Title
Legumes versus rhizobia: a model for ongoing conflict in symbiosis.

Permalink
https://escholarship.org/uc/item/2f54d8cz

Authors
Sachs, JL
Quides, KW
Wendlandt, CE

Publication Date
2018-05-30

DOI
10.1111/nph.15222

Peer reviewed
Tansley insight
Legumes versus rhizobia: a model for ongoing conflict in symbiosis

Joel L. Sachs1,2,3, Kenjiro W. Quides1 and Camille E. Wendlandt2
1Department of Evolution Ecology & Organismal Biology, University of California, Riverside, CA 92521, USA; 2Department of Botany & Plant Sciences, University of California, Riverside, CA 92521, USA; 3Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA

Contents

Summary 1
I. Introduction 1
II. Selecting beneficial symbionts: one problem, many solutions 2
III. Control and conflict over legume nodulation 3
IV. Control and conflict over nodule growth and senescence 6
V. Conclusion 6
Acknowledgements 7
References 7

Summary

The legume–rhizobia association is a powerful model of the limits of host control over microbes. Legumes regulate the formation of root nodules that house nitrogen-fixing rhizobia and adjust investment into nodule development and growth. However, the range of fitness outcomes in these traits reveals intense conflicts of interest between the partners. New work that we review and synthesize here shows that legumes have evolved varied mechanisms of control over symbionts, but that host control is often subverted by rhizobia. An outcome of this conflict is that both legumes and rhizobia have evolved numerous traits that can improve their own short-term fitness in this interaction, but little evidence exists for any net improvement in the joint trait of nitrogen fixation.

I. Introduction

Plants can derive dramatic benefits from microbial partners, but intimate interactions with microbes carry risks. Legumes and rhizobia offer an ideal interaction for studying the challenges to host control over microbial colonization and infection. Multiple lineages of Proteobacteria have acquired the capacity to trigger nodule formation on legume roots (and sometimes stems) and are broadly defined as ‘rhizobia’. To obtain fitness benefit from nodulation, legumes must first select rhizobia from the microbial community in the rhizosphere (see Box 1 for glossary of terms), of which only a small subset is compatible to fix nitrogen on a particular host (Zgadzaj et al., 2016). Second, legumes must regulate investment into nodules to maintain the symbiosis at an acceptable cost-to-benefit ratio. Nodulation can become particularly costly for legumes if rhizobia fail to fix adequate nitrogen, if the host can cheaply acquire nitrogen from the soil, or if the number of nodules formed is excessive (Nishimura et al., 2002; Heath, 2010; Sachs et al., 2010a; Regus et al., 2015) (Fig. 1). In this paper, we present an integrated perspective on plant regulation of nodule organogenesis, growth, and senescence, in each case highlighting traits of rhizobia that can subvert control by the host. Some research has suggested that this interaction is largely beneficial and lacking in conflicts of interest (Friesen, 2012; Frederickson, 2017). However, the new datasets that we highlight reveal the unceasing evolutionary pressures of conflict faced by interacting legumes and rhizobia.
II. Selecting beneficial symbionts: one problem, many solutions

The typical legume–rhizobia interaction is initiated when plant roots release flavonoids (Box 1) into the soil, and in response the rhizobia secrete nod factors (NFs; Box 1) that initiate a cascade of transcriptional changes on compatible host roots (Wasson et al., 2006; Liu & Murray, 2016). The rhizobia enter root cells, where they differentiate into bacteroids (Box 1) and can fix nitrogen in exchange for photosynthates. However, many legume–rhizobia interactions do not fit this classic model. Within the legume family (and related plant taxa that nodulate with nitrogen-fixing bacteria) there is striking diversity in mechanisms of infection and nodule development. For instance, some legumes have evolved the capacity to form nodules on stem tissues, in some cases with rhizobia that do not even secrete the canonical NFs (e.g. Aeschynomene; Chaintreuil et al., 2016). Variation in the legume–rhizobia interaction reflects divergent biogeographic histories (Sprent et al., 2017), independent origins of noduleation within legumes (Werner et al., 2014), and the evolution of novel plant mechanisms to better control symbionts (Oono et al., 2010).

Host control over nodule infection and structure appears relatively simple in some root-nodulating plants. In nonlegumes and early-diverging legumes, cracks in the root epidermis allow nitrogen-fixing bacteria to opportunistically colonize root interiors. In some host taxa the rhizobia form fixation threads (Box 1) in which they are only partially internalized in host cells (Behm et al., 2014; Sprent et al., 2017). By contrast, infection is highly coordinated in many derived legume taxa, in which root hairs curl and entrap compatible rhizobia, the rhizobia become encased by plant-derived membranes, and differentiated bacteroids live in tightly controlled organelle-like structures called symbiosomes (Box 1). Nodule development also varies markedly among legumes. In legumes with determinate nodules, the nodules lack a meristem and cease growth after a short developmental period. In legumes with indeterminate nodule development, nodules retain active meristems similar to other root tissues. Some legumes have further evolved to enforce terminal bacteroid differentiation (TBD;
Box 1) such that the differentiated rhizobia cannot escape and survive outside the nodule (though undifferentiated rhizobia remain viable within the host). TBD has evolved in diverse legumes, but is much more common in indeterminate than determinate nodules (Oono et al., 2010).

An important unaddressed question is whether these different modes of control over infection and nodule development represent plant adaptations to enhance symbiotic benefits. Herein, we assemble data from 106 recent publications to test whether variation in nodule phenotypes (crack vs root hair infection, fixation threads vs symbiosomes, indeterminate vs determinate development, undifferentiated bacteroids vs TBD) has significant effects on nitrogen fixation in nodules. Multiple methods are available to quantify nitrogen fixation, but each approach has flaws. We use studies employing the acetylene reduction assay, the only method that has been broadly applied across legume taxa (Supporting Information Methods S1). The critical caveat with the acetylene reduction assay is that common test conditions (e.g. disruption of roots, incubating tissues in acetylene for long periods) can artificially reduce nitrogenase activity (Minchin et al., 1983, 1986). We carefully curated the dataset to quantify and minimize artificial sources of variance, but still view these data as preliminary given the challenges of standardizing data from so many sources (Methods S1).

We found the consistent trend that root hair infection (in comparison with crack infection) was associated with an increase in maximum nitrogenase activity (Fig. 2; Methods S1; Table S1), but this pattern was only significant in the sister lineage to legumes. Other nodule traits did not show significant effects on nitrogen fixation (Methods S1; Table S1). Previous work showed that TBD has evolved multiple times (Oono et al., 2010) and is sometimes linked to increased efficiency of symbiotic nitrogen fixation (Oono & Denison, 2010), but our larger dataset did not support that pattern. These data suggest the possibility that, even after millions of years of evolution, plant adaptation has only rarely increased nitrogen fixation in a permanent way. However, we view these data cautiously, as there is a lot of variance introduced by the time course in which the acetylene reduction assay is applied and by disruption of the roots (Minchin et al., 1983, 1986). Future work should rely on the more accurate15N isotope method that measures relative abundance of the 15N vs 14N stable isotopes, since this ratio is depressed in plants gaining most of their nitrogen from symbiotic fixation (Regus et al., 2017b).

In parallel, we can ask whether plant evolution has led to major changes in host investment to in planta rhizobia. We assembled data from 87 recently published papers that assess histological features of nodules that can provide potential proxies of rhizobia fitness (Fig. 3; Methods S2; Table S2). We test for variation among host taxa and dependent on the host’s ability to enforce TBD (Oono & Denison, 2010; Oono et al., 2010). These data suggest that cool-season legumes might invest less in rhizobia than warm-season legumes, in terms of bacteroid population density within nodules. More strikingly, the data suggest that evolution of TBD has significantly decreased the size of infected plant cells and the number of bacteroids per unit area and per symbiosome. Interestingly, when comparing among plant species inoculated with identical rhizobia, hosts with TBD also formed smaller nodules and less nodule mass per shoot mass (Oono & Denison, 2010). Although taxonomic sampling is coarse, these analyses suggest that host adaptation has in some cases led to significant decreases in investment into rhizobia.

III. Control and conflict over legume nodulation

For rhizobia, nodulation offers substantial fitness benefits that appear achievable in the highly competitive soil and

Fig. 1 Legume and rhizobia conflict over nodule number. (a) Costs vs benefits of nodulation are modeled. Plant costs to nodulation (carbon, C) are predicted to be a linear function of the number of nodules formed (Nod#) with a slope of \(m \) (cost per nodule): \(f(C) = m \times \text{Nod#} \). Plant benefits from nodulation (nitrogen, N) are predicted to be a negative exponential function, \(f(N) = N \left(1 - e^{-a \times \text{Nod#}} \right) \), with diminishing returns that reach an asymptote at \(a \) and diminish at a rate corresponding to \(B \). (b) Net benefits of nodulation can be calculated by subtracting the cost from the benefit functions. The net benefit function for nodulation is unimodal, increasing with the formation of nodules (zone of cooperation) until the optimal number of nodules is reached (N–Cmax), and above which additional nodules reduce the host benefit (zone of conflict). If too few or too many nodules are formed, the host does not acquire the net minimal benefit to set seed (i.e., N–Cmin). (c) Host fitness (i.e. growth, seed set) varies with the number of nodules formed. *Lotus japonicus* mutants have been generated that form too many nodules compared with wild-type and thus experience reduced fitness (Nishimura et al., 2002).
rhizosphere environments outside of the host (Zgadzaj et al., 2016). Conversely, plant hosts benefit from nodulation only under certain conditions, such as when soils are nitrogen poor and contain compatible, nitrogen-fixing rhizobia (Regus et al., 2017b). Among legume taxa, there is wide variation in their specificity for restricting nodulation, often dependent on the production of host-specific flavonoids (Wasson et al., 2006; Liu & Murray, 2016) and host root receptors that recognize specific diversity of rhizobia strains legume species are only able to form nodules with a low genetic compatibility with increased SNA within any clade or across clades (Methods S1). These data suggest that the early evolution of root hair infection increased symbiotic efficiency in the symbiosis more than ‘generalist’ hosts (Ehinger et al., 2014). A specialist–generalist trade-off would suggest that hosts often benefit from blocking many rhizobia strains, which conflicts with the fitness interest of rhizobia to increase nodulation. This sets up the expectation that legumes are selected to manipulate nodulation, both in terms of which rhizobia nodulate (see following paragraph) and how many nodules form. In Fig. 1, we model how host plants regulate nodule formation to achieve maximum return on investment.

Recent work on host control of nodule formation has highlighted the importance of legume root receptors that recognize strain-specific surface polysaccharides of rhizobia (Via et al., 2016; Kawaharada et al., 2017). ‘Specialist’ legume species are only able to form nodules with a low genetic compatibility of rhizobia strains – and thus might occupy fewer environments – but can gain greater mean fitness benefits from the symbiosis than more ‘generalist’ hosts (Ehinger et al., 2014). In some instances, mutations introduced into the host receptors or the corresponding symbiont polysaccharides can lead to rhizobia being diverted from their normal route of intracellular infection (Kawaharada et al., 2017). However, the rhizobia can nonetheless form nodules via passive crack entry (Acosta-Jurado et al., 2016), or through reentry into plant cells from intercellular space (Kawaharada et al., 2017). Moreover, host control over nodulation specificity can also be overwhelmed. Some
Fig. 3 Evolution of host investment into nodulating symbionts. We collected data from 87 published articles to quantify host investment into nodulating symbionts (Supporting Information Methods S2; Table S2). We analyzed four phenotypes unique to nodulating symbionts, including (a) mean proportion of each nodule infected (area of infected plant cells divided by the total nodule area), (b) the average area of infected plant cells, (c) mean bacteroid density per micrometer squared, and (d) mean bacteroids per symbiosome. Four host clades are represented, and genera within them are provided in a phylogenetic context. Measured values were first analyzed among clades at the genus level to examine broad phylogenetic differences, and a connecting letter report indicates significant differences among clades for each measurement taken (ANOVA, post-hoc Tukey HSD test; (a) $F_{3,20} = 6.0271$, $P = 0.0055$; (b) $F_{3,15} = 1.9821$, $P = 0.1705$; (c) $F_{2,18} = 7.7791$, $P = 0.0044$; and (d) $F_{2,19} = 2.1507$, $P = 0.1470$). Error bars are one SEM. We then analyzed the effects of terminal bacteroid differentiation (TBD (orange bars) vs nodules without terminal differentiation (blue bars) on rhizobia nodule phenotypes across all clades (horizontal lines represent mean values) (a) $t = -1.66$, df = 140, $P = 0.0986$; (b) $t = -3.50$, df = 117, $P = 0.0007$; (c) $t = -5.59$, df = 148, $P < 0.0001$; and (d) $t = -3.12$, df = 145, $P = 0.0022$. These data suggest that hosts have evolved to decrease investment in symbionts by the evolution of TBD.
rhizobia produce a cocktail of NFs that gives them access to diverse host species in which they frequently fix little or no nitrogen (Pueppke & Broughton, 1999). Other genotypes of rhizobia dominate host nodules and rhizospheres through mechanisms correlated with antibiotic resistance and catabolic flexibility, which can promote persistence in the host (Hollowell et al., 2015, 2016a, b). Finally, some rhizobia evade host control over nodulation specificity by hitchhiking into the nodule alongside NF-secreting strains without themselves having any of the genes to encode NFs (Gano-Cohen et al., 2016).

Soybeans have a unique mechanism to restrict nodulation by harmful rhizobia. The *Bradyrhizobium elkanii* strain USDA61 produces many nodules on soybeans while fixing low levels of nitrogen (Yasuda et al., 2016) and can induce chlorosis in the host with rhizobioxine (Tang et al., 2016). The soybean resistance allele *Rj4* encodes a thaumatin-like protein that is responsible for effector-triggered immunity (Tang et al., 2016) and allows the host to terminate nodules formed by USDA61 (Yasuda et al., 2016). However, a mutant screen discovered seven single-gene USDA61 mutants that can override the *Rj4* defense and successfully infect soybean hosts (Faruque et al., 2015). No *Rj4* homologue has been found in other species, but it is likely that similar mechanisms exist in other legumes.

Perhaps the most important gap in host control is that legumes have little or no ability to detect nitrogen fixation capacity of rhizobia strains before nodule formation. Classic mixed inoculation experiments using isogenic strains varying in nitrogen fixation function have shown that hosts are nodulated with equal frequency by both (Amarger, 1981; Hahn & Studer, 1986). Therefore, hosts permit nodulation based on signals of rhizobia compatibility in the rhizosphere that can occur days before infection, and weeks before nitrogen fixation commences. Given the gaps in host control over nodulation formation, post-infection mechanisms of host control are a critical second layer of legume defense.

IV. Control and conflict over nodule growth and senescence

After nodule formation, conflicts of interest arise over the exchange of fixed nitrogen for plant carbon, and rhizobia can evolve to adjust this trade in their favor. For instance, starvation experiments show that rhizobia can hoard carbon from hosts as the storage molecule polyhydroxybutyrate (PHB; Box 1) to increase their subsequent survival when they escape from the host into the soil (Ratcliff et al., 2008). While the exact role of PHB is debated (Box 1), it is interesting that only some rhizobia accumulate PHB at high levels (Ratcliff et al., 2008). Conversely, some legume taxa have evolved to maximize nitrogen fixation efficiency at the expense of bacteroid viability by inducing *HrrP* expression directly increases fitness of rhizobia in planta, suggesting that NCR peptide signaling is involved in an ongoing evolutionary arms race between symbionts and hosts that attempt to impose TBD.

Legumes can also senesce nodules to halt investment into rhizobia when the costs of symbiosis become too great, such as during dark stress (Vauclare et al., 2010) or when nodules are infected by rhizobia that fix negligible nitrogen (i.e. Fix−; Berrabah et al., 2015). Rhizobia benefit from delaying senescence, whereas legume hosts benefit from senescing nodules when costs of rhizobia outweigh the benefits. For instance, by providing little or no nitrogen, Fix− rhizobia can exploit host resources without paying the high energetic expense of fixing nitrogen (Heath, 2010; Sachs et al., 2010a; Porter & Simms, 2014). Fix− rhizobia can impose important costs on hosts, resulting in a 12–28% reduction of leaf nitrogen content (Regus et al., 2015). However, legumes can sanction (Box 1) Fix− rhizobia by causing these nodules to senesce prematurely, significantly reducing fitness of the rhizobia (Sachs et al., 2010b; Oono et al., 2011; Regus et al., 2017a). A key step during nodule senescence is the neutralization of the peribacteroid space (Box 1) that surrounds the symbiosome, an otherwise acidic environment which facilitates import of host resources (Pierre et al., 2013). When Fix− mutants infect *Medicago truncatula* hosts, they fail to obtain full peribacteroid space acidification, suggesting that hosts can abort symbiosome development if nitrogen fixation is insufficient (Pierre et al., 2013). Intriguingly, there is evidence that undifferentiated ‘saprophytic’ rhizobia can escape into senescent portions of indeterminate nodules (where rhizobia that are no longer fixing nitrogen are broken down) and scavenge host resources before presumably returning to the soil (Timmers et al., 2000). Thus, hosts might not recover all the resources invested in this interaction, and rhizobia might be selected to exploit this rich resource.

Finally, legumes and rhizobia are in conflict over the regulation of the oxygen environment inside the nodule. Nitrogenase is rapidly inactivated by oxygen, so hosts maintain a microaerobic environment inside nodules through a cellular oxygen diffusion barrier and expression of the oxygen carrier leghemoglobin (Sujkowska et al., 2011). Conceivably, rhizobia benefit from increased free oxygen to the extent that this increases bacteroid respiration, whereas hosts benefit from adjusting the nodule oxygen environment according to their immediate nitrogen requirements. Therefore, oxygen restriction could be a host mechanism to decrease in planta fitness of ineffective symbionts, potentially by restricting respiration rates (Kiers et al., 2003).

V. Conclusion

The legume–rhizobia association has many features of an antagonistic arms race, with hosts evolving diverse mechanisms of control and rhizobia evolving subversion of host control. Within these taxa, variation in fitness outcomes and recurrent loss of the ability to initiate symbiosis for both hosts (Werner et al., 2014) and...
symbionts (Sachs et al., 2010a) suggests that the legume–rhizobia interaction might be regularly moving into a context of net cost. A common thread in these interactions is that rhizobia exhibit an evolutionary advantage over hosts by having greater population sizes and faster reproduction rates. Therefore, rhizobia are expected to recurrently gain the capacity to exploit hosts, causing selection on hosts to evolve novel or enhanced defense mechanisms, perhaps with little opportunity for hosts to be exploitative themselves (Porter & Simms, 2014). Research is needed to further understand these processes, to elucidate mechanisms of exploitation and defense, and to uncover the stepwise process by which these mechanisms evolve.

Acknowledgements

We thank Kurt Anderson, Khadija Al Moussawi, James Moore, and Fathi Salaheldine for assistance with data gathering and analysis, and three anonymous reviewers for critical comments. Joel Sachs was supported by US National Science Foundation grants, including DEB 1150278 and 1738009.

References

Supporting Information

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Table S1 Statistical summary and raw data for Fig. 2
Table S2 Statistical summary and raw data for Fig. 3

Methods S1 Methods and references used for Fig. 2.
Methods S2 Methods and references used for Fig. 3.

Please note: Wiley Blackwell are not responsible for the content or functionality of any Supporting Information supplied by the authors. Any queries (other than missing material) should be directed to the New Phytologist Central Office.

About New Phytologist

• New Phytologist is an electronic (online-only) journal owned by the New Phytologist Trust, a not-for-profit organization dedicated to the promotion of plant science, facilitating projects from symposia to free access for our Tansley reviews and Tansley insights.

• Regular papers, Letters, Research reviews, Rapid reports and both Modelling/Theory and Methods papers are encouraged. We are committed to rapid processing, from online submission through to publication ‘as ready’ via Early View – our average time to decision is <26 days. There are no page or colour charges and a PDF version will be provided for each article.

• The journal is available online at Wiley Online Library. Visit www.newphytologist.com to search the articles and register for table of contents email alerts.

• If you have any questions, do get in touch with Central Office (np-centraloffice@lancaster.ac.uk) or, if it is more convenient, our USA Office (np-usaoffice@lancaster.ac.uk)

• For submission instructions, subscription and all the latest information visit www.newphytologist.com