Title
Self-consistent simulations of high-intensity beams and eclouds with WARP_POSINST

Permalink
https://escholarship.org/uc/item/2f19r8js

Authors
Vay, J.-L.
Furman, M.A.
Seidl, P.A.
et al.

Publication Date
2006-06-16
"Self-consistent simulations of high-intensity beams and e-clouds with WARP_POSINST".*

J.-L. Vay, M. A. Furman, P. A. Seidl, LBNL, CA, USA
R. H. Cohen, A. Friedman, D. P. Grote, M. Kirkeff Covo, A. W. Molvik, LLNL, CA, USA
P. H. Stoltz, S. Veitzer, Tech-X Corporation, USA
J. P. Verboncoeur, UC Berkeley, USA

We have developed a new, comprehensive set of simulation tools aimed at modeling the interaction of intense ion beams and electron clouds (e-clouds). The set contains the 3-D accelerator PIC code WARP and the 2-D "slice" e-cloud code POSINST, as well as a merger of the two, augmented by new modules for impact ionization and neutral gas generation. The new capability runs on workstations or parallel supercomputers and contains advanced features such as mesh refinement, disparate adaptive time stepping, and a new "drift-Lorentz" particle mover for tracking charged particles in magnetic fields using large time steps. It is being applied to the modeling of ion beams (1 MeV, 180 mA, K+) for heavy ion inertial fusion and warm dense matter studies, as they interact with electron clouds in the High-Current Experiment (HCX). We describe the capabilities and present recent simulation results with detailed comparisons against the HCX experiment, as well as their application (in a different regime) to the modeling of e-clouds in the Large Hadron Collider (LHC).

* This work was supported by the Director, Office of Science, Office of Fusion Energy Sciences, of the U.S. Department of Energy under Contract DE-AC02-05CH11231.