Title
Noncontrast enhanced four-dimensional dynamic MRA with golden angle radial acquisition and K-space weighted image contrast (KWIC) reconstruction

Permalink
https://escholarship.org/uc/item/2fm476wb

Journal
Magnetic Resonance in Medicine, 72(6)

ISSN
0740-3194

Authors
Song, HK
Yan, L
Smith, RX
et al.

Publication Date
2014

DOI
10.1002/mrm.25057

Peer reviewed
Noncontrast Enhanced Four-Dimensional Dynamic MRA with Golden Angle Radial Acquisition and K-space Weighted Image Contrast (KWIC) Reconstruction

Hee Kwon Song,1* Lirong Yan,2 Robert X. Smith,2 Yiqun Xue,1 Stanislas Rapacchi,3 Subashini Srinivasan,3,4 Daniel B. Ennis,3,4 Peng Hu,3 Nader Pouratian,5 and Danny J.J. Wang2,3

INTRODUCTION

The evaluation of dynamic flow patterns within the cerebrovasculature is useful for several clinical indications, such as steno-occlusive disease, arteriovenous malformation (AVM), and cerebral aneurysm. As the gold standard, digital subtraction angiography (DSA) can provide images of the cerebral blood circulation with both high temporal and spatial resolution. However, as an invasive technique, DSA exposes both doctors and patients to certain known risks including: ionizing radiation exposure, thromboembolic events, puncture of the femoral artery, catheter placement complications, iodinated contrast agent reactions and operator dependent errors (1).

Existing contrast enhanced dynamic MRA (CE-dMRA) techniques enable acquisitions with sub-millimeter spatial resolution and/or sub-second temporal resolution, which can rival those of DSA. The improvements in the temporal and spatial resolution of CE-dMRA can be largely attributed to recent advances in fast imaging techniques such as undersampled back projection, view sharing, keyhole and parallel imaging (2–10). To date, however, it remains challenging to obtain both high temporal and spatial resolution in the same acquisition using CE-dMRA (11,12). The technique also requires intravenous injection of contrast agents, which introduces additional risks and costs and limits use in subjects with poor renal function.

Recently, noncontrast enhanced time-resolved 4D dynamic MRA was introduced by combining arterial spin labeling (ASL) with a segmented multiphase TrueFISP readout (13,14). Initial feasibility studies demonstrated the capability of this technique to provide a temporal resolution of 50–100 ms and a spatial resolution of (1 to 1.25 mm)3 in the evaluation of AVM (15,16) and steno-occlusive diseases (17). However, to perform 4D dMRA within a clinically acceptable time, tradeoffs have to be made between the number of time frames, spatial resolution, and/or volumetric coverage of the regions of interest in existing 4D dMRA based on Cartesian trajectories.

Dynamic radial acquisition with a golden angle view increment is a recent development for 4D dynamic MRI (18). Subsequent radial profiles are separated by the golden angle (111.246°) which is optimal for flexible image reconstruction from an arbitrary number of profiles in radial MRI, allowing advanced sliding window reconstructions. Dynamic golden angle radial acquisition can be further combined with k-space weighted image reconstruction.
contrast (KWIC) (19, 20) to achieve both high spatial and
temporal resolution while preserving image quality. In
KWIC, the central k-space (which primarily determines
the image contrast) is sampled by the radial views of the
time frame of interest, while peripheral k-space regions
include radial views of neighboring time frames (similar
to view sharing). The present study explored the feasibil-
ity of 2D single- and angle-interleaved multi-shot, as
well as 3D stack-of-stars, golden-angle radial acquisition
strategies followed by temporal filtering using KWIC to
achieve 4D dMRA with high image quality and spatial
resolution, as well as high temporal fidelity.

METHODS

Simulation

Simulations were first carried out to evaluate whether
radial data acquisition and KWIC filtering can potentially
lead to temporal smoothing on the measured dMRA sig-
nal. To this end, vessels of various lumen sizes were
simulated by subtracting two analytically generated k-
space data of concentric circles of different radii. The
inner circle diameter was kept constant at 76 mm, while
that of the outer was varied to yield vessel thickness rang-
ing from 1 to 5 mm (21). The vessels were modeled as
rings so that the measurements reflect an average of all
possible in-plane vessel orientations, and also so that any
partial volume effects arising from small vessel sizes are
averaged. For the dMRA signal time curve, a gamma vari-
ate model described by MacIntosh et al (22) was imple-
mented using 2D radial acquisitions that allowed single-
shard- and angle-interleaved multi-shot acquisitions. The
pur-
pose was to evaluate the potential effect of temporal
blurring caused by single and multi-shot radial acquisi-
tions on the dMRA time courses. The 2D dMRA pulse
sequence consisted of continuous TrueFISP readout fol-
lowing slice-selective or nonselective inversion pulses,
as in FAIR (23) (Fig. 1). Single and multi-shot acquisi-
tion schemes were carried out as described above for the
simulation experiments. Imaging parameters were as fol-
low:
- FOV =256 mm, 256 points per readout, TR = 4.58 ms, TE = TR/2, 500 views per shot, flip angle (FA) = 30°,
bandwidth (BW) =630Hz/pixel, ten 4-mm slices covering
the Circle of Willis and main branches, scan time = Ns ×
1 min. For comparison, a 2D Cartesian version of the
dMRA sequence was evaluated with closely matched imaging parameters. Twenty-two phases (10 shots) with
temporal resolution of 105 ms were acquired to cover
the volume within a scan time of 10 min. Imaging
parameters for the Cartesian sequences were as follows:
- FOV = 256 × 256 mm², matrix = 256 × 256, BW =630
Hz/pixel, FA = 30°, TR = 4.42 ms, TE = TR/2.

Pulse Sequences

As an initial step, a dMRA pulse sequence was devel-
oped using 2D radial acquisitions that allowed single-
and angle-interleaved multi-shot acquisitions. The pur-
pose was to evaluate the potential effect of temporal
blurring caused by single and multi-shot radial acquisi-
tions on the dMRA time courses. The 2D dMRA pulse
sequence consisted of continuous TrueFISP readout fol-
lowing slice-selective or nonselective inversion pulses,
as in FAIR (23) (Fig. 1). Single and multi-shot acquisi-
tion schemes were carried out as described above for the
simulation experiments. Imaging parameters were as fol-
low:
- FOV =256 mm, 256 points per readout, TR = 4.58 ms, TE = TR/2, 500 views per shot, flip angle (FA) = 30°,
bandwidth (BW) =630Hz/pixel, ten 4-mm slices covering
the Circle of Willis and main branches, scan time = Ns ×
1 min. For comparison, a 2D Cartesian version of the
dMRA sequence was evaluated with closely matched imaging parameters. Twenty-two phases (10 shots) with
temporal resolution of 105 ms were acquired to cover
the volume within a scan time of 10 min. Imaging
parameters for the Cartesian sequences were as follows:
- FOV = 256 × 256 mm², matrix = 256 × 256, BW =630
Hz/pixel, FA = 30°, TR = 4.42 ms, TE = TR/2.
A 3D version of the dMRA sequence was subsequently developed by using radial stack-of-stars sampling (5). The pulse sequence comprised identical preparation prepulses and similar imaging parameters as for the single-shot 2D acquisition (except with slightly longer TR = 4.7 ms and FA = 25°). Two 3D radial dMRA scans were performed covering the Circle of Willis and main branches: one with 32 × 1.5 mm slices acquired within a scan time of 3 min, and another with 64 × 1 mm slices (1 × 1 × 1 mm³ isotropic spatial resolution) acquired within a scan time of 6 min. Both had an effective temporal resolution of 94 ms. For comparison, a 3D Cartesian version of the dMRA sequence was also evaluated with closely matched imaging parameters. Thirty phases with a temporal resolution of 80 ms covering a 3D slab of 32 × 1.5 mm sections (with GRAPPA = 2 acceleration along the phase-encoding direction) were acquired within a total scan time of 10 min. Imaging parameters were as follows: FOV = 256 × 192 mm², matrix = 256 × 192, BW = 849 Hz/pixel, FA = 25°, TR = 3.96 ms, TE = TR/2, and 7/8 partial k-space acquisition along the slice-encoding direction (used only for 3D Cartesian acquisition).

MRI Experiment

Eight healthy volunteers (31 ± 5 years, 3 females and 5 males) were recruited for the in vivo evaluation of the proposed dMRA sequences after providing written informed consent. Subjects were scanned on a Siemens Tim Trio 3.0T MRI system using a body coil transmitter and a product 12-channel head coil receiver with imaging parameters described above.

In addition, one patient with a Spetzler-Martin grade-V AVM (20 years, female) was imaged with the 3D stack-of-stars radial dMRA and 3D Cartesian dMRA protocols. The imaging parameters for the 3D radial dMRA sequence were identical to those used in healthy volunteers. Due to time limitations, the in-plane resolution of 3D Cartesian dMRA was slightly decreased to 1.1 × 1.1 mm² (FOV = 220 × 165 mm², matrix = 192 × 144). Other parameters were identical to those used in healthy volunteers.

Image Reconstruction

Following data acquisition, raw k-space data were transferred to a workstation offline and the dMRA image series reconstructed using custom MATLAB programs (MathWorks, Natick, MA). For the 3D stack-of-stars radial data, a Fourier transform along the slice-encoding direction was applied to separate the individual slices. Both 2D and 3D datasets for each slice were reconstructed using 160 total views per time frame (total temporal footprint per time frame ~750 ms), with an effective temporal resolution of 92 ms (2D) or 94 ms (3D) by means of the KWIC filter (19,20). The choice of ~100 ms temporal resolution was based on our past experience using 3D Cartesian dMRA in AVM patients and healthy volunteers (14,15). KWIC exploits the oversampling of the k-space center in the radial acquisition by using drastically fewer views in the central region of k-space. In this study, 20 views from each shot were used in the center-most region. This reduction accommodates a proportionately larger increase in effective temporal resolution because image contrast is determined primarily by the signal in the central k-space region. Progressively larger numbers of views were used toward the outer k-space regions (Fig. 1b).

In the current implementation of the KWIC reconstruction strategy, we chose to increase the number of views by twice the number which encode the central k-space region in subsequent adjacent k-space regions, with the transition radius determined by the Nyquist criterion. So for the single shot dataset, 20 views were used at center, 40 more views are added in the adjacent annular region for a total of 60. The next outer region would have 100, and so on. Our chosen strategy also allowed for the addition of fewer than 40 views in the outer-most annulus region to permit arbitrary number of total views to be used in each time frame. For 2D multi-shot radial acquisitions, the number of central k-space views was multiplied by the number of shots, and as above, twice that number is added to subsequent annular regions, with the transition radius adjusted according to Nyquist requirements. The eight-shot acquisition did not require KWIC filtering because using 20 views/shot provided all 160 views. The VORONOI algorithm was used to weight each k-space point before regridding (24).

Following the reconstruction of all slices, slice-selective (label) and nonselective (control) image series were subtracted and maximum-intensity projection (MIP) images along the axial plane were subsequently created. For Cartesian based scans, magnitude images reconstructed on the scanner were used for generating dMRA images by subtraction between label and control acquisitions, followed by MIP for each temporal phase along the axial direction. In addition, for 3D acquisitions MIP images were also created along coronal and sagittal planes.

Quantitative Image Analysis

For signal-to-noise ratio (SNR) and contrast-to-noise (CNR) measurements, a MIP image corresponding to signal peak in each series was zoomed 2× and a 25 × 12 rectangular region-of-interest was drawn covering the M1 vessel and the adjacent background. The top 25 highest-intensity pixels were then averaged to determine the mean signal. This was done to minimize underestimation of signal intensities due to partial volume effects. Standard deviations of these pixel intensities were also computed. Average noise level was determined by taking the standard deviation of a large background ROI placed away from the brain, ensuring the complete absence of any motion- or reconstruction-related artifacts. To determine CNR, the M1 vessel pixels used for SNR measurements were subtracted by the residual brain tissue signal, which was measured with a large irregularly shaped ROI placed in a region of the MIP image between the middle and posterior cerebral arteries where vessels were absent. The resulting signal differences were divided by the measured noise and subsequently averaged.

To measure the dynamic signal intensity curves of the MCA in the 2D acquisitions, small ROIs encompassing the MCA vessel were manually drawn. For 3D, the dynamic time intensity curves of the dMRA signal were measured in different segments of the cerebral arteries.
using the following procedure: An intensity threshold level was first determined visually for each MIP series by ensuring that the intensities of the smallest visible vessels in the images were above the threshold. The chosen threshold was then applied to that image series and pixels below the threshold were removed from analysis, while those above the threshold maintained their value. Five ROIs encompassing different vascular regions (M1, M2, M3/M4, P1/P2, P3) were drawn by an experienced reader and the average signal time course curves for those regions were measured.

Evaluation of Image Quality

The 3D radial and Cartesian dMRA datasets (both at $1 \times 1 \times 1.5$ mm3 resolution) of healthy volunteers were blindly and independently reviewed by 2 raters (one MRA expert with >5 years experience (S.R.) and one neurosurgeon (N.P.)) according to a 4-point Likert-like rating scale (25) to assess image quality on 9 vessel segments of each subject (ACA; left and right M1, M2 and M3/4; P1/2 and P3). Statistical analysis was carried out using STATA 13.0 software (College Station, TX). The Wilcoxon signed rank test was performed to compare the mean ratings of image quality of radial and Cartesian dMRA in each vessel segment respectively.

RESULTS

Simulation Results

Results of the simulation study are shown in Figure 2. Figure 2a plots the “true” dMRA signal in a 1 mm (1 pixel) thick vessel along with the signal detected from a single-shot radial acquisition followed by KWIC reconstruction. The measured time course closely follows the true signal, albeit with a slight broadening of the curve. Even for such a small vessel, the FWHM is overestimated only by approximately 10.7%. Figure 2b plots the vessel lumen width vs. relative error of the FWHM of the dMRA signal time course for the different numbers of shots, demonstrating that the temporal broadening due to KWIC reconstruction is typically less than approximately 5% except for the smallest of the vessels of the single-shot acquisition. These results demonstrate that the KWIC strategy generally does not substantially affect the measured time course of the dynamic MRA signal.

Comparison of 2D Radial and Cartesian dMRA

Figure 3 shows the dMRA MIP images of a normal volunteer at six phases using the 2D radial acquisition with different numbers of shots, as well as the Cartesian images. Dynamic filling of small branches of middle cerebral artery (MCA) and posterior cerebral artery (PCA) is clearly visualized for all acquisitions. The image quality is largely consistent between the two sampling schemes, although ghosting artifacts, likely due to cardiac pulsation, can be seen along the midsagittal plane in the Cartesian images. The average SNR (\pmSD) of the MCA in the healthy volunteers for the radial acquisition was consistent for the different numbers of shots, ranging from 35.6 (\pm7.0) to 39.8 (\pm4.4) and the CNR from 29.6 (\pm2.3) to 33.7 (\pm4.3), while the SNR and CNR for Cartesian were 28.7 (\pm6.9) and 24.3 (\pm6.8), respectively. Figure 4 depicts the signal time course in the MCA of one of the subjects, demonstrating good agreement among the Cartesian and radial techniques.

Evaluation of 3D Radial and Cartesian dMRA

Figure 5 shows the dMRA MIP images at seven phases using 32-slice 3D single shot radial (a) and corresponding Cartesian (b) acquisitions. The dynamic blood flow pattern through the Circle of Willis and its main branches can be clearly visualized by radial dMRA, including small distal branches of the MCA and PCA. The background tissue signal was markedly suppressed in radial dMRA, resulting in sharp MRA images for all temporal phases. The average SNR and CNR of the radial data of healthy volunteers were 65.7 (\pm7.7) and 58.1 (\pm8.1), respectively, and those of Cartesian were 92.4 (\pm9.6) and 83.5 (\pm9.7). The SNR and CNR for the isotropic 64-slice radial sequence were 47.0 (\pm3.8) and 38.0 (\pm3.8), respectively. The $1 \times 1 \times 1$ mm3 isotropic spatial resolution enabled high quality MIP dMRA images to
be generated for sagittal, coronal and axial views (see Fig. 6).

Figure 7 compares the dMRA signal time courses from five vascular ROIs of 32- and 64-slice 3D radial sequences. Those of Cartesian dMRA are also shown for comparison. The figure clearly demonstrates that the 3D radial sequence provides the signal time course in the various branches of the cerebral arteries. The slight delay in location of the peak signal in the smaller branches (M3/4 and P3) can also be seen compared with their larger upstream arteries.

Table 1 shows the image quality ratings comparing radial and Cartesian dMRA image series in the healthy volunteers. The weighted Kappa was calculated to be 0.74 which indicated a good level of inter-rater consistency. Ratings ranged from moderate (~2) to excellent (4), and the results show that radial images scored equivalent to or better than the Cartesian counterpart. Out of the nine vessel segments,
the image quality of radial acquisition was significantly higher in one segment (P3), while in several others the improvements did not reach statistical significance.

Dynamic MRA in AVM

Figure 8 displays six time frames of the 32 slice radial dMRA MIP images of the AVM patient, along with the corresponding Cartesian images. The AVM measures approximately 6.1 × 4.9 × 4.9 cm (red circles), has no associated aneurysms, is fed by multiple dilated vessels from the right MCA (pink arrow) and left ACA branches, and demonstrates early venous drainage through the straight sinus (yellow arrow) as well as later drainage through superficial cerebral veins into the sagittal sinus (blue arrow). The 3D stack-of-stars radial dMRA provides a sharper and effectively higher resolution image of the AVM than the 3D Cartesian dMRA. As such, there is greater visualization of extra-nidal vessels (e.g., PCA territory), which does not distract from the delineation of the AVM. While there is slight temporal blurring relative to the 3D Cartesian dMRA, the radial dMRA maintains more than sufficient temporal resolution to clinically demonstrate the dynamic nature of the filling and drainage of the AVM (see movie files included in Supplemental Information).

DISCUSSION

The present study demonstrates the feasibility of fast 4D dynamic MRA using 2D and 3D golden angle radial acquisitions in conjunction with KWIC reconstruction. The image quality was comparable to corresponding Cartesian-based dMRA scans without noticeable streaking artifacts. In addition, both simulations and experimental data demonstrated that the proposed radial dMRA is able to achieve a high temporal resolution (~100 ms/frame) without significant temporal blurring, requiring only a fraction of the scan time compared with that of standard Cartesian-based methods. This scan time reduction could prove to be valuable in patient studies, particularly in visualizing the smaller vascular structures in which even small amount of motion could render them difficult to distinguish. Radial acquisitions are also known to be more robust to motion artifacts (26), such as cardiac pulsations, where artifacts are typically dispersed throughout the entire imaging slice, while that of Cartesian sequences appear along the phase-encoding direction, often resulting in more prominent image artifacts. Background signal may also be better cancelled in the subtraction image due to greater similarities between two images even in the presence of varying motion.

Sufficiently high SNR and CNR were achieved with both 2D and 3D radial acquisitions despite the substantially reduced scan times (from one-tenth for 2D to one-third for 3D), and the number of views/phase encoding lines used for each time frame (160 versus 256). While the 2D radial images had slightly higher SNR compared with that of Cartesian, possibly due to the radial technique’s robustness to motion, the 3D SNR measurements had substantially reduced SNR. We believe that the primary reason for the difference is the use of k-space
apodizing filters along the slice-encoding direction for standard online reconstructions, while no such filters were used for radial images processed offline. This is most evident when one compares the radial and Cartesian 3D images in the AVM patient (Fig. 8). It is quite clear that although the prescribed spatial resolutions were similar (1 × 1 × 1.5 versus 1.1 × 1.1 × 1.5 mm³), one can readily see that the Cartesian images appear substantially more blurred, which is what is expected, along with increased SNR, when apodizing filters are used. The relative blurring also seems to be worse in the sagittal and coronal planes, supporting the idea that the lowpass filter is primarily along the slice direction, which leads to lower effective spatial resolution along the superior–inferior axis.

Advantages of Golden Angle Radial with KWIC

In this work, the golden angle was used to advance each subsequent view. The golden angle strategy provides more flexibility in achievable temporal resolution than previous equal angle strategies (bit-reverse or angle bisection (20)), albeit at a slight reduction in SNR (18). An interleaved multi-shot golden angle strategy was also

FIG. 6. MIP images of a 64-slice 3D stack-of-stars radial dMRA acquisition with 1 × 1 × 1mm³ isotropic spatial resolution along sagittal, coronal and axial views of a healthy volunteer.

FIG. 7. Dynamic signal time course measured in the various arterial vessels of the brain of one of the volunteers for (a) 32-slice radial; (b) 64-slice radial; and (c) 32-slice Cartesian data sets. The time course signal was measured in various ROIs shown in (d). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
proposed in this work for the purpose of increasing the number of central k-space views while keeping the temporal resolution constant at 100 ms. Higher number of interleaves then permits larger radius Nyquist rings in KWIC-filtered k-space, as well as smaller total temporal footprint for each time frame, yielding higher measurement accuracy (Fig. 2b). A second option one may consider with an interleaved acquisition is to increase the effective temporal resolution by keeping the number of views within each Nyquist ring constant. For example, with two interleaves, 20 views could encode k-space center (10 from each shot) while the effective temporal resolution is halved to 50 ms.

While the enhanced flexibility in temporal resolution is likely the biggest benefit of the golden angle scheme compared with the bit-reverse method, there are other attractive features that the former strategy provides. With golden angle view increment, the temporal window which encodes the k-space center could always be centered within the total temporal footprint of that time frame (the only exceptions are at the very beginning and end of the acquisition series). In other words, for our 160-view, KWIC reconstructed series, the central 20 views are temporally centered, with 70 views preceding and 70 views following those views encoding the more distant k-space regions. This is not the case with the bit-reversal method in which there will always be an imbalance with slightly greater contribution from either pre- or post-time periods depending on the time frame, and as with the golden angle strategy, higher temporal asymmetry at the beginning and end of the dynamic series. In addition, the manner in which the views are mapped in k-space is more

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Comparison of Ratings (mean ± SD) of Image Quality between Three-Dimensional Radial and Cartesian dMRA Acquisitionsa</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACA</td>
<td>Left M1</td>
</tr>
<tr>
<td>Radial</td>
<td>3.1 ± 0.8</td>
</tr>
<tr>
<td>Cartesian</td>
<td>2.8 ± 0.8</td>
</tr>
<tr>
<td>P value</td>
<td>0.28</td>
</tr>
</tbody>
</table>

a1 = poor; 2 = moderate; 3 = good; 4 = excellent.

bP < 0.05 Wilcoxon signed rank two-sided.

FIG. 8. MIP images of 3D stack-of-stars radial dMRA (a) and 3D Cartesian dMRA (b) along sagittal, coronal and axial views of the AVM patient (20 yrs, female). Red circles: AVM measuring approximately 6.1 × 4.9 × 4.9 cm; Pink arrow: Right MCA; Yellow arrow: Straight sinus; Blue arrow: Sagittal sinus. [MIP video files for both Cartesian and radial acquisitions for the AVM patient can be viewed in the Supplemental Information.]
consistent with the golden angle strategy, where the view order is mapped identically (apart from a rotation of all views) from one time frame to the next. With the bit-reversal method, the k-space mapping is not identical from frame to frame, potentially leading to slight signal intensity biases in dynamic curves (20).

Song and Dougherty (20) demonstrated in a simulation study that when the KWIC strategy is applied to a dynamic dataset comprised of rapidly changing signal, the temporal response is greatly improved compared with standard sliding window reconstruction which does not use KWIC. Although some measurement errors due to KWIC-induced temporal blurring are expected to increase in small or thin objects, errors were mostly small, on the order of 5% or less. In the current application as demonstrated in the simulation study, only when...

FIG. 9. MIP images of a 3D radial dMRA dataset of one of the healthy volunteers reconstructed with KWIC using 20 views at k-space center and different total views per time frame: (a) 20 total views; (b) 80; (c) 160; (d) 240.
Alternative Strategies for Image Acceleration

In this work, the KWIC strategy was shown to be effective in drastically reducing the total scan time without significantly sacrificing spatial or temporal resolution. However, alternative strategies may also be considered for scan time reduction such as highly constrained back projection reconstruction (HYPR) (27). In HYPR, a high resolution composite image is generated from the full k-space data acquired throughout the whole (or part of the) acquisition window, whereas individual time frame images are constructed by multiplying the composite image with undersampled temporal weighting images (28–30). While HYPR can be effective in improving the effective temporal resolution, residual artifacts akin to temporal blurring can still occur (31,32), and methods have been developed to mitigate these artifacts (33). Alternatively, KWIC can be combined with parallel imaging methods, such as GRAPPA operator for wider radial bands (GROWL) (34).

Compressed sensing (CS) is another method that can potentially improve acquisition efficiency. CS is an iterative technique, which uses data fidelity and often one or more regularization terms, such as finite difference, to reconstruct images using limited data for each image. For dynamic series, one can incorporate spatial, temporal, or spatio-temporal combination in the regularization term, and previous reports have demonstrated some success (35–37). However, one of the biggest challenges of the CS strategy, in particular for dynamic imaging involving many time frames, is the reconstruction time, which can be prohibitive and preclude their use in routine clinical practice. The usage of multi-core processing with GPUs may yield more acceptable reconstruction times, and is currently being explored by several investigators (38–40).

Further Development of Noncontrast Dynamic MRA

ASL based noncontrast dMRA uses labeled blood as an endogenous contrast agent for visualizing the dynamic flow pattern. As demonstrated previously (41,42), the saturation effect of flowing spins is relatively small (<15%) as long as the flow velocity is greater than 2 cm/s. However, in older subjects and patients with cerebrovascular disorders there may be a greater reduction of dMRA signals, especially with a thick 3D imaging slab. This limitation may be circumvented by a novel dMRA approach termed multi-bolus TrueSTAR (43) in which a series of labeled boluses (using the STAR strategy) were carried out during the continuous multiphase TrueFISP readout with minimal disturbance of the steady-state signal, thereby forming a prolonged integrated bolus to enhance the dMRA signal. Cardiac gating can further be applied for dMRA to minimize the effect of cardiac pulsation, and may lead to a novel approach for estimating vascular compliance if dMRA acquisition is synchronized to the systolic and diastolic phases of the cardiac cycle (44). Finally, the above strategies (multi-bolus TrueSTAR and cardiac gating) can be combined with dynamic golden angle radial trajectory and KWIC filtering to improve imaging speed.

CONCLUSIONS

Our preliminary work demonstrates the feasibility of 2D and 3D golden angle radial acquisition scheme for noncontrast enhanced dynamic MRA. This work combines the reconstruction flexibility of the golden angle radial acquisition with KWIC temporal filtering to dramatically reduce the scan time compared with conventional methods, while achieving high spatial and temporal resolution. For the 2D single-shot implementation, a scan time that is only one-tenth of the standard Cartesian-based dMRA was achieved, without substantial temporal smoothing, while the scan time reduction was a factor of three for 3D. As a next step, the utility of dMRA with dynamic golden angle radial acquisition needs to be evaluated in clinical studies.

ACKNOWLEDGMENT

The authors thank Dr. Songlin Yu for his assistance with the evaluation of dMRA images in healthy volunteers.
REFERENCES

