Title
K- -p INTERACTIONS NEAR 760 MeV/c

Permalink
https://escholarship.org/uc/item/2dn2t2b8

Authors
Bastien, Pierre L.
Berge, J. Peter

Publication Date
1962-12-07
K^-p INTERACTIONS NEAR 760 MeV/c

Berkeley, California
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
K⁻p INTERACTIONS NEAR 760 MeV/c

Pierre L. Bastien and J. Peter Berge

December 7, 1962
We present the results of a study of the K^-p system at incident K^- laboratory momenta of 620, 760 and 850 MeV/c (center-of-mass energies $E_{c.m.}$ of 1616, 1681, and 1723 MeV, respectively). Only the most important features of the interactions have been obtained at each of these momenta. At 620 MeV/c the system is dominated by strong $S_{1/2}$ absorption. At 760 MeV/c effects due to Y_1^0 (1660) are observed. The presence of large $\cos^2\theta$ terms and the absence of large $\cos^3\theta$ terms in the angular distributions suggest $3/2$ as a plausible spin assignment for the resonance. Finally, at 850 MeV/c large $3/2$ or $5/2$ amplitudes have set in.

The Lawrence Radiation Laboratory's 15-in. hydrogen bubble chamber was exposed to a separated K^- beam capable of operating either at 760 or 850 MeV/c. A setting at 620 MeV/c was obtained by degrading the 760-MeV/c beam. A total of 8000 interactions, representing all the available data, were analysed.

In Table I we summarize the observed total cross sections, having determined the path length at each momentum by counting τ decays. The only significant bias occurs when a Σ^+ decays via the protonic mode; at our energies the laboratory angle between the Σ^+ and its decay proton is usually too small to be detected with good efficiency. For this reason only Σ^+ decaying via the pionic mode were used to establish both the total and differential cross sections. In the
other hand ambiguities in the interpretation of the events arise when one wants
to distinguish between the Λn^0, $\Sigma^0 n^0$, $\Lambda n^0 n^0$ and $\Sigma^0 n^0 n^0$ final states. The
method of separation used in our experiment is the same as that described by
Ferro-Luzzi et al. 4

All differential cross sections were fitted to a series of the form

$$\frac{4}{k^2} \frac{d\sigma}{d\Omega} = A_0 + A_1 \cos \theta + A_2 \cos^2 \theta + \cdots , \quad (1)$$

where $4/k^2$ is an arbitrary normalization factor. The results of such fits
were the dimensionless coefficients A_i and their errors. A fit of order n
means a fit up to and including the term $A_n \cos^n \theta$.

In Figs. 1 and 2 we present the energy dependence of the coefficients
A_i for all the two-body reactions except $\Sigma^0 n^0$. In this latter channel statistics
are small and, for angular distributions at least, it is difficult to determine the
amount contributed to a given bin by the $\Lambda n^0 n^0$ and $\Sigma^0 n^0 n^0$ final states.
Significant amounts of $\cos^3 \theta$ are required only at 850 MeV/c as is shown in Fig. 3.

At 620 MeV/c the angular distributions are remarkably similar to those
obtained at 510 MeV/c by Ferro-Luzzi et al. 4 no appreciable changes in the A_i
seem to have taken place between these two momenta, and the system is probably
well described by a large absorptive $S_{1/2}$ amplitude with small amounts of
$P_{1/2}$, $P_{3/2}$, and $D_{3/2}$. At 850 MeV/c the large amounts of $\cos^3 \theta$ noticeable
in every distribution indicate that $J = 3/2$ or $5/2$ amplitudes are now present.

We now discuss the 760-MeV/c data more thoroughly and examine the
effect of the newly discovered $Y_{1}^{*}(1660)$ on our total cross sections and angular
distributions. From now on we shall refer to this resonance as $\Sigma (1660)$. 1660
MeV corresponds to a laboratory momentum of 715 MeV/c, and its half-width,
\(\Gamma/2 = 20 \text{ MeV} \), corresponds to \(\pm 43 \text{ MeV/c} \). Significant effects due to \(\Sigma(1660) \) should be observed therefore at 760 MeV/c, provided it is coupled reasonably strongly to the K-nucleon system. Assuming that this resonance is adequately described by a pure Breit-Wigner form, we can obtain the strength of the coupling by using the formula for the energy dependence of the total cross section in such a case, namely

\[
\sigma_{\gamma} = 2\pi \hbar^2 \left(J + \frac{1}{2} \right) \frac{\chi_K}{\varepsilon^2 + 1} \tag{2}
\]

where the normalized channel width \(\chi_K = \Gamma_{\text{elastic}}/\Gamma \) and \(\varepsilon = 2(\Gamma - \Gamma_{\text{c.m.}})/\Gamma \).

Examining in greater detail the behavior of our cross sections in various channels, shown in Table I, we notice first a 2-mb bump in the \(\Sigma^-\pi^+ \) channel at 760 MeV/c. This final state is a mixture of I-spin 0 and 1, but the I-spin of the effect can be established through the following formulae:

\[
\sigma(\Sigma^0, I=0) = 3\sigma(\Sigma^0\pi^0) \tag{3}
\]
\[
\sigma(\Sigma^+, I=1) = \sigma(\Sigma^-\pi^+) + \sigma(\Sigma^+\pi^-) - 2\sigma(\Sigma^0\pi^0) \tag{4}
\]

It is clear from the results of this separation (Table I) that the rise is indeed due to the I-spin-1 part of the amplitude. We therefore attribute the effect to \(\Sigma(1660) \). One notices also a small rise at 760 MeV/c in every one of the \(\Delta\pi\pi \) and \(\Sigma\pi\pi \) cross sections. These are also interpreted as manifestations of the three-body decay modes of the resonance. Adding these cross sections, we estimate \(x_K \) of Eq. (2) to be 0.25 \(\pm 0.10 \) for spin 3/2, and appropriate fractions of that value for other spin assignments. The \(\Sigma \) and \(\Delta \pi \) normalized channel widths are estimated to be \(x_{\Sigma} = 0.35 \pm 0.15 \) and \(x_{\Delta} = 0.15 \pm 0.10 \). Finally since it is not possible to separate the \(\Delta\pi\pi \) and \(\Sigma\pi\pi \) final states into I-spin
without more information than that given by the K-proton system alone, we cannot calculate partial widths for these last two channels. Because the elastic cross sections are proportional to $(x_K)^2$, the small values of x_K that we have obtained lead, for all possible spin assignments, to negligible rises in the K-nucleon total cross sections at 760 MeV/c. Therefore no lower limit on the spin of the resonance can be set by this method. Since at 760 MeV/c Table I shows that the cross sections due to the resonance are small compared to the background, we conclude that the nonresonant amplitudes dominate over the resonant amplitude.

To obtain information on the spin of $\Sigma(1660)$ we examine the two-body angular distributions at 760 MeV/c. Usually the spin of a resonance is determined by looking at the energy dependence of the coefficients A_j at closely spaced momentum intervals throughout the resonance region. Here we have only a single point one half-width above the resonance, and so a quantitative analysis is not possible. However by considering the A_1, A_2 and A_3 in Fig. 2 we wish to show that our data seem to be more consistent with $J=3/2$ for $\Sigma(1660)$ than with any other spin assignment. Examining first A_2 in Fig. 2 we shall show that spin 1/2 is unlikely. We observe a large enhancement at 760 MeV/c in both $A_2(\Sigma^-n^+)$ and $A_2(\Lambda\pi^0)$. We attribute these bumps to interferences between the small resonant amplitude and the nonresonant background; as we have seen, the nonresonant background is dominant and is composed only of $S_{1/2}$, $P_{1/2}$ and $P_{3/2}$ amplitudes, since large amounts of other amplitudes would lead to $\cos^3\theta$ interferences which, as is clearly shown in Fig. 3, are not present. To examine the consistency of our data with the spin-1/2 hypothesis we
look at the form of A_2 in a partial-wave expansion up to $J=3/2$, namely

$$A_2 = 3|P_{3/2}^+|^2 + 3|D_{3/2}^+|^2 + 6 \text{Re}(P_{1/2}^* P_{3/2}^+ + S_{1/2}^* D_{3/2}^+).$$ \hspace{1cm} (5)$$

For $J=1/2$ the large interference effects observed in the A_2 must be due to the $S_{1/2}^* D_{3/2}^+$ or $P_{1/2}^* P_{3/2}^+$ terms. An $S_{1/2}^+$ resonance seems unlikely, since $D_{3/2}^+$ is also small. Again if the resonance is $P_{1/2}^+$ then $P_{3/2}^+$ must be large, and values of the A_2 considerably bigger than what we observe are expected because of the term $3|P_{3/2}^+|^2$. Spin $1/2$ therefore seems improbable.

By considering the A_1 and the A_3 we next show that $J=5/2$ is unlikely for $\Sigma(1660)$. The values of the A_1 in Fig. 2 again show interferences in all three distributions. If the spin is $5/2$ we would have expected variations in the A_3 of the order of $15/9$ those observed in the A_1 if the non-resonant background is assumed to vary slowly throughout the region. To see this, note that in a partial-wave analysis up to angular momentum $5/2$ the expressions for A_1 and A_3 are

$$A_1 = \text{Re}(2S_{1/2}^* P_{1/2}^+ + 4 S_{1/2}^* P_{3/2}^+ + 4 P_{1/2}^* D_{3/2}^+)$$

$$- 9 S_{1/2}^* F_{5/2}^+ - 9 P_{1/2}^* F_{5/2}^+ - 10 D_{3/2}^* D_{3/2}^+ + 45/2 D_{5/2}^* F_{5/2}^+),$$

$$A_3 = \text{Re}(12P_{3/2}^* D_{5/2}^+ + 12 D_{3/2}^* F_{5/2}^+$$

$$+ 15 S_{1/2}^* F_{5/2}^+ + 15 P_{1/2}^* D_{5/2}^+ + 18 P_{3/2}^* D_{3/2}^+ - 117 D_{5/2}^* F_{5/2}^+).$$ \hspace{1cm} (6)$$

(7)

No such variations are seen in the A_3, which instead are all consistent with zero. It also seems unlikely that, when made to interfere with reasonable values of the nonresonant background, a $5/2$ resonant amplitude with our normalized channel widths would not have led to sizeable A_3's in at least one of the angular distributions.
In summary the most natural way to interpret the data is to assume that a small $P_{3/2}$ or $D_{3/2}$ resonant amplitude is interfering with large $S_{1/2}$ and $P_{1/2}$ nonresonant background. However only an analysis of more angular distributions throughout the whole region will provide a final answer to the spin question and information on the parity. In particular the energy dependence of the $\Sigma^-\pi^+$ differential cross sections must be established carefully because we cannot rule out the possibility that the large value of $A_2(\Sigma^-\pi^+)$ at 760 MeV/c is due mainly to nonresonant terms. If this is the case, the value of x_K would be much smaller, and this in turn would decrease our confidence in the spin assignment.

Finally let us say a few words about the three-body final states. If $\Lambda\pi^+\pi^-$ is formed predominantly through the chain $K^-p \rightarrow \Sigma(1660) \rightarrow \Sigma(1385) + \pi \rightarrow \Lambda\pi^+\pi^-$, one could hope to say something about the spin and parity of $\Sigma(1660)$ taking $\Sigma(1385)$ to be $3/2^+$. However the observed cross section for $K^-p \rightarrow \Lambda\pi^+\pi^-$ at 760 MeV/c is 4.3 mb, and $\Sigma(1660)$ can contribute only ~ 0.4 mb to that value since the normalized channel width for $\Sigma(1660) \rightarrow \Lambda\pi^+\pi^-$ is approximately 0.10. Therefore, $Y_1^\ast(1660)$ cannot affect the $\Lambda\pi^+\pi^-$ distributions significantly. Similar negative conclusions are drawn about the $\Sigma\pi\pi$ channels.

We wish to thank Prof. Luis W. Alvarez, Donald H. Miller, Arthur H. Rosenfeld, Robert D. Tripp, and Drs. Massimiliano Ferro-Luzzi, and Joseph Murray for advice and encouragement.
FOOTNOTES AND REFERENCES

*Work done under the auspices of the U.S. Atomic Energy Commission.

5. Both the square of the resonant amplitude and interference terms between the resonant amplitude and the nonresonant background appear in the coefficients of the even powers of cos θ. With the observed normalized partial widths for Σ(1660), the former are of the order of 0.02 for all channels in our dimensionless units, whereas the latter can be one or two orders of magnitude larger (see reference 4).

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Topology</th>
<th>E_{K^-} (MeV/c)</th>
<th>$E_{c.m.}$ (MeV)</th>
<th>50 events</th>
<th>124 events</th>
<th>145 events</th>
</tr>
</thead>
<tbody>
<tr>
<td>K^-p</td>
<td>2 prong</td>
<td>620±15</td>
<td>1616</td>
<td>16.0±1.0</td>
<td>16.7±1.0</td>
<td>32.4±2.0</td>
</tr>
<tr>
<td>Σ^0</td>
<td>0 prong + V</td>
<td>2.3±0.4</td>
<td>3.3±0.3</td>
<td>4.9±0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ^+</td>
<td>2 prong (+ decays)</td>
<td>4.6±0.6</td>
<td>2.8±0.3</td>
<td>2.0±0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Σ^-</td>
<td>2 prong (- decays)</td>
<td>2.0±0.3</td>
<td>3.3±0.2</td>
<td>1.3±0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Sigma^0\pi^0$</td>
<td>0 prong + V</td>
<td>2.1±0.3</td>
<td>1.4±0.2</td>
<td>0.8±0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Lambda\pi^0$</td>
<td>0 prong + V</td>
<td>1.9±0.3</td>
<td>2.6±0.2</td>
<td>2.7±0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Lambda\pi^+\pi^-$</td>
<td>2 prong + V</td>
<td>1.7±0.3</td>
<td>1.3±0.3</td>
<td>3.5±0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Sigma^0\pi^+\pi^-$</td>
<td>2 prong + V</td>
<td>0.3±0.15</td>
<td>0.8±0.15</td>
<td>0.7±0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Sigma^-\pi^0$</td>
<td>2 prong (- decays)</td>
<td>0.3±0.1</td>
<td>0.8±0.1</td>
<td>0.7±0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Sigma^+\pi^-\pi^0$</td>
<td>2 prong (+ decays)</td>
<td>0.1±0.05</td>
<td>0.8±0.2</td>
<td>0.5±0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(\Lambda\Sigma^0)\pi^0\pi^0$</td>
<td>0 prong + V</td>
<td>1.1±0.2</td>
<td>1.9±0.2</td>
<td>1.3±0.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Lambda\eta$ ($\eta\to$ neut.)</td>
<td>0 prong + V</td>
<td>-</td>
<td>0.5±0.15</td>
<td>0.15±0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Lambda\pi^+\pi^-\pi^0$</td>
<td>2 prong + V</td>
<td>0.0±0.03</td>
<td>0.25±0.05</td>
<td>0.15±0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\bar{K}^0\pi^0$</td>
<td>2 prong + V</td>
<td>0.0±0.03</td>
<td>0.04±0.03</td>
<td>0.10±0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K^-p\pi^0$</td>
<td>2 prong</td>
<td>0.0±0.03</td>
<td>0.15±0.1</td>
<td>0.3±0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$K^-\pi^0n$</td>
<td>2 prong</td>
<td>0.06±0.06</td>
<td>0.0±0.05</td>
<td>0.2±0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\bar{K}^0\pi^0n$</td>
<td>0 prong + V</td>
<td>0.0±0.03</td>
<td>0.0±0.05</td>
<td>0.3±0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>32.4±1.5</td>
<td>40.1±1.3</td>
<td>40.6±2.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$(\Sigma\pi)_{I=0} = 6.4±0.8$
$(\Sigma\pi)_{I=1} = 2.3±0.8$
$\pi^0 S^2 = 9.50 \times 0.36 = 5.75$

a Topological appearance of the event in the bubble chamber.

b This means 2 prong, and the positive prong decays.
FIGURE LEGENDS

Fig. 1. Coefficients A_i for $K^-p \rightarrow K^-p$ and $K^-p \rightarrow K^0 n$ with data fitted up to third order. Cosine θ is defined as $\hat{K}_{\text{inc}} \cdot \hat{K}_{\text{scattered}}$. The A_3's are large at 850 MeV/c and consistent with zero at the lower momenta. For reference we have drawn horizontal bars indicating the position and width of $\gamma_1^*(1660)$ for all coefficients.

Fig. 2. Coefficients A_i for $K^-p \rightarrow \Lambda n^0$, $K^-p \rightarrow \Sigma^- n^+$, and $K^-p \rightarrow \Sigma^+ n^-$ with data fitted up to third order. Here Cos θ is defined as $\hat{K}_{\text{inc}} \cdot \hat{C}$. In the A_2's we notice significant bumps in $\Sigma^- n^+$ and Λn^0, whereas in $\Sigma^+ n^-$ the nonresonant background interferes destructively with the resonant amplitude at 760 MeV/c. The A_3's are again consistent with zero at 760 MeV/c. The dashed curves in the $A_2(\Sigma^- n^+)$ are the values of the coefficients of $\cos^2 \theta$ when $\Sigma^- n^+$ is fitted up to fourth order. The bump in $\cos^2 \theta$ is still significant, whereas the coefficients of $\cos^4 \theta$ (not shown) are consistent with zero.

Fig. 3. The χ^2 probability of describing two-body angular distributions with a fit of order n. The probability of a fit is defined as $\chi^2 = \int_0^\infty f(\chi^2, v) d\chi^2$, where χ^2_0 is the least-squares fit chi-square and v the number of degrees of freedom for that distribution. The numbers of events in each distribution are comparable at both momenta. However we had much less statistics in the $\Sigma^+ n^-$ channel (dashed lines) since only the pionic decays of the Σ^+ were used. All channels at 850 MeV/c clearly require $\cos^3 \theta$, whereas no significant amounts of that power are required anywhere at 760 MeV/c. A small amount of $\cos^4 \theta$ is needed for Λn^0 at 850 MeV/c.
Fig. 1.
Fig. 2.
Fig. 3.