & HAAS). The resist was photopatterned using an OAI model 30 UV light source, developed in MF-24A (ROHM & HAAS), rinsed in NANOpure water, and dried with compressed air. The photopatterned slides were then placed in a 1 M HNO₃ solution for 5 min to etch the exposed nickel, resulting in a nickel template electrode for the lead selenide electrodeposition.

The electrodeposition of lead selenide nanowires was carried out in a deposition solution containing 0.1 M Na₂EDTA...
optical images were taken using a Nikon DS camera unit

(2) Kim, W. S.; Lee, J. H.; Park, Y. M.; Yoo, J. S.; Park, K. S. Environmental scanning electron microscope (ESEM) data were attained on an FEI Tecnai 12 transmission electron microscope (TEM) operated at 120 kV. An FEI Quanta 200 environmental scanning electron microscope (ESEM) was used to acquire images of the wires and measure widths. All optical images were taken using a Nikon DS camera unit DS-L2 attached to an industrial Nikon ECLIPSE LV150 optical microscope.

AUTHOR INFORMATION

Corresponding Author:
*To whom correspondence should be addressed. E-mail: emenke@ucmerced.edu.

ACKNOWLEDGMENT

This work was supported in part by the University of California Graduate and Research Council. Both J.E.H. and E.J.M. gratefully acknowledge Somnath Ghosh and Alan Sargisian at UC Merced for helpful discussions and advice.

REFERENCES

