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Abstract—We study capacity of social networks when nodes
communicate in a wireless environment. Such hybrid networks
that are combination of wireless communication and social
networks are defined as composite networks. Each node has at
least one local contact in each of four directions of the network
area and q(n) independent long-range contacts, one of which is
selected as the destination. We study the throughput capacity for
such networks containing n nodes assuming the same number
of social contacts for all nodes. The nodes communicate using
multi-hop communications through relaying the packet to one of
their local contacts until the packet reaches the destination. The
distance between source and its long-range social contacts follows
power law distribution with parameter α. The order capacity is
derived and compared for different values of α and q(n).

I. INTRODUCTION

The throughput capacity of wireless communication net-
works has been extensively studied in literature. In most
available analysis, source-destination pair selection is based
on a uniform distribution. Gupta and Kumar [1] computed
the achievable throughput capacity in such networks using
the routing algorithm which transports information through
the shortest path. However, in most practical networks the
source-destination association does not follow the uniform and
random distribution. Each source belongs to a social group
and it only communicates to the members of its social group.
Therefore, the social behavior of nodes has some direct effect
on the throughput capacity. This hybrid network that has
characteristics of both communication and social networks is
defined as composite network.

Social networks have been studied extensively for wired
networks. For example, the condition to exhibit small-world
phenomenon was first discovered by Kleinberg [3]. His work
considered a two dimensional grid network that each node has
four local contacts and one long-range contact. This paper was
based on earlier work by Watts and Strogatz [6] that divided
the edges of the network into local and long-range contacts
and assumed that there is always an edge between a node
and its social contacts. In Kleinberg paper [3], the source
node s selects any other node v as its long-range contact
with a probability proportional to d−α(s, v), where d(s, v)
is the lattice distance between s and v. Li et al. [2] studied

an extended network’s capacity considering almost the same
assumptions.

We studied [8] the interaction between communication and
social networks in dense networks considering local contacts
and a single long-range contact. The source-destination pair
selection followed the power law distribution, i.e., Pr(t is
long-range contact of s) = d−α(s,t)∑

v d−α(s,v) , where s and t are
any two nodes, d(s, v) is the Euclidean distance between s
and any other node v, and α ≥ 0 shows how dense the social
network is. The results in [8] are limited in scope because in
practical systems, each node usually has more than one long-
range social contact. In this paper, we study the more general
case in which each source has at least one local contact in
each perpendicular direction, and q long-range contacts, one
of which is randomly selected as the destination. We will
investigate the effect of the density and size of the social
groups on the throughput capacity of the network. To the best
of our knowledge, this is the first work in literature which
studies the interaction between wireless communication and
social networks under such a general condition.

The rest of the paper is organized as follows. In section II,
we introduce the notations, and some definitions and theorems
that we will use throughout the paper. Section III shows that
the original power law distribution introduced by Kleinberg [3]
cannot be applied when the number of long-range contacts
q is a function of total number of nodes in the network.
This limitation was also mentioned by Kleinberg in his paper.
Further, a new power law distribution is introduced that is
applicable for all values of q. The main results of our work
on the capacity bounds are presented in section IV and derived
in details in section V. Section VI discusses the results. The
paper is concluded in section VII.

II. PRELIMINARIES

The network is a dense network in a unit square area with
n uniformly distributed nodes. We use the protocol model [4]
for successful communications. Node i at position Xi can
successfully transmit to node j at position Xj if for any node
k at position Xk, k "= i, that transmits at the same time as
i, then |Xi − Xj | ≤ r(n) and |Xk − Xj | ≥ (1 + ∆)r(n),
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where Xi, Xj and Xk are the Cartesian positions in the unit
square area for these nodes, and ∆ > 0 is the guard zone
factor. A common transmission range r(n) is considered for
all the nodes in the network. To guarantee connectivity in this
network [5], the transmission range (r(n)) is assumed to be
r(n) = Θ(

√
logn/n).

The TDMA medium access control scheme is shown in fig.
1. The network area is divided into square-lets with side-length
C1r(n), (C1 < 1

4 ), and at any given time the cells separated by
M square-lets distance are the only cells allowed to transmit
as shown in gray color in fig. 1 where M ≥ (2 +∆)/C1.

S

r(
n
) 

R
1

R
2

x
 
h

o
p

s
C

1
r
(
n

)

s
1

s
2

s
4x

M square-lets

Fig. 1. The solid-line circle shows the transmission range. Dark gray cells
(si) contain the nodes with P (X = x). R1 (R2) are used as the distance
of each node in this region instead of their real distances to achieve upper
(lower) bounds on P (X = x).

The decentralized routing protocol used in this work is very
simple. Each node selects one of its local contacts in its four
adjacent cells which is the closest one to the destination. The
local contacts are within the radio range since they are the one
hop physical neighbors of the node. Assuming that there is at
least one local contact in each of the four adjacent cells of the
source guarantees that this simple routing protocol converges.

We use the notation of [7] to denote the elementary sym-
metric polynomials of the variables x = (x1, ..., xn) by
σp,n, 1 ≤ p ≤ n. In other words,

σp,n(x) = σp,n(x1, ..., xn) =
∑

1≤i1<i2<..<ip≤n

xi1 ...xip .

Moreover, we define the elementary symmetric polynomials
of the same set of variables except one, xk, as

σk
p,n−1(x1, ..., xn) = σp,n−1(x1, ..., xk−1, xk+1, ..., xn).

Lemma 1- Let x1, ..., xn be non-negative real numbers, n ≥
2. Then for 1 ≤ p ≤ n− 1 we have

σ1,nσp,n ≥ n(p+ 1)

n− p
σp+1,n.

The proof is described through induction in [7].
In Lemma 2 we will prove that for values of p that does

not grow as fast as n, this bound is a tight bound.

The notation f(n) ≡ g(n) is used when f(n) is in the same
order as g(n), i.e., f(n) and g(n) have the same asymptotic
order (f(n) = Θ(g(n))). Also, the standard notations of O
and Ω are used to describe the asymptotic upper and lower
bounds.

III. PROBABILITY FUNCTION OF THE DESTINATION

Kleinberg [3] has studied the wired two dimensional grid
with directed edges, in which every node s has a directed
edge to every other node vi within lattice distance p ≥ 1, and
directed edges to q ≥ 0 other nodes using independent random
trails. The jth directed edge from s has endpoint vi, i = 1, .., n
with probability proportional to d−α

i =̂d−α(s, vi) and normal-
izing constant

∑n
i=1 d

−α
i . Considering the same probability

distribution function for long-range contacts, the probability
that the long-range contact (LRC) list contains exactly q
independently selected members is

P (|LRC| = q) =
∑

1≤i1<...<iq≤n

P (LRC = {vi1 , ..., viq})

=
∑

1≤i1<...<iq≤n

q∏

j=1

P (vij ∈ LRC)

=
∑

1≤i1<...<iq≤n

d−α
i1

...d−α
iq

(
∑n

j=1 d
−α
j )q

.

As can be seen, this probability is close to one for q = Θ(1),
decreases by increasing q, and approaches zero when q =
Θ(n). Kleinberg [3] mentioned that q is universally constant
value and the above derivation proves that the original power
law distribution should be modified when q is a function of n.
In this paper, we assume that each source node has exactly
q(n) long-range contacts selected in independent random
trials.

The long-range contacts are selected independently, while
closer nodes to the source have more chance of being selected
as the long-range contact, thus, the probability that a particular
q-member set is the long-range contact set, is proportional to
the product of the inverse of the distances of its members from
the source. This probability can be written as

P (LRC = {vi1 , ..., viq}) ∝ d−α
i1

...d−α
iq

=
d−α
i1

...d−α
iq

Nα,q
. (1)

The normalization factor is obtained using the fact that∑
1≤i1<...<iq≤n P (LRC = {vi1 , ..., viq}) = 1.

Nα,q =
∑

1≤i1<...<iq≤n d
−α
i1

...d−α
iq

. (2)

The probability that a particular node vk is selected as a
long-range contact, i.e. the probability that vk is a member of
the long-range contact set (P (vk ∈ LRC)), is given by

ij #=k∑

1≤i1<...<iq−1≤n

P (LRC = {vk, vi1 , ..., viq−1})

=

∑
1≤i1<...<iq−1≤n,ij #=k d

−α
k d−α

i1
...d−α

iq−1∑
1≤i1<...<iq≤n d

−α
i1

...d−α
iq

.



The above probability function, which shows the probability
of node vk being in LRC, is non-decreasing in q, and also
ensures that the described process ends up with a q-member
long-range contact set for each source node.

Let vt be a random variable which denotes the destination
node. Then for each particular vk ∈ V (set of nodes except
source) we have

P (vt = vk) = P (vt = vk | vk ∈ LRC)× P (vk ∈ LRC)

+ P (vt = vk | vk /∈ LRC)× P (vk /∈ LRC).

Since the destination is only selected from long-range
contacts, then P (vk /∈ LRC) = 0. Further, the selection of
destination from long-range contacts has uniform distribution.

P (vt = vk) =
1
qP (vk ∈ LRC)

=
∑

1≤i1<...<iq−1≤n,ij #=k d−α
k

∏q−1
j=1 d−α

ij

q
∑

1≤i1<...<iq≤n

∏q
j=1 d−α

ij

Lets define the notation v = (v1, ..., vn) for (d−α
1 , ..., d−α

n ),
then the above equation can be written as

P (vt = vk) =
d−α
k σk

q−1,n−1(v)

qσq,n(v)
. (3)

IV. MAIN RESULTS

Theorem 1- Consider a dense network with nodes associ-
ating to social groups communicate in a wireless environment.
Each node has at least one local contact in each perpendicular
direction, and q long-range contacts selected independently.
Long-range contacts are selected based on power law distri-
bution with parameter α and one of long-range contacts is the
destination for the node. The maximum achievable capacity in
this network is






Θ( 1√
n logn

), for q = Θ(n)

Θ( 1√
n logn

), for (q, q
n )

n→∞→ (∞, 0)

Θ(n−q+1
n

1√
n logn

), for q < ∞, 0 ≤ α < 2

Θ(n−q+1
n2 ( n

logn )
α−1
2 ), for q < ∞, 2 ≤ α ≤ 3

Θ(n−q+1
n

1
logn ). for q < ∞, 3 < α

V. THROUGHPUT CAPACITY ANALYSIS

Lets define λ as the data rate for each node and X as the
number of hops traveled by each bit from source to destination.
Thus, the total number of concurrent transmissions in such a
network would be nλE[X], where E[X] is the average number
of hops between any source-destination pair. This value is
upper bounded by the total bandwidth W available divided
by the number of non-interfered groups in TDMA scheme as
shown in fig. 1 ( W

M2C2
1r

2(n)
). Therefore, using the minimum

transmission range to guarantee connectivity, the maximum
data rate in this network is [8]

λ ≤ λmax = Θ(
1

log nE[X]
). (4)

As described in [8], the average number of hops can be
computed as

E[X] =
xmax∑

x=1

xP (X = x) = P (X = 1) +
xmax∑

x=2

xP (X = x).

P (X = 1) is the probability that the packets travel just one
hop from source to destination. Thus, it is a positive number
less than one, so we can ignore it when deriving the order of
expected number of hops.

Since all the nodes inside the transmission range of a source
receive the data transmitted from it in just one hop, P (X =
x) = 0 for 1 < x < + 1

C1
+ 1,. And as the maximum number

of hops is 2
C1r(n)

, P (X = x) should be calculated for x =

+ 1
C1

+ 1,, ..., + 2
C1r(n)

,.

E[X] ≡
' 2
C1r(n) (∑

' 1
C1

+1(

xP (X = x)

The geometric place of the nodes in a distance of x hops
from the source node is a rhombus around it as shown in
fig. 1 and explained in [8]. The probability that there exist x
hops between the source and the destination is equal to the
probability that the destination is located in one of the cells
on the boundaries of this rhombus.

P (X = x) =
4x∑

l=1

P (destination is inside sl)

=
4x∑

l=1

∑

vk in sl

P (vt = vk)

Therefore,

E[X] ≡
' 2
C1r(n) (∑

' 1
C1

+1(

x
4x∑

l=1

∑

vk in sl

P (vt = vk)

≡
' 2
C1r(n) (∑

' 1
C1

+1(

x
4x∑

l=1

∑

vk in sl

d−α
k σk

q−1,n−1(v)

qσq,n(v)
. (5)

For the rest of the paper, we compute the average number
of hops based on different values of q as a function of n.

A. Case I: q grows with n

If q = n, then E[X] can be rewritten as

E[X] ≡
' 2
C1r(n) (∑

x=' 1
C1

+1(

x
4x∑

l=1

∑

vk in sl

d−α
k σk

n−1,n−1(v)

nσn,n(v)
.

It is easy to show that d−α
k σk

n−1,n−1(v) = σn,n(v), there-
fore

E[X] ≡
' 2
C1r(n) (∑

x=' 1
C1

+1(

x
4x∑

l=1

∑

vk in sl

1

n
.



There are nC2
1r

2(n) nodes inside each cell sl, thus

E[X] ≡
' 2
C1r(n) (∑

x=' 1
C1

+1(

4x2C2
1r

2(n)

≡ r2(n)

∫ ' 2
C1r(n) (

' 1
C1

+1(
u2du ≡ 1

r(n)
≡

√
n

log n
.

Now let q = Θ(n) but q "= n. Let Yi = d−α
i be i.i.d.

random variables for 1 ≤ i ≤ n and define the sequence
Zi = log Yi for all values of i. It is obvious that Zi are
i.i.d. as well. Utilizing the law of large numbers, we have
limm→∞

1
m

∑m
i=1 Zi = Z where Z is the expected value of

random variable Zi.
Thus eq. (3) can be computed as

P (vt = vk) ≡
∑

1≤i1<..<iq≤n,∃h:ih=k

∏q
j=1 Yij

q
∑

1≤i1<..<iq≤n

∏q
j=1 Yij

≡
∑

1≤i1<..<iq≤n,∃h:ih=k exp qZ

q
∑

1≤i1<..<iq≤n exp qZ

≡
(n−1
q−1 )

q(nq )
=

1

n
.

Thus, the value of E[X] is similar to the case q = n.
Utilizing eq. (4) provides the maximum capacity as

λmax = Θ(
1√

n log n
).

B. Case II: n grows much faster than q

In most practical social networks such as facebook, the
growth rate of the the number of friends (social contacts)
does not grow as fast as the network. The expected number
of hops between source and destination is derived when
limn→∞

q
n = 0.

This case includes two different situations, limn→∞ q =
∞ or limn→∞ q < ∞. We will study these cases separately.
When limn→∞ q = ∞, we can use law of large numbers and
similar procedure as before to arrive at the same conclusion
as before for both E[X] and λmax.

Now we consider the case where each node has finite
number of contacts (limn→∞ q < ∞). The numerator of
P (vt = vk) can be expanded as

d−α
k σk

q−1,n−1(v) = d−α
k (σq−1,n(v)− d−α

k σk
q−2,n−1(v)),

= d−α
k (σq−1,n(v)− d−α

k (σq−2,n(v)− d−α
k σk

q−3,n−1(v))).

Note that d−α
k and σq−i,n−j are positive values. Hence the

upper and lower bounds for P (vt = vk) are obtained as

Plower ≤ P (vt = vk) ≤ Pupper, (6)

where Pupper =
d−α
k σq−1,n(v)
qσq,n(v)

= Plower +
d−2α
k σq−2,n(v)

qσq,n(v)
.

Lemma 2- Let X = {x1, ..., xn} be a set of n ≥ 2 non-
negative real numbers. Then for finite p, i.e. limn→∞ p < ∞,
we have

σ1,nσp,n

(p+ 1)σp+1,n
= Θ(

n

n− p
). (7)

Proof- Let random variables Up
i = xi1 ...xip , i = 1, .., (np )

where 1 ≤ i1 < .. < ip ≤ n. Hence due to symmetry,
these random variables are identically distributed. Moreover
their mean Up is a function of p. It can be easily seen
that these variables are not independent, as they may have
common factors of xij . We partition the set X into p-member
subsets. Assume that T p is the set of all possible such
partitionings (each denoted by T p

i ) with no common member,
i.e. T p

i ∩T
p
j = φ. Thus for finite p, the number of T p members

is |T p| ≡ (np )/(
n
p ) = (n−1

p−1 ).
Now we can expand σp,n to separate summations over

different partitions described above. Thus,

σp,n =
∑

1≤i1<..<ip≤n

xi1 ..xip =

|Tp|∑

j=1

∑

{xi1 ..xip}∈Tj

xi1 ..xip .

Since each inner summation is applied over one possible
partitioning of X , it is performed over n

p of independent Ui

as described before. The law of large numbers can be applied
here.

lim
n→∞

∑

{xi1 ..xip}∈Tp
j

xi1 ..xip = lim
n→∞

∑

{xi1 ..xip}∈Tp
j

Ui,p =
n

p
Up

Thus,

σp,n =

|Tp|∑

j=1

n

p
Up = (np )Up.

Similar formulation can be derived for σp+1,n.

σp+1,n =

|Tp+1|∑

j=1

n

p+ 1
Up+1 = (np+1)Up+1

Therefore,

σ1,nσp,n

(p+ 1)σp+1,n
=

σ1,n(np )Up

(p+ 1)(np+1)Up+1
.

Note that Up
i have identical distribution and xi are i.i.d.,

then the expected value Up+1 can be expressed in terms of
Up.

Up+1 = E[Up+1
i ] = E[xi1 ...xip+1 ]

=
∑

xip+1

E[xi1 ...xipxip+1 |xip+1 ]p(xip+1)

= Up

∑

xip+1

xip+1p(xip+1) = Up.x

Further, by utilizing law of large numbers for σ1,n results in
σ1,n → nx. Thus,

σ1,nσp,n

(p+ 1)σp+1,n
≡

n(np )

(p+ 1)(np+1)
=

n

n− p
.

!



Now returning to the case of finite contacts, we use Lemma
2 (for p = q− 1) and inequality (6) to obtain an upper bound
for E[X] in eq. (5).

E[X] ≤
' 2
C1r(n) (∑

' 1
C1

+1(

x
4x∑

l=1

∑

vk in sl

d−α
k σq−1,n(v)

qσq,n(v)

≡ n

n− q + 1

' 2
C1r(n) (∑

' 1
C1

+1(

x
4x∑

l=1

∑

vk in sl

d−α
k

σ1,n
(8)

It can be observed that the average number of hops in this
case is n

n−q+1 times more than the case when there is only
one long-range contact for each source [8]. To calculate the
above summation, we need to compute the distance between
each node in si and the source. To simplify the problem,
we use distances R1 = xC1r(n)/A1 and R2 = A2xC1r(n)
(A1, A2 > 1) for all such nodes to reach upper and lower
bounds for this summation (see fig. 1).

4x∑

l=1

∑

vk in sl

(A2xC1r(n))
−α ≤

4x∑

l=1

∑

vk in sl

d−α
k

≤
4x∑

l=1

∑

vk in sl

(xC1r(n)/A1)
−α

By replacing the number of nodes in each cell by nC2
1r

2(n)
and ignore the constant values in the above inequality, we can
see that the order of both upper and lower bounds are the
same.

' 2
C1r(n) (∑

' 1
C1

+1(

x
4x∑

l=1

∑

vk in sl

d−α
k ≡ nr2−α(n)

' 2
C1r(n) (∑

' 1
C1

+1(

x2−α

a≡ nr2−α(n)

∫ ' 2
C1r(n) (+1

' 1
C1

+1(
u2−αdu

(a) is obtained by replacing the sum to integral approximation.
After we Compute the integral, we arrive at
' 2
C1r(n) (∑

' 1
C1

+1(

x
4x∑

l=1

∑

vk in sl

d−α
k ≡






Θ(n
√

n
logn ), 0 ≤ α < 3

Θ(n
√

n
logn

α−2
), 3 ≤ α

(9)

According to [8], σ1,n can be written as

σ1,n ≡






Θ(n) , for 0 ≤ α < 2

Θ(n
√

n
logn

α−2
) , for 2 ≤ α

(10)

Now we can use these results in inequality (8) and obtain
the following upper bound for E[X]. Note that E[X] ≥ 1,
therefore, if the computation ends up with E[X] < 1, we
replace it with 1.

E[X] =






O( n
n−q+1

√
n

logn ) , for 0 ≤ α < 2

O( n
n−q+1

√
n

logn

3−α
) , for 2 ≤ α ≤ 3

O( n
n−q+1 ) , for 3 < α

The lower bound capacity follows immediately.

λmax =






Ω(n−q+1
n

1√
n logn

) , for 0 ≤ α < 2

Ω(n−q+1
n2

√
n

logn

α−1
) , for 2 ≤ α ≤ 3

Ω(n−q+1
n

1
logn ) , for 3 < α

Thus these are the upper bounds of E[X] and lower bounds
of capacity if the number of long-range contacts is a finite
number greater than one.

In order to compute the lower bound for E[X], we will
study the lower bound of P (vt = vk) in inequality (6). First,
we calculate the order of σq−2,n(v)

qσq,n(v)
. This value is obtained by

replacing p = q − 1 and p = q − 2 in eq. (7).
σ1,nσq−1,n

qσq,n
= Θ(

n

n− q + 1
)

σ1,nσq−2,n

(q − 1)σq−1,n
= Θ(

n

n− q + 2
)

By multiplying these two equations and combining with eq.
(10), we arrive at

σq−2,n

qσq,n
= Θ(

(q − 1)n2

(n− q + 1)(n− q + 2)σ2
1,n

)

=

{
Θ( (q−1)

(n−q+1)(n−q+2) ) , for 0 ≤ α < 2

Θ( (q−1)(logn)α−2

(n−q+1)(n−q+2)nα−2 ) , for 2 ≤ α
(11)

The lower bound for E[X] is derived by combining eq. (5)
and inequality (6).

E[X] ≥
' 2
C1r(n) (∑

' 1
C1

+1(

x
4x∑

l=1

∑

vk in sl

d−α
k σq−1,n(v)− d−2α

k σq−2,n(v)

qσq,n(v)
,

=
σq−1,n(v)

qσq,n(v)

' 2
C1r(n) (∑

' 1
C1

+1(

x
4x∑

l=1

∑

vk in sl

d−α
k ,

− σq−2,n(v)

qσq,n(v)

' 2
C1r(n) (∑

' 1
C1

+1(

x
4x∑

l=1

∑

vk in sl

d−2α
k .

If we replace the terms in negative part of the above formula
with their equivalents from eqs. (9) and (11), it appears that
this part will be of the order less than one. Thus, it can be
ignored comparing the positive part of this formula and the
lower bound for E[X] will be the same as its upper bound.
Therefore, the obtained lower bounds are indeed tight.

λmax =






Θ(n−q+1
n

1√
n logn

) , for 0 ≤ α < 2

Θ(n−q+1
n2

√
n

logn

α−1
) , for 2 ≤ α ≤ 3

Θ(n−q+1
n

1
logn ) , for 3 < α

It can be verified that the obtained capacity is achievable
for all values of q and α and the flow in no node may become
the bottleneck. However, due to page constraint, we omit the
proof here.



VI. DISCUSSION

Fig. 2 demonstrates the capacity of the composite network
as a function of n for different values of α and when the
number of long-range contacts is a fixed number, i.e., q = 5.
It is shown that the capacity order is exponentially decreasing
with the increase in the number of nodes. However, the analy-
sis shows that increasing the value of α will affect the rate of
capacity decrease. Small values of α lead to a rate of decrease
in capacity order similar to the results derived by Gupta and
Kumar [1]. It is the case where the social groups are highly
distributed. In contrast, condensed social groups, i.e. large
values of α, will have the destination within the transmission
range with high probability. Thus, the information needs to
transport Θ(1) hops to reach the destination. Consequently,
the maximum throughput capacity is achieved, and the rate of
decrease in capacity is much lower than what is seen in the
case of small α.
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Fig. 2. Throughput capacity vs. the number of nodes when q = 5.

VII. CONCLUSION AND FUTURE WORK

This paper presents the first analytical modeling of wireless
social networks where each node has local contacts inside its
transmission range, and q long-range contacts. The probability
of a node being the long-range contact of the source is
inversely proportional to their Euclidean distance with power
factor α. We derived tight bounds on throughput for different
values of α and q.

Our results show that when the number of long-range
contacts does not grow with the network growth, the expected
number of hops for each packet to reach the destination is
almost independent of the number of long-range contacts. For
α ≤ 2, the network behaves like a pure wireless network with
no social characteristics. For larger values of α the rate of
capacity increase will be very slow. The maximum capacity
is achieved for α = 3 and beyond that, the order throughput
capacity does not change.

According to the results, when the number of long-range
contacts increases proportional to the number of nodes in the
network, the network behavior is similar to a wireless network
with no social behavior. Also, the throughput capacity does not

change with parameter α. This is true when q(n) = f(n) even
if q(n) is much smaller than n, i.e., q(n) = log log(n) which
is a small number even when n is a very large number. This
result is rather disappointing since it implies that once each
node has a large number of social contacts, then this system
does not scale well in wireless environments.

In this work, we assumed that all the nodes have the same
number of long-range contacts. As the future work, we can
generalize this work when each node has different number of
long-range social contacts.
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