Title
DISSOCIATION ENERGIES OF MOLECULES WITH VERY HEAVY ATOMS FROM MASS SPECTROMETRY

Permalink
https://escholarship.org/uc/item/2cv537th

Author
Pitzer, Kenneth S.

Publication Date
2013-10-24
Submitted to the Journal of Chemical Physics

DISSOCIATION ENERGIES OF MOLECULES WITH VERY HEAVY ATOMS FROM MASS SPECTROMETRY

Kenneth S. Pitzer

October 1980

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 6782.

Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Dissociation Energies of Molecules with Very Heavy Atoms from Mass Spectrometry

Kenneth S. Pitzer

Department of Chemistry and Lawrence Berkeley Laboratory
University of California, Berkeley, CA 94720

In a series of excellent mass-spectrometric investigations Gingerich and associates have measured the dissociation energies of many molecules including heavy atoms. In the "third law" method of treating the data, the partition functions are required. Thus the electronic partition function of the molecule is needed. For molecules with very heavy atoms, relativistic effects yield large spin-orbit splittings and in some cases this reduces the electronic partition function by a significant factor. This is illustrated below for the two cases Pb$_2^+$ and BiLi$_2^+$. In each of these cases lighter analogs Si$_2^+$ and SbH have $^3\Sigma^-$ ground states; hence the assumption made1,2 of an electronic multiplicity of 3 was reasonable, prima facie. But for BiH it is known3 that the J=1 component of $^3\Sigma^-$ is 4917 cm$^{-1}$ higher in energy than the J=0 component. Thus, the case c or relativistic notation 1 and 0$^+$ is more appropriate and there is a single 0$^+$ ground state. Even at the temperature of experiment, 1100 K, the population of the doubly degenerate 1 state is less than 1%. This spin-orbit splitting is essentially a property of the bismuth atom, and it should not be much different in BiLi. Thus the electronic partition function should be reduced from 3 to 1 and the function $-(C_T-H_O^0)/T$ reduced by R ln 3. The effect of this change is shown in Table I which includes both the original and revised values of AH$_O^0$ of dissociation from the third law. In addition the temperature dependence of the equilibrium constant yields a less precise value of
ΔH at the temperature of the experiment and this can be converted to zero Kelvin. This is called the second law result and is not affected by this change in molecular parameters. While the 2nd law value for BiLi still differs from the more precise 3rd law value by more than the apparent uncertainty, the deviation is reduced by 10 kJ mol$^{-1}$ by the use of the correct electronic multiplicity.

In the case of Pb$_2$ there are recent spectroscopic data from Bondybey and English4 which confirms the ground state as $^4\Sigma^+_g$, a single state. While there is no explicit value for the energy of excitation to the $^1\Sigma^+_g$ state (the other component of $^3\Sigma^-_g$), it is expected to be comparable to the spin-orbit splitting ($^3\Pi_1 - ^3\Pi_0$) in the atomic spectrum, 7819 cm$^{-1}$. Thus it is expected that the $^1\Sigma^+_g$ population at 1000 K will be negligible. For Pb$_2$ there is also a small revision4 in the vibration frequency, 110 instead of 119 cm$^{-1}$. These two changes yield the results shown in Table I. The third law result for Pb$_2$ now agrees very well with the second law value and gives much greater assurance of the correctness of the new selected value of 83 ± 1 kJ/mole (0.86 ± 0.01 eV).

Since the vibration frequency and bond distance in BiLi were both estimated, there is further uncertainty in the third law result.

I have no reason to change these estimates, but the additional uncertainty is recognized by the (?) in Table I.

Similarly large spin-orbit splittings may be expected for other molecules with very heavy atoms; thus one should be cautious in adopting the electronic partition function of a lighter analog.

This research was supported by the Division of Chemical Sciences, Office of Basic Energy Science, U.S. Department of Energy under Contract No. W-7405-ENG-48.
References

<table>
<thead>
<tr>
<th>Approximate temperature</th>
<th>Pb₂</th>
<th>BiLi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original ΔH^0 of diss. (3rd law)</td>
<td>74 ± 1</td>
<td>135.7 ± 1.1 kJ mol⁻¹</td>
</tr>
<tr>
<td>Revised ΔH^0 of dissociation (3rd law)</td>
<td>82.5 ± 1</td>
<td>145.7 ± 10 kJ mol⁻¹</td>
</tr>
<tr>
<td>ΔH^0 of diss. (2nd law) unchanged</td>
<td>84 ± 2</td>
<td>160 ± 7 kJ mol⁻¹</td>
</tr>
<tr>
<td>Selected value</td>
<td>83 ± 1</td>
<td>150 ± 5 kJ mol⁻¹</td>
</tr>
<tr>
<td>Selected value in eV</td>
<td>0.86 ± 0.01</td>
<td>1.55 ± 0.05 eV</td>
</tr>
</tbody>
</table>