Lawrence Berkeley National Laboratory

Recent Work

Title
DIRECT OBSERVATION OF QUANTUM BEATS DUE TO COHERENT EXCITATION OF NONDEGENERATE EXCITED STATES BY PULSED ELECTRON IMPACT

Permalink
https://escholarship.org/uc/item/2dm761dn

Authors
Hadeishi, Tetsuo
Neirenberg, William A.

Publication Date
1965-04-08
DIRECT OBSERVATION OF QUANTUM BEATS
DUE TO COHERENT EXCITATION
OF NONDEGENERATE EXCITED STATES
BY PULSED ELECTRON IMPACT

TWO-WEEK LOAN COPY
This is a Library Circulating Copy
which may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Division, Ext. 5545

Berkeley, California
Submitted to Phys. Rev. Letters

UNIVERSITY OF CALIFORNIA
Lawrence Radiation Laboratory
Berkeley, California

AEC Contract No. W-7405-eng-48

DIRECT OBSERVATION OF QUANTUM BEATS
DUE TO COHERENT EXCITATION
OF NONDEGENERATE EXCITED STATES
BY PULSED ELECTRON IMPACT

Tetsuo Hadeishi and William A. Nierenberg

April 8, 1965
Direct Observation of Quantum Beats Due to Coherent Excitation of Nondegenerate Excited States by Pulsed Electron Impact

Tetsuo Hadeishi and William A. Nierenberg

Lawrence Radiation Laboratory
University of California
Berkeley, California
April 8, 1965

We have observed a modulation of exponential decay of resonance luminescence arising from the interference of coherently excited nondegenerate states $m_J = +1$ and -1 of 7^3P_1 of Cd excited by a sharply pulsed electron impact. The excitation by a sharply pulsed electron impact whose pulse width is much shorter than the lifetimes of the excited states enabled us to observe directly the consequence of atomic fluorescence decay. Similar results were observed by Aleksandrov by means of a modulated electron beam excitation rather than a single pulsed excitation. Also, the coherent excitation of nondegenerate states by optical excitation was recently observed by various authors. We believe that this is the first time that the modulation of the exponential decay of the resonance luminescence was observed directly by pulsed-electron-impact excitation.

Breit has shown a possibility of coherent excitation of nondegenerate sublevels if the exciting resonance radiation is pulsed in time much shorter than the decay time of the excited states, since under this condition the exciting light has a very broad range of spectral frequencies. Similar excitation is possible by a pulsed electron impact since the electron, with its energy corresponding to the energy of the threshold of excitation, can excite the atom in a time of the order of 10^{-16} sec, if we assume an electron speed of 10^8 cm/sec and an atomic diameter of about 10^{-8} cm.
In the case of Cd whose ground state is 7S_0 and whose excited state is 3P_1, the $m_J = +1$ and -1 states of 3P_1 can be coherently excited when the direction of the propagation of the exciting electron is perpendicular to the externally applied magnetic field at the excitation energy slightly above the threshold of excitation. Under such excitation the probability of photon emission is described by a damped-oscillator-type function $e^{-t/\tau} \{A + B[\cos(\Omega t + \phi)]\}$, where A, B, and ϕ are time-independent constants, τ is the lifetime of the excited state, and
\[\Omega = \left| E_2 - E_1 \right| / h, \]
with E_2 and E_1 being the energy of the $m_J = +1$ and -1 states of 3P_1, respectively.

A Pierce-type electron gun using an impregnated dispenser-type cathode was constructed. With the energy near the threshold of excitation the electron current was quite low, resulting in a very low photon flux. Therefore, the photon counting technique was employed. The well-distilled Cd metal was sealed into the envelope of the electron gun, which is enclosed in an oven with a quartz window. The electron gun was operated at an oven temperature of about 200°C. A solution of 14 g of nickel sulfate and 10 g of cobalt sulfate in 100 cc of water with a Corning glass filter type 7-54 was used to filter the λ3261 resonance luminescence corresponding to the 3P_1 to 1S_0 transition. This filter combination had a bandpass width of 200 Å centered at 3200 Å and was quite effective in blocking off the light radiating from the cathode.

The electron pulse was obtained by pulsing the grid of the electron gun, whose pulse width is about 5 nsec.

The λ3261 photons were detected through filters and a Glan-Thompson quartz polarizer by a RCA type-1P28 photomultiplier tube. To observe the quantum-beats phenomena, we used a multi-channel delayed-coincidence analyzer to measure the arrival time of photons.
following the pulse applied to the grid of the electron gun. The electron gun was pulsed at the rate of 10 kc/sec. The count rate was very low, so that the probability of two photons arriving during the duty cycle of the time-to-height converter was negligible. The schematic of the apparatus is shown in Fig. 1.

Figure 2 shows the effect of quantum beats at 0.88 gauss. The data-accumulation time, because of the low count rate, was 10 h. The period of oscillation corresponded to 270 nsec, resulting in \(g_J = 1.5 \). The lifetime measured from the exponential decay is \(2.2 \times 10^{-6} \) sec. Similar results were also observed in the \(4^3P_1 \) state of Zn for the transition between \(4^3P_1 \) and \(4^4S_0 \) at 3076 Å, but with a much weaker signal owing to the lower vapor pressure of Zn. It seems that some interesting application of this type of detection method may be realized in the near future.

We wish to acknowledge the aid of Ron Keller of Huggins Laboratory, Inc. who supplied the parts of the traveling-wave tube and advised us on construction of the electron gun. William Berlund of the Lawrence Radiation Laboratory glass shop constructed the electron gun.
REFERENCES AND FOOTNOTES

*Work done under the auspices of the U. S. Atomic Energy Commission.

†Present address: Scripps Institution of Oceanography, San Diego, California.

FIGURE LEGENDS

Fig. 1. Schematic diagram of the apparatus.

Fig. 2. Quantum beats at 0.88 gauss.
Nanosecond pulse gen.

Filters + polarizer

P.M.

Pierce-type electron gun

Pulse-height analyzer

Time-to-height converter

Disc.

Fig. 1

MUB-5786
Fig. 2

Counts (thousands) vs. t (delayed coincidence channels)

MUB-5787
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.