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Abstract Independent component analysis (ICA) or seed

based approaches (SBA) in functional magnetic resonance

imaging blood oxygenation level dependent (BOLD) data

became widely applied tools to identify functionally con-

nected, large scale brain networks. Differences between

task conditions as well as specific alterations of the net-

works in patients as compared to healthy controls were

reported. However, BOLD lacks the possibility of quanti-

fying absolute network metabolic activity, which is of

particular interest in the case of pathological alterations. In

contrast, arterial spin labeling (ASL) techniques allow

quantifying absolute cerebral blood flow (CBF) in rest and

in task-related conditions. In this study, we explored the

ability of identifying networks in ASL data using ICA and

to quantify network activity in terms of absolute CBF

values. Moreover, we compared the results to SBA and

performed a test–retest analysis. Twelve healthy young

subjects performed a fingertapping block-design experi-

ment. During the task pseudo-continuous ASL was mea-

sured. After CBF quantification the individual datasets

were concatenated and subjected to the ICA algorithm.

ICA proved capable to identify the somato-motor and the

default mode network. Moreover, absolute network CBF

within the separate networks during either condition could

be quantified. We could demonstrate that using ICA and

SBA functional connectivity analysis is feasible and robust

in ASL-CBF data. CBF functional connectivity is a novel

approach that opens a new strategy to evaluate differences

of network activity in terms of absolute network CBF and

thus allows quantifying inter-individual differences in the

resting state and task-related activations and deactivations.

Keywords Functional connectivity � Independent

component analysis � Seed based analysis � Arterial spin

labeling � Network quantification � Cerebral blood flow

Introduction

The functions of the brain can be thought of as complex

networks optimized both for segregated and distributed

information processing. The identification and investiga-

tion of functionally connected networks (FCN) exhibiting

synchronized low frequency fluctuations using seed based

analyses (SBA) or independent component analysis (ICA)

has found its application in a wide range of basic and

clinical research questions (Broyd et al. 2009; Cole et al.

2010; Greicius 2008; Jann et al. 2010b). SBA is typically

hypothesis driven as it requires the a priori specification of

a seed region (Biswal et al. 1995; Joel et al. 2011). Com-

putation of the functional connectivity is then based on

general linear models (GLMs) with the timecourse of the

seed serving as a regressor. In contrast, decomposition of

the measured signal into independent components (ICs) is a

completely data driven approach and results in a spatial

map and the associated temporal dynamics for each IC.

Thereby, specific ICs coding for functionally meaningful

networks are separated from the signal part representing
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artifacts, noise and other non-physiological drifts. FCNs

representing motor, auditory and visual systems as well as

higher cognitive functions like attention and working

memory have been repeatedly described (Beckmann et al.

2005; Cole et al. 2010; Damoiseaux et al. 2006; Jann et al.

2010b). During task execution two classes of FCNs were

described: Task positive networks that show increased

activity during periods of task execution and task negative

networks that show reversed temporal dynamics and are

more active during periods of rest (Fox et al. 2005; Raichle

and Snyder 2007). The major and most studied task negative

FCN is the so-called default mode network (DMN). Initially,

the DMN was identified in PET data as areas that exhibited

consistently less metabolic activity across several studies

and different tasks (Raichle et al. 2001). However, due to

several reasons, functional network analysis is nowadays

almost exclusively performed in fMRI blood oxygenation

level dependent (BOLD). The wide availability of MR

scanners, the non-invasiveness and repeatability of the

measurements (no radioactive tracers like in PET), the lower

cost of MRI as compared to PET investigations and the

higher temporal resolution of the BOLD signal that allows

investigating also temporal characteristics of the networks

have favoured this shift from PET to MR. Besides these

evident advantages offered by BOLD there is one major

disadvantage compared to PET. Since the BOLD signal

relies on relative changes of the ratio of blood oxygenation

only relative measures of the network’s activity can be

estimated, whereas PET provides the possibility to quantify

absolute measures for the metabolic network activity.

Moreover, the BOLD signal is modulated by other physio-

logical factors such as cerebral blood flow (CBF), cerebral

blood volume (CBV) and cerebral metabolic rate of oxygen

(CMRO2) and thus is a rather indirect measure of neural

activity. Therefore, the assessment of a more direct measure

of neural activity in this model of the hemodynamic

response to brain activation (Buxton et al. 2004; Duong et al.

2001) that also allows quantifying absolute values in addi-

tion to temporal fluctuations would be of high interest. Such

measures of absolute network activity would especially be

crucial as to the understanding of pathophysiological alter-

ations and neurological disorders (Alzheimer’s disease,

Parkinson’s disease, dementia, schizophrenia, depression)

but could also help to better understand the relation between

task positive and task negative FCNs.

Arterial spin labeling (ASL) is a non-invasive functional

MRI method that uses blood water as endogenous tracer by

magnetic labeling of the water proton spins (Detre et al.

1992; Williams et al. 1992). Moreover, ASL combines the

advantages of both BOLD MR and PET. ASL has been

shown to yield replicable absolute quantified values of

cerebral perfusion comparable to the results obtained with

H2
15O-PET in patient populations and in healthy controls

(Bokkers et al. 2008, 2010; Ye et al. 2000). It allows for

repeated acquisitions since no exposure to radioactivity is

required and it provides a temporal resolution in the range

of a few seconds. However, the available ASL sequences

generally have a relatively low signal-to-noise ratio (SNR)

although newer sequences are being developed to increase

the sensitivity. The quantification of ASL requires sub-

traction of the label image from the control image (Luh

et al. 1999). This subtraction not only halves the number of

images recorded, which poses a limitation to the amount of

data that can be acquired in each session, it also halves the

temporal resolution with regard to the TR of the sequence.

Nevertheless, it is still within the range of seconds and thus

sufficient to capture the dynamics of FCNs (low frequency

fluctuations 0.01–0.08 Hz) (Chuang et al. 2008). The lim-

ited length of the quantified dataset (typically not more

than 100 quantified images) together with the low SNR

makes it challenging to reliably decompose perfusion

image series into FCNs in single subject analyses. Hence,

in most applications of ASL, mean CBF maps averaged

across the duration of acquisition were computed and the

temporal dynamics were not considered. A handful of

previous studies however analyzed the temporal signal and

the functional connectivity of ASL datasets (Biswal et al.

1997; Chuang et al. 2008; Wu et al. 2009; Zou et al. 2009).

These studies demonstrated the feasibility to detect func-

tionally connected networks, such as the motor network

(Biswal et al. 1997; Chuang et al. 2008) and the DMN (Wu

et al. 2009; Zou et al. 2009). But noteworthy, all these

studies applied the temporal correlation approach using

SBA to identify the FCNs. To date, the feasibility to

identify FCNs within perfusion time series using ICA has

been described in a couple of works (Liang et al. 2012; Dai

et al. 2012) but a comparison to the SBA or a test–retest

analysis is still missing.

The temporal concatenation of datasets as proposed by

Calhoun et al. (2004) which has become a standard pro-

cedure in BOLD fMRI group ICA, might overcome the

problems of SNR and limited number of observations in

individual datasets and thus might render it possible to

estimate FCNs with ICA in perfusion time series data.

Therefore, the aim of this study was to identify task related

networks in ASL data using a concatenated group ICA and

to contrast them with the SBA results. Performance of a

task helps to increase further the SNR within the dataset as

compared to pure resting state recordings. To this end,

subjects performed a simple motor task following a block

design. We further computed the subject specific maps

(SMs) based on the group ICA results and the SBA to test

the robustness of the approaches. Moreover, we assessed

the test–retest reliability of both approaches based on

datasets of the same subjects acquired on two separate

days. The novelty presented in this work is the feasibility to
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reliably identify networks in CBF data using either ICA or

SBA and to quantify network activity i.e. CBF within the

identified networks.

Methods

Subjects

Twelve healthy young right-handed subjects (5 m/7f; mean

age ± SD 23.9 ± 2.3 years; age range 19–27 years) par-

ticipated in this study and gave their written informed

consent. Handedness was assessed with the Edinburg

Handedness Scale (Oldfield 1971). Participants refrained

from alcohol, caffeine and nicotine for at least 6 h prior to

measurement and were not under any medication, did not

consume drugs or had a history of psychiatric or neurologic

disease. The study was approved by the ethical committee

of Bern, Switzerland and was in agreement with the latest

Declaration of Helsinki. The same subject group was pre-

viously analyzed and published in the study of Orosz et al.

(2012).

Data Acquisition

All MRI scans were performed on a 3T Siemens Magne-

tom Trio (Erlangen, Germany) equipped with a 12-channel

radio frequency head coil.

For the measurement of CBF a pseudo continuous

arterial spin labeling (pCASL) technique with the follow-

ing parameters was used (Dai et al. 2008; Wu et al. 2007):

TR/TE = 3,000/18 ms, field of view (FOV) = 220 mm2,

matrix size = 64 9 64 (Isocenter of the readout slice was

90 mm above labeling plane), balanced labeling with mean

Gz of 0.6 mT/m and 60 Hanning window-shaped RF pulses

(RF duration 600 ls with 900 ls gap, a flip angle (FA) =

25�, and bandwith 3,004 Hz/pixel), total labeling duration

(s) = 1.72 s and post-labeling delay (PLD) = 1 s. Five

axial slices (EPI readout, 3.4 mm in-plane resolution,

10 mm slice thickness and 2.5 mm gap) were positioned

parallel to the bi-commissural axis, and were shifted in

z-direction to cover the SMN and the areas constituting the

DMN. A total of 200 images, i.e. 100 pairs of label and

control images were recorded in 10 min. The sequence has

been recorded with 3D PACE (Siemens Erlangen, Ger-

many) to enable prospective motion correction.

After the pCASL run, a high resolution 3D T1-weighted,

magnetization-prepared rapid-acquisition gradient echo

(MP-RAGE) sequence was acquired (TR/TE 11.4/4.4 ms

and FA = 15�, 176 sagittal slices, thickness = 1.0 mm,

FOV = 256 mm 9 256 mm, matrix size = 256 9 256.

The anatomical scan lasted approximately 4.5 min.

TASK Design

During the pCASL runs subjects performed a simple block-

design task with two conditions, rest and fingertapping.

Each block lasted 30 s and each condition was repeated 10

times. A red cross in the middle of a black screen displayed

via MR-compatible LCD goggles (VisuaStim XGA, Res-

onance technology Inc., Los Angeles, CA, USA) indicated

a rest period, while a green cross signaled a fingertapping

block. During fingertapping subjects sequentially opposed

the thumb to index, medium, ring and little fingers of the

non-dominant hand (i.e. the left hand) as quickly as pos-

sible. The sessions always started with a resting state

condition block.

Each subject was recorded on two separate days at least

1 week apart (27.4 ± 19.2 (range 7–63) days). The two

recording sessions of each subject were randomly assigned

to two different datasets (Data1/Data2) (Orosz et al. 2012).

Data Analysis

Preprocessing and analysis of MR data were performed in

BrainVoyager QX (version 2.2, BrainInnovation, Maas-

tricht, The Netherlands) and with own written MatLab

(MathWorks, Natick, Massachusetts, USA) programs, sta-

tistical analyses (ANOVA) were computed in STATISTI-

CA (StatSoftTM, version 10).

CBF Quantification

Raw pCASL images were motion-corrected using Leven-

berg–Marquarts’s least square fit for six spatial parameters,

coregistered to the individual anatomical scans (here the

images were resampled into 3 mm isotropic voxels), rota-

ted into the anterior-posterior commissural plane and nor-

malized into standard Talairach space (Talairach and

Tournoux 1988). Finally, the images were spatially smoothed

with a Gaussian kernel (FWHM 10 mm) to reduce inter-

individual anatomical differences and further increase the

SNR (Wang et al. 2005). Quantification of CBF flow time

series was based on the equation:

CBF ¼ k � DM

2 � a �M0 � T1b

� �
� 1

e�w=T1b � e�ðsþwÞ=T1bÞ

� �

Post-labelling delay (x) = 1,000 ms (adjusted for each

slice and the resampling factor), tagging duration s =

1,720 ms, blood/tissue water partition coefficient

k = 0.9 g/ml and tagging efficiency assumed to be

a = 0.85 (Wu et al. 2007). For 3.0T the decay time for

labelled blood T1b = 1,490 ms, M0 are the equilibrium

brain tissue magnetization images (Federspiel et al. 2006;

Jann et al. 2010a; Wang et al. 2003c). DM was calculated

by sinc-subtraction of label and control images.
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Sinc-subtraction has been demonstrated to efficiently

minimize spurious BOLD contaminations within the CBF

signal and thus was proposed as the method of choice for

block-design experiments (Liu and Wong 2005; Wang

et al. 2003a). Furthermore, Liu and Wong (2005)

demonstrated that sinc-subtraction acts like a filter and is

equivalent to other filtering approaches (Chuang et al.

2008; Liu and Wong 2005). Quantified CBF flow time

series and also average CBF maps for the entire recording

were calculated (Federspiel et al. 2006; Jann et al. 2010a).

Seed Based Functional Connectivity Analysis (SBA)

Seed regions were chosen based on the activation clusters

published in (Orosz et al. 2012) determined by standard

random effects GLM analyses to these datasets. For Data1

the center of gravity ± SD (Talairch x/y/z) and volume of

the seed was 28.0 ± 4.2/-26.9 ± 2.5/45.7 ± 3.9/1,177

mm3 and for Data2 it was 29.6 ± 2.9/-29.4 ± 2.6/

43.9 ± 3.3/819 mm3. From these seeds the subjects CBF

fluctuations were extracted and used as regressors in GLM

analyses to define the subject specific functional connec-

tivity maps. Group analysis was then performed using two-

sided t test against zero to display the networks for either

dataset. To probe for test–retest reliability we performed a

t test between the two datasets. T-maps of either dataset

were thresholded with p \ 0.05 ‘‘Bonferroni’’ correction,

while the group comparison t-map was corrected with a

minimal cluster size threshold (0.05) estimated with

Monte-Carlo simulations.

ICA Decomposition and Identification of Networks

To identify the FCNs on a pure data driven basis, we used a

temporally concatenated group level ICA approach

(Calhoun et al. 2001, 2004; Horn et al. 2012). For this

purpose, the individual flow time series were normalized

(scaled between 0 and 1) to reduce the inter-subject vari-

ability in the CBF data while maintaining the relative

temporal signal fluctuations. The concatenated dataset was

then subjected to the ICA algorithm (FastICA developed

by Hyvarinen & Oja (Hyvarinen and Oja 2000) imple-

mented in BrainVoyager QX) and decomposed into 30

components. Concatenating the individual datasets has the

advantage that only one set of ICs is generated. Thus, no

second level grouping of individual ICs has to be per-

formed in contrast to approaches performing the ICA

decomposition on the subject level (Calhoun et al. 2001;

Esposito et al. 2005; Jann et al. 2009, 2010b). The stimu-

lation design was used to create a box-car predictor (con-

volved with a double gamma hemodynamic response

function) to identify the network that best represented the

temporal signature of this predictor. Each of the estimated

group components (GC) had a correlation coefficient that

indicated the similarity of its temporal fluctuations with the

stimulation predictor, and the one displaying the highest

temporal correlation were selected. Average network time-

serie of this component across subjects was calculated based

on the GC timeserie subdivided into periods corresponding

to the separate subjects and rescaled from 0 to 1 for each

subject.

Estimation of Subject Specific Maps (SMs)

Based on the group ICA results we calculated for each

subject its specific spatial map using a back-reconstruction

approach based on dual spatio-temporal regression

(Calhoun et al. 2004; Horn et al. 2012). Therefore we used

the z-transformed GC timeseries (segmented into the time-

periods corresponding to the individual subjects) as regres-

sors in single subject GLMs (dependent variable were the

original, unscaled CBF timeseries; motion parameters were

not included in the GLM (Erhardt et al. 2010). This yielded

the spatial pattern of voxels that correlate with the time-

series of the GC in the specific single subject. To cross

validate the single subject GLM results with the GC and to

estimate the test–retest robustness of the approach, we

performed a t test against zero across the SMs on Data1 and

Data2.

ASL, in addition, provides the possibility to quantify the

total absolute CBF within the network (either group or

individual networks). Hence, the quantification of inter-

subject differences that we refer to in the manuscript is the

subject specific quantified CBF within the group network

(see next ‘‘Quantification of network CBF’’ subsection).

Quantification of Network CBF

For the quantification of network CBF we defined regions

of interest (ROI) based on the thresholded GC z-maps. For

the SMN we considered only areas showing a positive

correlation with the task predictor, i.e. a positive polarity of

the GC. For the DMN we selected the clusters with nega-

tive polarity. For these ROIs the original, unscaled indi-

vidual CBF time series were extracted. As described above

in ‘‘ICA decomposition and identification of networks’’

subsection for the mean GC timeseries, we also computed

the temporal fluctuations of the CBF signal in the two

FCNs for each individual subjects. These CBF time series

then were averaged across subjects and the correlations

between the two FCNs and the task predictor were

computed.

Based on the defined ROIs, the mean network CBF

during rest and fingertapping conditions were calculated.

To this end, individual perfusion time series were separated

into the blocks associated to either task condition, averaged
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first within subject and then across subjects. A 2 9 2 9 2

repeated measures Analysis of Variance (ANOVA) with

the within-subject factors networks (DMN/SMN), condi-

tion (rest/fingertapping) and dataset (Data1/Data2) was

performed to test for significant network and condition

effects and test–retest reliability. Significant interactions

were further analyzed with the Tukey’s Honestly Signifi-

cant Difference (HSD) post hoc test.

Estimation of Signal-to-Noise Ratio (SNR)

The SNR of individual CBF datasets was estimated as

follows. First, for each subject the global CBF signal

averaged across all grey matter (GM) voxels was extracted.

Second, the individual SNR was defined as the ratio of

the temporal mean of the GM and its standard deviation

(Donahue et al. 2009). Finally the mean SNR and its

standard deviation were calculated across subjects. Simi-

larly, the SNRs for the periods corresponding to the rest

and fingertapping conditions were calculated respectively.

A two-sided paired-sample t test was applied for compar-

ing SNRdata1 and SNRdata2 as well as for comparing

SNRtask and SNRrest.

The same analysis was performed for the scaled CBF

time series that were submitted to the ICA to estimate the

effect of the scaling on SNR.

Results

The group SBA approach was able to identify the SMN

(task specific positive FCN) in the time series of the ASL

datasets (Fig. 1), whereas the concatenated group ICA

approach, not only revealed the SMN, but also the DMN

(task negative FCN) (Fig. 2/Table 1). Mean CBF values of

and relative changes between rest and fingertapping con-

ditions for both networks as identified by ICA are listed in

Table 2 and depicted in Fig. 3.

Correlation Results

The SMN was positively correlated with the task predictor

(r = 0.31 p \ 0.002) whereas the DMN was negatively

correlated to it (r = -0.27 p \ 0.007).

The mean global CBF values of Data1 and Data2

showed a highly significant correlation (r = 0.82 p\0.0006/

Fig. 4).

Subject Specific Map Results

The z-maps of the t tests across the ICA SMs of either

dataset revealed spatial patterns similar to the ICA GC.

Moreover, the paired t test between Data1 and Data2 did

not show any significant difference at p \ 0.01 with a

cluster size threshold of 10 voxels (Fig. 5) indicating test–

retest reliability. The maps calculated based on the SBA

approach displayed a similar pattern as the SMN of the

ICA result. However, the SMN comparison for Data1 and

Data2 in the SBA showed significant differences especially

in the right motor areas.

ANOVA Results of FCN Quantification

The repeated measures ANOVA showed no statistically

significant effect of dataset (F(1,11) = 4.7 p [ 0.05) and

no significant interactions involving the factor dataset.

Significant effects were found for condition (F(1,11) =

21.8, p \ 0.001) and the interaction of network*condition

(F(1,11) = 86.5, p \ 0.00001). The post hoc test revealed

that the significant interaction arose from significantly

higher CBF in the SMN compared to DMN during fin-

gertapping (p \ 0.0002). Moreover, CBF was significantly

higher in the SMN during fingertapping than during rest

(p \ 0.0002), while in the DMN no such effect was

observed.

SNR

The average SNR of the CBF images over both datasets

and across the whole recording was 3.15 ± 1.62 and the

t test for SNRs between Data1 and Data2 revealed no

statistical difference (t(11) = -0.48, p = 0.64). The esti-

mated SNR for the separate conditions were SNRrest =

3.43 ± 1.88 and SNRtask = 4.01 ± 1.85. Again, the t test

for SNRtask vs SNRrest (t = 1.08, p = 0.29) and the t test

for SNRrest_data1 vs SNRrest_data2 (t = -0.46, p = 0.65)

were not significant.

The SNR estimations of the scaled CBF time series that

were used for ICA were as follows: 6.90 ± 1.47 for joint

Data1 and Data2 (no statistical significance between Data1

and Data2: t = -0.58, p = 0.57), SNRrest = 7.41 ± 2.20

and SNRtask = 8.71 ± 2.39 (again no statistical difference

between datasets: t = -1.09 p = 0.29 for rest and t = 1.28,

p = 0.21 for task respectively).

Discussion

The main aim of this study was to explore the capability of

ICA and SBA to identify FCN in ASL data, which then

would allow to absolutely quantifying network CBF. This

would overcome one of the main limitations of the net-

works identified in fMRI BOLD data, which provide rel-

ative measures of network activity. Our study is one of the

first that investigated the feasibility of ICA based network

analysis in ASL data (Liang et al. 2011; Xie et al. 2011) in

Brain Topogr (2013) 26:569–580 573
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comparison to the SBA, and demonstrated the possibility to

analyze networks without the a-priory selection of a seed

region (Chuang et al. 2008; Zou et al. 2009). The presented

approach of concatenating individual ASL datasets indeed

proved capable of identifying the network related to the

execution of the motor task (Somato-Motor Network;

SMN) as well as the (nodes of the) Default Mode Network

(DMN). Both networks comprise the brain regions that

have been consistently reported in fMRI BOLD literature

(Damoiseaux et al. 2006; De Luca et al. 2006; Fox et al.

2005; Jann et al. 2010b; Lowe et al. 1998). The SMs rep-

resenting the subject specific spatial pattern of the network

were consistent with the GC as well as robust for Data1 and

Data2. The temporal fluctuations of the identified networks

Fig. 1 t test across all 12 subjects’ SMs based on SBA for Data1 and Data2, respectively. The t test comparing the individual maps of Data1

versus Data2 displays statistically significant differences in the areas corresponding to different seeds in the motor cortex
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were positively (SMN) and negatively (DMN) correlated

with the task predictor. Hence, both networks are in good

agreement with BOLD ICA networks in terms of their

spatial pattern and their temporal dynamics.

In contrast, the SBA only identified the SMN while the

DMN could not be detected. This might be due to the

scaling and concatenation of the datasets before the ICA or

due to some necessary preprocessing steps for ICA such as

pre-whitening and dimensionality reduction that is not

required for SBA (Joel et al. 2011). Nevertheless, the SMs

were computed based on the same, unscaled perfusion

timeseries using a GLM. Only the regressors used for a

Fig. 2 The upper part shows the axial slices of the IC factor representing the SMN and DMN networks. The lower plot depicts the temporal

dynamics of the SMN (red line) and the task predictor (white line) (Color figure online)

Table 1 Regions of interest constituting the two networks. (Coordinates are in Talairach space.)

Center of gravity ± SD No. of voxels BA

x y z

SMN 4.5 ± 19.6 -21.0 ± 11.7 50.8 ± 4.1 8,958

Motor right 31.4 ± 3.8 -36.0 ± 7.7 48.6 ± 4.5 2,317 Postcentral gyrus 3/4

Motor left -30.3 ± 4.0 -25.9 ± 4.4 52.9 ± 2.7 1,183 Precentral gyrus 4

SMA 0.6 ± 5.7 -13.6 ± 6.5 51.3 ± 3.8 5,458 Medial fronal gyrus 6

DMN 0.1 ± 8.6 -17.7 ± 45.6 29.3 ± 5.3 6,294

Frontal right 8.3 ± 4.8 40.6 ± 5.4 34.2 ± 1.7 878 Medial fronal gyrus 9

Frontal left -10.1 ± 4.6 43.2 ± 3.5 35.5 ± 2.4 1,417 Medial fronal gyrus 9

PCC 1.8 ± 7.0 -52.1 ± 4.2 26.0 ± 3.5 3,999 Posterior cingulate gyrus 31

Brain Topogr (2013) 26:569–580 575
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specific subject differed between SMs for ICA and SBA

respectively. In the case of ICA, it was the global network

dynamics, whereas for the SBA the temporal fluctuations

of the CBF signal in the seed (motor cortex) were used.

Furthermore, we found significant differences of the SBA

deduced networks for Data1 and Data2, specifically in the

motor cortex. This finding can be explained when consid-

ering the seeds used for either dataset. The seeds were

chosen based on a random effects GLM using the finger-

tapping task-predictor as the regressor (Orosz et al. 2012).

The significant differences were exactly in the spots where

the two seeds differed. This finding of slightly deviant

networks resulting from different seeds is well in line and

confirms previous studies (Buckner et al. 2008; Cole et al.

2010). Thus, SBA might be the method of choice when

clear hypotheses exist and very specific functional con-

nectivity networks are aimed to be investigated. However,

the seed region bias should always be kept in mind. ICA on

the other side is a data driven approach that is suitable to

fully explore the functional connectivity of a dataset (Joel

et al. 2011).

Moreover, in the present study we also attempted to

quantify network activity by means of absolute CBF. The

absolute CBF values extracted for both networks and

during rest or task condition, as well as the percentage

increase were in agreement with values reported in litera-

ture ((Wang et al. 2003b) ASL/(Colebatch et al. 1991)

PET). The ANOVA results of the CBF values further

demonstrated the stability and thus test–retest reliability of

the presented approach. In fact, there was no statistically

significant difference between Data1 and Data2. However,

the DMN in Data1 showed a non-significant higher mean

Table 2 Mean CBF values for network, dataset and condition (cf. Fig. 3) and relative CBF changes between rest and fingertapping task (FT)

DMN SMN

Data1 Data2 Data1 Data2

FT (ml/100 g/min) 68.98 ± 4.41 62.10 ± 4.41 76.93 ± 10.37 74.60 ± 8.57

REST (ml/100 g/min) 67.26 ± 8.03 64.94 ± 6.90 63.35 ± 5.81 62.86 ± 6.90

% change 0.03 ± 0.08 -0.05 ± 0.07 0.17 ± 0.08 0.15 ± 0.09

Fig. 3 Mean CBF values for network, dataset and condition

Fig. 4 Global mean CBF of all participants compared between Data1

and Data2. Correlation between Data1 and Data2 was r = 0.82,

p = 0.0006, R2 = 0.68
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CBF during task than during rest. Possible explanations

might on the one hand be related to the SNR during resting

state and on the other hand to the low cognitive demand of

the task. While on the group data the separation of task and

rest and the SNR of the signal are sufficient to reliably

identify the networks, whereas on the single subject level

the low SNR during rest might confound the analysis. An

effect that has previously been observed by Biswal et al.

Fig. 5 Z-maps (based on a t test across all 12 subjects’ SMs based on ICA) for Data1 and Data2, respectively. The t test comparing the

individual maps of Data1 versus Data2 displays no statistically significant difference

Brain Topogr (2013) 26:569–580 577

123



(1997) who reported on higher standard deviation in per-

fusion data during rest than task and was reproduced in this

study. This, however, does not apply to the quantification

of the CBF values themselves but only to the differentia-

tion of networks during rest. A more plausible explanation

for the inability to find a decrease of DMN CBF during task

execution on Data1 might be given by the insufficient

modulation of activity in the DMN due to very low cog-

nitive demand. It is known that the DMN deactivates

during the task and this deactivation increases with task

difficulty (Esposito et al. 2006; Raichle and Snyder 2007).

The assumption of relative low modulation of DMN

activity by the fingertapping task is supported by the high

standard deviation in the DMN decrease as compared to the

SMN. This might also explain why at the chosen statistical

threshold for the region of interest analysis, the DMN did

not show the areas in the inferior parietal lobes. At a

slightly lower threshold for the network GC (i.e. z = 2)

these areas were present.

This observation will have implications for future studies

and for the application of the approach to pure resting state

ASL data. Usually ASL scans acquire fewer averages and

whether the SNR of the quantified CBF fluctuations might

be sufficient to reliably identify networks also during rest

needs to be demonstrated. Besides these theoretical con-

siderations about possible problems hampering the appli-

cation of this approach to resting state measurements, there

is some empirical evidence suggesting the practicability: a

few studies, using SBA approaches though, demonstrated

the feasibility to detect FCN in ASL data (Biswal et al.

1997; Chuang et al. 2008; Zou et al. 2009). In addition,

SNR can be increased by longer ASL recordings (more

volumes) or using large sample sizes (more subjects).

One limitation of the present study was the incomplete

coverage of brain that was restricted to the dorsal/superior

part, due to the tradeoff between coverage and temporal

resolution since increasing the coverage would cost longer

TRs. Since for perfusion time series the temporal resolution

is halved with respect to the resolution of the sequence

(pairwise acquisition of label and control images) it is an

issue for future studies but eventually could be overcome by

novel faster ASL sequences (Fernandez-Seara et al. 2008).

Another caveat are possible phase-tracking errors in

pCASL (Wu et al. 2007) due to field inhomogeneity effects

at the labeling location that can affect labeling efficiency

(a) and consequentially underestimate CBF (Jung et al.

2010). Although a in pCASL can be C80 % at frequency

offset around 1 ppm (Dai et al. 2008), it still might vary

within subjects and accordingly increase test–retest vari-

ability (Wu et al. 2011). Recent advantages in pCASL

acquisition and post-processing strategies could however

help to reduce inter-session and –subject variability

(Jahanian et al. 2011; Jung et al. 2010).

In summary, the novel approach of ICA based ASL

analysis reported here provides a new strategy to evaluate

differences of networks besides the comparison of subject

specific maps (SM). ASL, in addition to BOLD, allows

assessing the level of network activity in terms of quanti-

fied CBF within the network, which is completely inac-

cessible for BOLD. Thus ASL network analysis allows

quantifying inter-individual differences in the resting state

and task-related activations and deactivations.

Moreover, the presented approach might be of particular

interest in investigation of dys-functions in psychiatric

and neurologic disorders, e.g. catatonia, schizophrenia,

depression or Alzheimer’s disease. Specifically a quanti-

tative analysis of absolute network CBF and their relation

to pathophysiological rating scales could help to better

understand the baseline alterations in patient groups and

even their inter-individual differences associated to cog-

nitive and behavioral impairments.
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