Eliminating Undetected Interest Looping in Content-Centric Networks

Author
Garcia-Luna-Aceves, J.J.

Publication Date
2015-09-30
Eliminating Undetected Interest Looping in Content-Centric Networks

J.J. Garcia-Luna-Aceves

Palo Alto Research Center, Palo Alto, CA 94304

Department of Computer Engineering, University of California, Santa Cruz, CA 95064

Email: jj@soe.ucsc.edu, maziar@soe.ucsc.edu

Abstract—It has been shown that Interest loops can go undetected in NDN (named data networking) and CCN (content-centric networking) when Interests are aggregated. To solve this problem, we introduce CCN-ELF, a simple variation of the way in which CCN and NDN work based on a new type of forwarding information base (FIB) that stores distance information about name prefixes for all the neighbors of a content router, rather than just a ranked list of neighbors that can serve as next hops to name prefixes. CCN-ELF uses a loop-free forwarding algorithm based on the information available in the new FIBs that allows Interests to be forwarded and aggregated, without the risk of undetected Interest loops and without requiring any changes to the packet formats used in NDN and CCN.

I. INTRODUCTION

Several information-centric networking (ICN) architectures have been proposed as an alternative to today’s Internet, and the leading ICN approach can be characterized as Interest-based. This approach consists of: populating forwarding information bases (FIB) maintained by routers with routes to name prefixes denoting content, sending content requests (called Interests) for specific named data objects (NDO) over paths implied by the FIBs, and delivering content along the reverse paths traversed by Interests. The original content-centric networking (CCN) proposal [8] was the first example of an Interest-based ICN architecture in which Interests need not be flooded and do not state the identity of the sender. Today, named data networking (NDN) [10] and CCNx [2] are the leading Interest-based ICN approaches.

Since the introduction of the original CCN proposal [8], the research community (e.g., [10], [12], [14]) has assumed that the forwarding planes of NDN and CCN are such that they can recover from resource failures and congestion problems, because packets containing data are sent back in response to Interests. Section II summarizes the operation of the NDN and CCN forwarding planes.

We have shown [6], [7] that this is not the case in general. More specifically, we have proven that Interest loops may go undetected when Interests from different consumers requesting the same content are aggregated and Interests are forwarded along routing loops, which may occur due to failures or congestion. Furthermore, we have shown that no forwarding strategy can be designed that works correctly in the presence of Interest aggregation and uses nonces and the names of NDOs as the basis of Interest loop detection. Section III shows an example of the occurrence of undetected Interest loops in NDN and CCN. The approach we have proposed recently (SIFAH [6]) to remedy the Interest loop detection problems in NDN and CCN requires Interests to state a hop count to an intended name prefix. However, a limitation of this approach is that the routing protocol operating in the control plane of the network must maintain hop counts to name prefixes in addition to any other type of distance information that may be used in the network (e.g., congestion- or delay-based distances). In addition, the hop count to name prefixes may not be enforceable across autonomous systems.

We present the first solution to the Interest looping problems in NDN and CCN that works correctly in the presence of aggregation and does not require any modifications to the Interest packet formats used in NDN and CCN. We call the new approach CCN-ELF (CCN with Expanded Look-up of FIB), because the detection of Interest loops relies on a simple look-up of an expanded FIB that stores the distances to name prefixes reported by all neighbors of a content router, rather than just the set of next hops to name prefixes or the next hops and distances to name prefixes.

Sections IV describes CCN-ELF, which ensures that Interest loops are detected if they occur, even if Interests from different consumers are aggregated while they traverse routing loops. Sections VI proves that CCN-ELF ensures that no Interest loop can go undetected and that any Interest must receive a response within a finite time. Section VII addresses design and performance implications of CCN-ELF.

II. ELEMENTS OF THE FORWARDING PLANE IN NDN AND CCN

In NDN and CCN, a given router uses three primary data structures: a forwarding information base (FIB), a pending interest table (PIT), and a content store (CS). The forwarding plane uses these three tables to forward Interests towards nodes advertising having copies of requested content, send named data objects (NDO) or other responses back to consumers who requested them over reverse paths traversed by Interests.

A router uses its FIB to route Interests towards the desired content producer advertising a content prefix name. A FIB is populated using content routing protocols or static routes. The FIB entry for a given name prefix lists the interfaces that can be used to reach the prefix. In NDN [12], the FIB entry for a name prefix also contains a stale time after which the entry...
could be deleted; the round-trip time through the interface; a rate limit; and status information stating whether it is known or unknown that the interface can bring data back, or is known that the interface cannot bring data back. A CS is a cache for content objects. With on-path caching, routers cache the content they receive in response to Interests they forward.

PITs are used in NDN and CCN to keep track of the neighbor to which NDO messages or NACKs should be sent back in response to Interests, allow Interests to not disclose their sources, and enable Interest aggregation. A PIT entry consists of a vector of one or multiple tuples, one for each nonce processed for the same NDO name. Each tuple states the nonce used, the incoming interfaces and the outgoing interfaces. Each PIT entry must have a lifetime larger than the round-trip time to a site where the NDO can be found.

When a router receives an Interest, it checks whether there is a match for the content requested in the Interest in its CS. The Interest matching mechanisms differ in NDN [10] and CCNx [2], with the latter supporting exact Interest matching only. If a match to the Interest is found, the router sends back an NDO over the reverse path traversed by the Interest. If no match is found in the CS, the router determines whether the PIT stores an entry for the same content. In NDN, if the Interest states a nonce that differs from those stored in the PIT entry for the requested content, then the router “aggregates” the Interest by adding the incoming interface from which the Interest was received and the nonce to the PIT entry without forwarding the Interest. On the other hand, if the same nonce in the Interest is already listed in the PIT entry for the requested content, the router sends a NACK over the reverse path traversed by the Interest. In CCNx, aggregation is done if the Interest is received from an interface that is not listed in the PIT entry for the requested content, and a repeated Interest received from the same interface is simply dropped.

If a router does not find a match in its CS and PIT, the router forwards the Interest along a route listed in its FIB for the best prefix match. In NDN, a router can select an interface to forward an Interest if it is known that it can bring content (called “green” in [12]) and its performance is ranked higher than other interfaces that can also bring content. The ranking of interfaces is done by a router independently of other routers.

III. UNDETECTED INTEREST LOOPS IN NDN AND CCN

Figure 1 illustrates Interest looping in NDN and CCN. Arrowheads in the figure indicate the next hops to content advertised by router j according to the FIB entries stored in routers. Thick lines indicate that the perceived performance of an interface is better than interfaces shown with thinner lines. Blue or red dashed lines indicate the traversal of Interests over links and paths. The time when an event arrives at a router is indicated by t_i.

Figure 1(a) shows the case of a long-term Interest loop caused by multi-paths implied in FIBs not being loop-free, even though all routing tables are consistent. In this case, the ranking of interfaces in a FIB can be such that a path with a larger hop count may be ranked higher than a path with a smaller hop count, because of the perceived performance of the interfaces or paths towards prefixes. Figure 1(b) shows the case of a temporary Interest loop when single-path routing is used and FIBs are inconsistent due to a topology change at time t_1.

In both cases, router a aggregates the Interest from x and router x aggregates the Interest from b, and the combined steps preclude the detection of any Interest looping. In this example, it would appear that the looping problems could be avoided by forcing router b to use q rather than x for Interests regarding prefixes announced by j. However, the same looping problems would exist even if link (b, q) were removed in the example, and the ways in which FIBs are populated and interfaces are ranked are independent of updates made to PITs.

We have proven [6], [7] that undetected Interest loops can occur in NDN and CCN due to Interest aggregation, and that no forwarding strategy can be defined to ensure the detection of Interest loops by using the names of NDOs or nonces stated in the Interests. Although an Interest cannot recirculate along a routing loop, an undetected Interest loop causes PIT entries to remain in storage until they time out, given that no response are sent to aggregated Interests that traverse routing loops. As the results in [7] indicate, this can cause large increases in end-to-end delays and the number of PIT entries stored by content routers, even for small percentages of Interests traversing loops.

IV. CCN-ELF OPERATION

The design objective of CCN-ELF is to ensure that no Interest loops can go undetected even when Interests are aggregated, and without requiring any changes to the packet formats used in NDN and CCNx.

The design rationale in CCN-ELF is twofold. First multi-path content routing protocols [5], [9] are a much more attractive alternative than single-path routing for content-centric networks. Second, given the multi-path information available in the control plane, the FIB of each content router is a readily-available tool to enforce the needed ordering in the forwarding strategy operating in the data plane by including distance information reported by all neighbors of a content router.

The operation of CCN-ELF differs from the current specifications of NDN and CCNx only in the way in which Interests are forwarded and the modifications needed in FIBs and PITs. We only describe those aspects of CCN-ELF that differ from NDN and CCNx. In our description, we assume that Interests are retransmitted only by the consumers that originated them, rather than routers that relay Interests. Routers are assumed to know which interfaces are neighbor routers and which are
local consumers, and forward Interests on a best-effort basis. Furthermore, given that no Interest matching policy has been shown to work better than simple exact matching of Interests, we assume that routers use exact Interest matching as in CCNx [2] to forward Interests.

A. Information Exchanged and Stored

The information used to enable correct forwarding of Interests, NDO messages, and NACKs are the name of NDOs and distance information stored in FIBs. Interests, NDO messages and NACKs are assumed to specify the same information used in NDN or CCNx. Router \(i \) maintains the same tables used in NDN and CCN. The PIT, FIB and CS maintained at router \(i \) are denoted by \(\text{PIT}^i \), \(\text{FIB}^i \), and \(\text{CS}^i \), respectively. The difference between CCN-ELF and NDN and CCN is the expanded role of the FIB.

The name of NDO \(j \) is denoted by \(n(j) \), and the terms neighbor and interface are used interchangeably. The set of neighbors of router \(i \) is denoted by \(N^i \). An Interest forwarded by node \(k \) requesting NDO \(n(j) \) is denoted by \(I_k[n(j)] \). An NDO message sent by router \(k \) in response to an Interest is denoted by \(D_k[n(j), sp(j)] \), where \(sp(j) \) is the security payload used optionally to validate the content object. The NACK to an Interest sent by router \(k \) is denoted by \(N_k[n(j), \text{CODE}] \) and states the name of the NDO \(n(j) \) and a code (CODE) indicating the reason why the NACK is sent. Possible reasons for sending a NACK include: an Interest loop is detected, no route is found towards requested content, no content is found, and the DART entry expired.

\(\text{FIB}^i \) in CCN-ELF is indexed using content name prefixes and stores additional information than in NDN or CCN. The entry in \(\text{FIB}^i \) for name prefix \(n(j)^* \) is denoted by \(\text{FIB}^{n(j)^*} \), and consists of a set of tuples, \(\text{one for each neighbor of router } i \) for \(n(j)^* \). The tuple for neighbor \(q \) states the name of neighbor \(q \) and the distance to \(n(j)^* \) through \(q \). \(\text{FIB}^i \) is updated when the routing table of router \(i \) is updated by the routing protocol operating in the control plane.

\(\text{PIT}^i \) in CCN-ELF is modified slightly with respect to NDN and CCN. The entry in \(\text{PIT}^i \) for NDO with name \(n(j) \) is denoted by \(\text{PIT}^{n(j)} \), and, in addition to the information maintained in NDN or CCN, it stores the distance assumed by router \(i \) to name prefix \(n(j)^* \) when it forwarded \(I_i[n(j)] \). This distance is denoted by \(D(i, n(j)) \).

B. Interest Loop Prevention and Detection

Interest loops resulting from inconsistencies in FIB entries maintained at different routers are avoided or detected if they occur using the following rule.

ELF Rule: Router \(i \) accepts Interest \(I_k[n(j)] \) from router \(k \) if one of the following two conditions is satisfied:

1. \(n(j) \notin \text{PIT}^i \land \exists v \in N^i(D(i, n(j)^*, k) > D(i, n(j)^*, v)) \)
2. \(n(j) \in \text{PIT}^i \land D(i, n(j)^*, k) > D(i, n(j)) \)

The first condition ensures that router \(i \) accepts an Interest from neighbor \(k \) only if \(i \) determines that it can forward its new Interest for \(n(j) \) through a neighbor through which it is closer to name prefix \(n(j)^* \) than neighbor \(k \) is. The second condition ensures that router \(i \) accepts an Interest from neighbor \(k \) only if \(i \) was closer to \(n(j)^* \) when it sent its Interest for \(n(j) \) than neighbor \(k \) is when the Interest from \(k \) is received.

The ELF rule is independent of the specific metric used to measure distances from routers to name prefixes, or whether one or multiple paths are maintained for a given name prefix.

Section VI proves that using the ELF rule is sufficient to ensure that an Interest loop cannot occur in CCN-ELF, without a router in the loop detecting that the Interest has been forwarded incorrectly.

C. Interest Forwarding in CCN-ELF

CCN-ELF operates in much the same way as NDN and CCNx do. The difference is in the way in which Interests are forwarded according to the ELF rule using the expanded FIBs and the distance information stored in PITs.

Algorithms 1 describes the steps taken by routers to process Interests. Our description does not take into account such issues as load balancing of available paths to name prefixes, congestion-control, or the forwarding of an Interest over multiple paths concurrently. For simplicity, it is assumed that all Interest retransmissions are carried out on an end-to-end basis (i.e., by the consumers of content) rather than relaying routers. Hence, routers do not attempt to provide any “local repair” when a neighbor fails or a NACK to an Interest is received.

Algorithm 1 implements the ELF rule to ensure that no Interest looping goes undetected. Router \(i \) forwards a new Interest when Condition 1 in the ELF rule is satisfied (Line 10 of Algorithm 1), or aggregates an Interest when Condition 2 of the ELF rule is satisfied (Line 18 of Algorithm 1). For simplicity, we assume that content requests from local content consumers are sent to the router in the form of Interests stating infinite hop counts to content, and each router knows which neighbors are remote and which are local.

\(\text{INSET}(\text{PIT}^i_{n(j)}) \) denotes the set of neighbors from which router \(i \) has received an Interest for NDO \(n(j) \); \(\text{OUTSET}(\text{PIT}^i_{n(j)}) \) denotes the set of neighbors to which router \(i \) has sent an Interest for NDO \(n(j) \); and \(\text{RT}(\text{PIT}^i_{n(j)}) \) denotes the lifetime of the PIT entry. The Maximum Interest Life-time (MIL) assumed by a router before it deletes an Interest from its PIT is large enough to preclude an excessive number of retransmissions, and not too large to cause the PITs to store too many Interests for which no NDO messages or NACKs can be sent due to failures or transmission errors. A few seconds is a viable value for MIL.

Algorithm 1 describes a simple forwarding strategy for Interests in which router \(i \) simply selects the first neighbor \(v \) in the ranked list of neighbors stored in the FIB for prefix \(n(j)^* \) that satisfies the first condition in the ELF rule (Line 10 of the algorithm). More sophisticated strategies can be devised that attain load balancing among multiple available routes towards content and can be close to optimum (e.g., [11]). In addition, the same Interest could be forwarded over multiple paths concurrently, in which case content is sent back over each path that the Interest traversed successfully. To be
effective, however, these approaches must require the adoption of a loop-free multi-path routing protocol in the control plane (e.g., [5]). In this context, the control plane establishes valid multi-paths to content prefixes using long-term performance measures, and the data plane exploits those paths using HFAR and short-term performance measurements, without risking the long delays associated with backtracking due to looping.

Algorithm 1 CCN-ELF Processing Interest from router k

1: function Process Interest
2: INPUT: PIT* , CS*, FIB*t, I[n*(j)];
3: if n*(j) ∈ CS* then send D*[n*(j), sp(j)] to k;
4: if n*(j) ∉ CS* then
5: if n*(j) ∉ PIT* [% No prior Interest is pending for n*(j)] then
6: if n*(j) ∈ FIB*t [% No route exists to n*(j)] then
7: send NI[n*(j), no route] to k; drop I*[n*(j)]
8: else
9: for each v ∈ N* by rank do
10: if D*(i,n*(j)*,k) > D*(i,n*(j)*,v) then
11: [% Interest may be traversing a loop:]
12: send NI[n*(j), no route] to k; drop I*[n*(j)]
13: end if
14: end for
15: end if
16: else
17: [% There is a PIT entry for n*(j):]
18: if D(i,n*(j)*,k) > D(i,n*(j)) then
19: [% Interest can be aggregated:]
20: INSET(PIT*(n*(j)) = INSET(PIT*(n*(j))) ∪ k
21: else
22: [% Interest may be traversing a loop:]
23: send NI[n*(j), loop] to k; drop I*[n*(j)]
24: end if
25: end if
26: end function

V. EXAMPLES OF CCN-ELF OPERATION

Figures 2(a) and (b) illustrate how CCN-ELF operates when a multi-path routing protocol is used to populate the FIBs. The same example shown in Figure 1 is used. The pair of numbers next to a node in Figure 2(a) indicate the distance from that node to n*(j) over an interface and the ranking of the interface according to the FIB of the node. The triplet (v, h, r) denotes an interface, its hop count and its ranking.

In Figure 2(a), FIBa states (b, 4, 1), (p, 4, 2), and (x, 6, 3); FIBb states (x, 6, 1), (a, 5, 2), and (q, 3, 3); and FIBc states (a, 5, 2) and (b, 5, 1).

As Figure 2(b) shows, when router a receives I[n*(j)] from router y at time t1, it forwards I[n*(j)] to b because b offers the highest ranked distance to n*(j) satisfying the ELF rule, i.e., D(a,n*(j)*,b) = 4 < 5 = D(a,n*(j)*,y). Router a sets D(a,n*(j)) = 4 in its PIT. Router b receives the Interest from a at time t2 and accepts it, because the ELF rule is also satisfied by neighbor i.e., D(b,n*(j)*,q) = 3 < 5 = D(b,n*(j)*,a). The Interest generated by router x is aggregated by router a at time t3, because the ELF rule is satisfied, i.e., D(a,n*(j)*,x) = 6 > 4 = D(a,n*(j)) in contrast to the case shown in Fig. 1 for NDN and CCN, no loop occurs in CCN-ELF.

Figures 2(c) to (e) illustrate how CCN-ELF operates when topology changes occur. Router a updates its FIB at time t0 and router b updates its FIB at time t1 as shown in Figure 2(c). Routes have inconsistent FIB states for n*(j) because routing-table updates are being sent in the control plane while Interests are being forwarded in the data plane. The figure shows the snapshot of values stored in FIBs at the times Interests propagate after link (a,p) fails and while link (b,q) increases its cost from 1 to 6.

As Figure 2(c) shows, when the Interest for n*(j) from router y arrives at router a at time t1, router a forwards the Interest because the ELF rule is satisfied by router b (i.e., D(a,n*(j)*,b) = 4 < 5 = D(a,n*(j)*,y)). Router a sets D(a,n*(j)) = 4 in its PIT.

As shown in Figure 2(d), even though FIBs are inconsistent, router b sends a NACK to router a when the Interest arrives at time t2, because b cannot find any neighbor v such that D(b,n*(j)*,v) < 4. Router a aggregates the Interest from router x at time t3, because the ELF rule is satisfied D(a,n*(j)*,x) = 6 > 4 = D(a,n*(j)). Router a forwards the NACK it receives from b at time t4 to routers y and x.

Within a finite time, the FIBs of all routers are updated to reflect the new shortest paths that take into account the changes to links (a,p) and (b,q). Once FIBs are consistent, Interests regarding objects in the name prefix n*(j)* are forwarded along shortest paths towards n*(j)*.

The ELF rule is only a sufficient condition to avoid Interest looping, and it is possible for a router to assume that an Interest is traversing a loop when this is not the case. In the example in Figure 2(d), router b could forward the Interest to router q without causing a loop. However, the ELF rule is not satisfied by router q and b cannot select it.

Given the speed with which FIBs are updated to reflect correct distances computed in the control plane, false loop detections are rare, and their occurrence is better than having PIT entries of Interests that cannot receive responses expire after many seconds. Hence, a sufficient condition for Interest loop detection is a good baseline for correct Interest forwarding in content centric networks.

VI. CORRECTNESS OF CCN-ELF

The following theorems show that no Interest loops can occur and be undetected if CCN-ELF is used, and that every Interest must receive a response (an NDO message or a
negative acknowledgment) within a finite time. These results are independent of whether the network is static or dynamic, the specific caching strategy used in the network (e.g., at the edge or along paths traversed by NDO messages [3]), the retransmission strategy used by content consumers or relay routers after experiencing a timeout or receiving a NACK, or how many paths are used to forward an Interest.

Theorem 6.1: Interest loops cannot occur and be undetected in a network in which CCN-ELF is used.

Proof: Consider a network in which CCN-ELF is used. Assume for the sake of contradiction that nodes in a loop \(L \) of \(h \) hops \(\{v_1, v_2, \ldots, v_h, (v_1)\} \) send and possibly aggregate Interests for \(n(j) \) along \(L \), with no node in \(L \) detecting the incorrect forwarding of any of the Interests sent over the loop.

Given that \(L \) is assumed to exist, \(v_k \in L \) must send \(I_{v_k}[n(j)] \) to node \(v_{k+1} \in L \) for \(1 \leq k \leq h-1 \), and \(v_h \in L \) must send \(I_{v_h}[n(j)] \) to node \(v_1 \in L \). For \(1 \leq k \leq h-1 \), let \(D(v_k, n(j)) \) be the distance from \(v_k \) to \(n(j)^* \) when node \(v_k \) sends \(I_{v_k}[n(j)] \) to node \(v_{k+1} \), and \(D(v_k, n(j)) = D(v_k, n(j)^*, v_{k+1}) \). Let \(D(v_h, n(j)) \) be the distance from \(v_h \) to \(n(j)^* \) when node \(v_h \) sends \(I_{v_h}[n(j)] \) to node \(v_1 \in L \), with \(D(v_h, n(j)) = D(v_h, n(j)^*, v_1) \).

Because no node in \(L \) detects the incorrect forwarding of an Interest, each node in \(L \) must aggregate the Interest it receives from the previous hop in \(L \) or it must send its own Interest as a result of the Interest it receives from the previous hop in \(L \). This implies that \(v_k \in L \) must accept \(I_{v_{k-1}}[n(j)] \) before the PIT timer expires for \(1 \leq k < h \), and \(v_1 \in L \) must accept \(I_{v_1}[n(j)] \) before the PIT timer expires.

According to the ELF rule, if \(v_k \) aggregates \(I_{v_{k-1}}[n(j)] \), then it must be true that \(D(v_k, n(j)^*, v_{k-1}) > D(v_k, n(j)) \). Similarly, if \(v_1 \) aggregates \(I_{v_1}[n(j)] \), then it must be the case that \(D(v_1, n(j)^*, v_h) > D(v_1, n(j)) \).

On the other hand, if \(v_k \) sends \(I_{v_k}[n(j)] \) to \(v_{k+1} \) as a result of receiving \(I_{v_{k-1}}[n(j)] \) from \(v_{k-1} \), then it must be true that \(D(v_k, n(j)^*, v_{k-1}) > D(v_k, n(j)^*, v_{k+1}) = D(v_k, n(j)) \) for \(1 < k \leq h \).

Similarly, if \(v_1 \) sends \(I_{v_1}[n(j)] \) to \(v_2 \) as a result of receiving \(I_{v_1}[n(j)] \) from \(v_h \), then \(D(v_1, n(j)^*, v_h) > D(v_1, n(j)^*, v_2) = D(v_1, n(j)) \).

It follows from the above argument that, for \(L \) to exist when each node in the loop follows the ELF rule to send Interests asking for \(n(j) \), it must be true that \(D(v_h, n(j)) > D(v_1, n(j)) \) and \(D(v_{h-1}, n(j)) > D(v_h, n(j)) \) for \(1 < k \leq h \). However, this is a contradiction, because it implies that \(D(v_k, n(j)) > D(v_h, n(j)) \) for \(1 \leq k \leq h \). Therefore, the theorem is true.

An Interest forwarding strategy must ensure that either an NDO message with the requested content or a NACK is received within a finite time by the consumer who issues an Interest. The following theorem shows that this is the case for CCN-ELF, independently of the state of the topology or the fate of messages.

Theorem 6.2: CCN-ELF ensures that an NDO message for name \(n(j) \) or a NACK is received within a finite time by any consumer who issues an Interest for NDO with name \(n(j) \).

Proof: Consider an Interest for \(n(j) \) being issued by consumer \(s \) at time \(t_1 \). The forwarding of Interests assumed in CCN-ELF is based on the best match of the requested NDO name with the prefixes advertised in the network. A router sends back an NDO message to a neighbor that sent an Interest for NDO \(n(j) \) only if it has an exact match of the name \(n(j) \) in its content store, and a router that receives an NDO message in response to an Interest it forwarded must forward the same NDO message. Hence, the wrong NDO message cannot be sent in response to an Interest. There are three cases to consider next: (a) there are no routes to the name prefix \(n(j)^* \) of the requested NDO, (b) the Interest traverses an Interest loop, or (c) the Interest traverses a simple path towards a router \(d \) that can reply to the Interest.

Case 1: If there is no route to \(n(j)^* \), then it follows from the operation of CCN-ELF that a router issues a NACK stating that there is no route. That NACK is either forwarded successfully back to \(s \) or is lost due to errors or faults. In the latter case, a router must send a NACK back towards \(s \) stating that the Interest expired or the route failed.

Case 2: If an Interest for \(n(j) \) is forwarded along a loop and does not reach any node with a copy of \(n(j) \), then it follows from Theorem 6.1 that the Interest must either reach some router \(k \) that detects the incorrect forwarding of the Interest and issues a NACK stating that there is a loop, or the Interest is dropped due to faults or transmission errors before reaching such router \(k \). Each router that receives a NACK in response to an Interest sends NACKs back to all neighbors from which it received Interests for \(n(j) \). Hence, if no errors or faults prevent the NACK from reaching \(s \), the consumer receives a NACK stating that an Interest loop was found.

On the other hand, if either the Interest traversing an Interest loop or the NACK it induces at some router \(k \) is lost, it follows from Algorithms 6 and 8 that a router between \(s \) and router \(k \) must send a NACK towards \(s \) indicating that the Interest expired or that the route failed. Accordingly, consumer \(s \) must receive a NACK within a finite time after issuing its Interest in this case.

Case 3: If the Interest traverses a simple path towards a router \(d \) that advertises \(n(j)^* \) or has a content store containing \(n(j) \), then the Interest must either reach \(d \) or not.

If the Interest is lost before reaching \(d \), then a router between \(s \) and router \(d \) must send a NACK towards \(s \) indicating that the Interest expired or that the route failed. As a result, \(s \) must receive a NACK originated by some router between \(s \) and \(d \).

If the Interest reaches \(d \), then that router must either send the requested NDO back, or (in the case that \(d \) advertises \(n(j)^* \) and \(n(j) \) does not exist) issue a NACK stating that \(n(j) \) does not exist. The NDO message or NACK originated by \(d \) is forwarded back towards \(s \) along the reversed simple path traversed by the Interest. If no fault or errors occur between \(d \) and \(s \), it follows that the theorem is true for this case. Alternatively, if the NDO or NACK originated by \(d \) is lost due to faults or errors, a router between \(s \) and router \(d \) must send a NACK towards \(s \) indicating that the Interest expired or that the route failed.
VII. Performance Implications

The performance benefits attained with CCN-ELF compared to NDN and CCN as currently implemented are considerable. PITs are much smaller and consumers experience smaller latencies obtaining content or receiving feedback regarding the content they request when routers implement SIFAH instead of the NDN forwarding strategy.

The additional FIB storage required in CCN-ELF compared to NDN and CCN consists of storing the distance reported by each neighbor for each prefix \(n(j) \). This amounts to \((D)(|FIB^i|)(|N^i|) \) at router \(i \), where \(D \) is the number of bytes needed to represent a distance, \(|N^i| \) is the number of neighbors of router \(i \) and \(|FIB^i| \) is the number of entries in \(FIB^i \). The additional PIT overhead incurred with CCN-ELF compared to NDN and CCN consists of storing a distance value for each PIT entry. This corresponds to just \((D)(|PIT^i|) \) bytes at router \(i \).

Compared to CCN, CCN-ELF requires additional storage for each FIB entry maintained for a name prefix and each PIT entry maintained for an Interest. Compared to NDN, given that CCN-ELF does not need nonces to detect Interest looping, NDN PITs could be simplified by not storing the nonces stated in Interests, which represents storage savings of order \((|id|)(|PIT^i|)(|N^i|) \), where \(|id| \) is the number of bytes needed to state a nonce.

CCN-ELF incurs the same end-to-end latencies as NDN and CCN in the absence of routing-table loops in FIB entries, given that Interests and their replies traverse shortest paths. However, NDN and CCN can incur much longer end-to-end delays than CCN-ELF for the retrieval of content or the reception of NACKs when Interests are aggregated along routing loops.

Interests that are aggregated along routing loops in NDN and CCN must remain in PIT until they expire before any NACKs can be sent to the consumers who issued the Interests. The resulting latency is in the order of seconds, because the lifetimes of Interests in PITs must be set that long in order to avoid unnecessary retransmissions of Interests. On the other hand, with CCN-ELF, a consumer must either obtain an NDO or a NACK in response to an Interest, and this must occur within a round-trip-time along the path between the customer and the router sending the NDO or detecting an Interest loop. This corresponds to a few hundred milliseconds in topologies similar to today’s Internet. Furthermore, prior results on loop-free routing based on diffusing computations [11], [13] illustrate that false detection of Interest loops does not impact significantly the efficiency with which Interests are forwarded to routers with the stored content. This is especially the case if loop-free multi-path routing to name prefixes is provided in the control plane (e.g., DCR [5]).

Recent simulation results [7] indicate that, even if only a few Interests are aggregated along routing loops, undetected Interest loops result in very large increases in the number of PIT entries stored in content routers and the end-to-end delays in obtaining content.

The ELF rule can be adopted in CCNx and NDN, because it does not change any of the packet formats, and the additional storage needed to implement the ELF rule is not large.

VIII. Conclusions

Undetected Interest loops have been shown to occur in NDN and CCN, which causes Interests to timeout without content or negative acknowledgments being received in response. We introduced CCN-ELF, the first approach to content centric networking that eliminates the possibility of undetected Interest loops without requiring packet formats to be modified in CCN or NDN.

Compared to NDN, the additional storage needed to maintain distances to prefixes through each neighbor and the distance assumed to a name prefix when an Interest is forwarded is more than compensated by the storage savings derived from not having to store the nonces included in Interests. The mechanisms needed for CCN-ELF can be easily adopted in NDN and CCN.

REFERENCES