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On impinging near-field granular jets

D. Arbelaez∗,†, T. I. Zohdi and D. A. Dornfeld

Department of Mechanical Engineering, University of California, Berkeley, CA 94720-1740, U.S.A.

SUMMARY

In this work a multibody collision model, amenable to large-scale computation, is developed to simulate
a jet of near-field grains impinging on a surface. This model is developed by computing momentum
exchange for grain–grain and grain–surface interactions. The grain–grain interactions consist of colli-
sions as well as near-field interactions. The analysis of these flows is separated into three components:
(1) volume averaged quantities; (2) average surface tractions; and (3) average outflow conditions. For the
surface stress calculations, parametric studies are performed on the properties of the surface and the grains
through their coefficients of restitution, the strength of the near-field interactions, and the angle of attack
of the jet. For the outflow calculations the flux of momentum through the simulation space is performed
for varying near-field forces between the grains and varying degrees of surface roughness. Copyright q
2009 John Wiley & Sons, Ltd.
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1. INTRODUCTION

There are many applications where granular materials strike a surface, for example manufacturing
processes such as abrasive machining, fluid jet polishing, blast cleaning, and shot peening. Recently,
several micro- and nanotechnology applications have emerged where the effects of near-field
interaction between near-field grains and momentum exchange through mechanical contact must
be taken into account in the analysis of these flows. For example, for many materials, relatively
large electrostatic charges can build up for grains below the one millimeter scale. For general
overviews of different granular physical phenomena, we refer the reader to work by Behringer
and collaborators [1–3], Hutter and collaborators [4–17], and Jaeger and collaborators [18–26].
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In [26], Cheng et al. deal specifically with granular jets impinging on a surface. In this work, they
demonstrate the similar physical behavior between a densely packed granular jet and a zero-surface
tension fluid through experiments. Recently, Zohdi [27–30] has dealt with the computational aspects
of granular flows including agglomeration in thermo-chemically reacting media, charge-induced
clustering, and particle–fluid systems. In this work, we adapt aspects of these algorithms and
develop analysis techniques to simulate a jet of near-field grains striking a surface that includes the
following interactions: grain–grain and grain–surface collisions and grain–grain near-field forces.
Specifically, these methods are extended to include rotation of the spherical grains, grain–surface
collisions, and time-step size adaptivity to ensure that all possible grain–grain and grain–surface
collisions are detected.

In this work, the analysis of these flows is divided into three parts: (1) volume averaged
quantities; (2) average surface stresses; and (3) average outflow conditions. For the first part,
desired quantities such as the density or velocity of the flow are computed by averaging over
volumes in ‘snap-shots’ on a grid over time. For the second part, the examples focus on fairly dense
granular flows, where the interaction between grains approaching the surface and those rebounding
from the surface is significant. For these cases, the interactions between the grains affect the
stress profile on the surface substantially. Previous research has been conducted on interference
effects in non near-field particle streams. In [31–33], Ciampini, Papini, and collaborators develop
and use an event-driven MD simulation to study the effect of interference between incoming and
rebounding particles on the available power transferred to the surface. Owing to the event-driven
nature of the simulation, near-field forces cannot be considered using their algorithm. In this work,
a different analysis method is also presented, where the average stress is computed over the entire
surface to obtain a surface stress profile. Finally, for the third part of the analysis, the flux of
desired quantities across the interface of a control volume is measured.‡ For the surface stress
calculations, two- and three-dimensional examples are presented. For the outflow calculations,
statistical moments of the flux profiles are defined and sample two-dimensional calculations are
presented.

2. SYSTEM CONFIGURATION

In this section, an algorithm is developed to model the particulate flow coming from a source,
striking a surface, and moving outside of the region of interest. Figure 1 shows a schematic of the
simulation, here the source is the inflow region, where the grains are introduced, and the region
of interest is bounded by the outflow region, where the grains are removed from the simulation.
Initially, spherical grains§ are placed at random positions in the inflow region for the given volume
fraction, and they are prescribed velocities that match a given velocity profile. The introduction of
new grains is performed subject to the constraint that the volume fraction of grains in the inflow
region remains constant over time. In order to meet this constraint, a new grain is introduced in
the inflow region whenever another grain leaves this region. Specifically, it is introduced at the
top of the box in a random spot along the e′

1 direction. The grains are introduced at the top of the

‡In this work, the terms fluxes across the interface and outflow calculations are used interchangeably.
§There are many applications where the grains are not exactly spherical, but are close enough to be approximated
as such for this analysis.
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SIMULATION OF GRANULAR JETS 817

Figure 1. Schematic of the granular jet simulation. The grains are introduced in the inflow
region and removed at the outflow region.

box so that the volume fraction remains fixed until the grains start interacting with one another
near the surface. Whenever a grain leaves the outflow box it is removed from the simulation.

3. MATHEMATICAL FORMULATION

In this model the following interactions are considered: grain–grain near-field interactions, grain–
grain collisions, and grain–surface collisions. Once these interactions are modeled the position of
each grain is found from the equations of motion

mi r̈i =Wnf
i +Wc

i +Wf
i

Ii ẋi = Mf
i

(1)

where mi and Ii are the mass and moment of inertia of grain i , respectively; ri is the position of
the centroid of grain i , xi is the angular velocity of grain i , Wnf

i is the near-field force, Wc
i is the

contact force, Wf
i is the friction force, and Mf is the total moment due to friction acting on grain i .

Note that in this work the grains are always assumed to be spherical.
In [27], Zohdi introduced a model for the impact between grains under the influence of near

field and other external forces. This model is used to determine the normal and frictional forces
for grain–grain collisions. In this work, this model is extended to include the effect of the rotation
of the grains on the frictional forces during the grain–grain collisions. All of the equations derived
in [27] are reformulated with this in mind. Another improvement on the model introduced in [27]
is the inclusion in this work of grain–surface collisions with normal and frictional forces. As with
the grain–grain collisions, the grain–surface interactions include rotational effects. In Section 6
a measure of the average stress on the surface is introduced. The inclusion of rotational effects
during the grain–surface collisions is critical to accurately resolve the average shear stress on the
surface. The simplest example of this is a rotating grain approaching a surface in the surface
normal direction. If rotational effects were not included in the friction force, a significant error
could be made in this calculation. In the following subsections the models for each individual
interaction will be presented.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 80:815–845
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818 D. ARBELAEZ, T. I. ZOHDI AND D. A. DORNFELD

Figure 2. Schematic of grains i and j with velocities vi and v j and angular velocities xi
and x j approaching each other.

3.1. Grain–grain interaction

The grain–grain interaction consists of near-field forces and contact and frictional forces at the
contact point on each grain. This is equivalent to a force and a moment acting on the center
of each grain. Consider the two spheres with mass mi and m j , which are shown in Figure 2,
their motion is described by their centroid velocities vi and v j and their angular velocities xi
and x j as they approach each other. Assuming that the spheres do not deform, they will come
in contact at point pi on sphere i and at point p j on sphere j . The velocity of grain i at point
pi is given by vpi =vi +xi ×(rini j ), whereas the velocity of grain j at point p j is given by
vpj =v j −x j ×(r jni j ), where ni j =(r j −ri )/‖r j −ri‖ is a unit vector pointing from the center
of grain i to the center of grain j , ri and r j are the positions of the centroids of grains i and j ,
respectively; and ri and r j are the radii of grains i and j , respectively. The relative velocity
between the point pi on sphere i and at point p j on sphere j is given by vrel=vpj −vpi . The
vector vrel can be decomposed into normal and tangential components vrel=vnrelni j +vtrelt, where
t is given by

t= vrel−(ni j ·vrel)ni j
‖vrel−(ni j ·vrel)ni j‖ (2)

An orthonormal basis can now be defined by the vectors (ni j , t,s), where the transverse unit vector
is given by s=ni j ×t. When these grains come into contact, the force on grain i is given by
fi =− fcni j + f f t, the force on grain j is given by f j = fcni j − f f t, the moment on grain i is given
by Mi =(ri f f )s, and the moment on grain j is given by M j =(r j f f )s, where fc�0 and f f �0.

3.1.1. Near-field interaction. In this work the near-field interaction is modeled by a general central-
force attraction–repulsion form given by

Wnf
i =

Np∑
j �=i

(�1‖ri −r j‖−�1 −�2‖ri −r j‖−�2)ni j (3)

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 80:815–845
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SIMULATION OF GRANULAR JETS 819

where �1, �2, �1, and �2 are nonnegative parameters. The general form given in Equation (3)
represents different types of physical phenomena, for given values of the parameters �1, �2, �1,
and �2 .

3.1.2. Normal contact interaction. The contact interaction between the grains is computed through
a balance of linear momentum in the normal direction. The balance of linear momentum, in the
direction ni j , for a grain i is given by

mivin(t)−�t f c+
∫ t+�t

t
Ein dt=mivin(t+�t) (4)

where t corresponds to the time immediately before the grains come into contact, �t is the
impact duration time, t+�t corresponds to the time immediately after the collision occurs,
�t f c=∫ t+�t

t fc dt , and Ein =Ei ·ni j , where Ei is the sum of external forces acting on grain i . In
this case f c is interpreted to be the average normal impulsive force. Similarly, for grain j , the
balance of linear momentum in the normal contact direction gives

m jv jn(t)+�t f c+
∫ t+�t

t
E jn dt=m jv jn(t+�t) (5)

where E jn =E j ·ni j and E j is the sum of external forces acting on grain j . In order to solve for
the velocities after impact, an estimate for the coefficient of restitution, e, must be provided. The
coefficient of restitution is defined as

e=
∫ t+�t
t+�t1

fc dt∫ t+�t1
t fc dt

(6)

which is the ratio of the impulse during the recovery phase, occurring in the time interval
(t+�t1, t+�t), to the impulse during the compression phase, occurring in the time interval
(t, t+�t1). The balance of momentum for both grains can also be divided into a compression phase
and a recovery phase. For the compression phase the balance of momentum for grains i and j
in the normal direction is

mivin(t)−
∫ t+�t1

t
fc dt+

∫ t+�t1

t
Ein dt = mivcn

m jv jn(t)+
∫ t+�t1

t
fc dt+

∫ t+�t1

t
E jn dt = m jvcn

(7)

where vcn is a common velocity for both grains since their relative velocity in the normal direction
vanishes at time t+�t1. Similarly, for the recovery phase, the balance of momentum for grains i
and j in the normal direction is

mivcn−
∫ t+�t

t+�t1
fc dt+

∫ t+�t

t+�t1
Ein dt = mivin(t+�t)

m jvcn+
∫ t+�t

t+�t1
fc dt+

∫ t+�t

t+�t1
E jn dt = m jv jn(t+�t)

(8)

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 80:815–845
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820 D. ARBELAEZ, T. I. ZOHDI AND D. A. DORNFELD

Using Equations (6)–(8), the coefficient of restitution can be written as

e= v jn(t+�t)−vin(t+�t)+1/mi
∫ t+�t
t+�t1

Ein dt−1/m j
∫ t+�t
t+�t1

E jn dt

vin(t)−v jn(t)+1/mi
∫ t+�t1
t Ein dt−1/m j

∫ t+�t1
t E jn dt

(9)

Using Equations (4), (5), and (9) the normal impulse is given by

f c�t=
(1+e)mim j

mi +m j

[
vin(t)−v jn(t)+ 1

mi

∫ t+�t1

t
Ein dt− 1

m j

∫ t+�t1

t
E jn dt

]
(10)

In order to use Equation (10), estimates must be provided for the coefficient of restitution and the
impact time. For extensive experimental data on the coefficient of restitution see Goldsmith [34].
The impact time can be estimated using solutions for linear elastic bodies, for example, see the
work by Johnson [35] for details. As an approximation, Equation (4) can be discretized in time,
with time step �t , giving the following equation as:

mivin(t)− f c�t+Ein�t≈mivin(t+�t) (11)

where �t��t and Ein�t=
∫ t+�t
t Ein dt . Equation (11) can now be rewritten as

mi
vin(t+�t)−vin(t)

�t
≈− f c�t

�t
+ Ein�t

�t
(12)

noting that mi (vin(t+�t)−vin(t))/�t is a difference formula for mi v̇in , then the normal contact
contribution of grain–grain interaction force can be defined as

Wc
i =− f c�t

�t
ni j (13)

3.1.3. Frictional interaction. The friction force between the grains is computed through a balance
of linear momentum in the tangential direction, and a balance of angular momentum in the
transverse direction for grains i and j . The balance of linear momentum, in the tangential direction,
for grain i is given by

mivi t (t)+�t f f +
∫ t+�t

t
Eit dt=mivi t (t+�t) (14)

where �t f f =∫ t+�t
t f f dt , so that in this case f f is interpreted to be the average friction force

for the grain–grain collision, and Eit =Ei ·t. For grain j the balance of linear momentum in the
tangential direction is

m jv j t (t)−�t f f +
∫ t+�t

t
E jt dt=m jv j t (t+�t) (15)

where E jt =E j ·t. The balance of angular momentum, in the transverse direction, for grain i is
given by

Ii�is(t)+ri f f �t+
∫ t+�t

t
Mis dt= Ii�is(t+�t) (16)

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 80:815–845
DOI: 10.1002/nme



SIMULATION OF GRANULAR JETS 821

where ri f f �t=
∫ t+�t
t (rini j )×fi ·sdt is the moment of impulse, and Mis =Mi ·s is the sum

of external moments on grain i in the transverse direction. Similarly, the balance of angular
momentum, in the transverse direction, for grain j is given by

I j� js(t)+r j f f �t+
∫ t+�t

t
M js dt= I j� js(t+�t) (17)

where Mjs =M j ·s is the sum of external moments on grain j in the transverse direction.
For the frictional interaction, a Coulomb friction stick–slip model is used, where during contact

the grain will stick at the contact point if f f ��s fc, where �s is the static coefficient of friction,
and the grain will slip otherwise. In order to determine the friction force, the assumption that the
grains stick is first adopted. Therefore, vtrel=0, which leads to the following kinematic relation at
time t+�t

v j t (t+�t)−r j� js(t+�t)=vi t (t+�t)+ri�is(t+�t) (18)

Using Equations (14)–(18) and Ii = 2
5mir2i for a sphere, the tangential impulse is given by

f f �t = 2

7

mim j

mi +m j

{
(v j t (t)−r j� js(t))−(vi t (t)+ri�is(t))

+
[

1

m j

(
E jt − 5

2

M js

r j

)
− 1

mi

(
Eit + 5

2

Mis

ri

)]
�t

}
(19)

Now that the friction force has been determined with the sticking assumption, this assumption
must be verified. If f f >�s fc, then the sticking assumption does not hold and slip occurs. Using
the Coulomb friction model, the friction force is f f =�d fc, where �d is the dynamic coefficient
of friction. In summary, the grain–grain frictional interaction, applied to the discretized equations,
is given by

Wf
i =

⎧⎪⎨
⎪⎩

| f f |�t
�t

t if | f f |��s | f c|
�d‖Wc

i ‖t if | f f |>�s | f c|
(20)

3.2. Grain–surface interaction

The grain–surface interaction consists of contact and frictional forces at the contact point on the
grain. This is equivalent to a force and a moment acting on the center of the grain. Consider the
sphere with mass m, which is shown in Figure 3, its motion is described by its centroid velocity
v and angular velocity x as it approaches a surface with normal n. Assuming that the sphere does
not deform, it will come in contact with the surface at point p. The velocity at this point is given
by vp =v−x×(rn). The vector vp can be decomposed into normal and tangential components
vp =vnn+vt t, where t is given by

t= vp−(n·vp)n
‖vp−(n·vp)n‖ (21)

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 80:815–845
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822 D. ARBELAEZ, T. I. ZOHDI AND D. A. DORNFELD

Figure 3. Schematic of a grain with velocity v and angular velocity x
approaching a surface with normal n.

An orthonormal basis can now be defined by the vectors (n, t,s) where the transverse unit vector
is given by s=n×t. Using these definitions the force on the grain is given by f= fcn− f f t and
the moment on the grain is given by M=(r f f )s, where fc�0 and f f �0.

3.2.1. Normal contact interaction. The contact force between the grain and the surface is computed
through a balance of linear momentum in the normal direction. The balance of linear momentum,
in the direction normal to the surface, for grain i is given by

mivin(t)+�t f c+
∫ t+�t

t
Ein dt=mivin(t+�t) (22)

where �t f c=∫ t+�t
t fc dt , so that in this case f c is interpreted to be the average normal impulsive

force exerted by the surface on the grain, and Ein =Ei ·n, where Ei is the sum of external forces
acting on grain i . The compression phase for the grain occurs for the time interval (t, t+�t1), for
this interval the balance of linear momentum in the normal direction of contact is given by

mivin(t)+
∫ t+�t1

t
fc dt+

∫ t+�t1

t
Ein dt=mivcn =0 (23)

where vcn =0 since the relative velocity in the normal direction between the surface and the grain
vanishes at time t+�t1. For the recovery phase that occurs in the time interval (t+�t1, t+�t), the
balance of linear momentum in the normal contact direction is given by

∫ t+�t

t+�t1
fc dt+

∫ t+�t

t+�t1
Ein dt=mivin(t+�t) (24)

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 80:815–845
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where on the left side of Equation (24) a momentum term does not appear since the velocity of
the grain at time t+�t1 vanishes. Using the definition given in Equation (6), the coefficient of
restitution is

e= vin(t+�t)−1/mi
∫ t+�t
t+�t1

Ein dt

−vin(t)−1/mi
∫ t+�t1
t Ein dt

(25)

Using Equations (22) and (25), the velocity of grain i in the normal direction after impact is the
normal impulse is given by

f c�t=−(1+e)

[
mivin(t)+

∫ t+�t

t
Ein dt

]
(26)

Similar to the interaction force for the grain–grain contact interaction given in the previous section,
the grain–surface contact interaction applied after discretization is

Wc
i =

f c�t

�t
n (27)

3.2.2. Frictional interaction. The friction force between the grain and the surface is computed
through a balance of linear momentum in the tangential direction, and a balance of angular
momentum in the transverse direction. The balance of linear momentum, in the tangential direction,
for grain i is given by

mivi t (t)+�t f f +
∫ t+�t

t
Eit dt=mivi t (t+�t) (28)

where �t f f =∫ t+�t
t f f dt , so that in this case f f is interpreted to be the average friction force

exerted by the surface on the grain, and Eit =Ei ·t. The balance of angular momentum, in the
transverse direction, for grain i is given by

Ii�is(t)+�tri f f +
∫ t+�t

t
Mis dt= Ii�is(t+�t) (29)

where �ri t f f =∫ t+�t
t (−rin)×f ·sdt is the moment of impulse exerted by the surface on the grain,

and Mis =Mi ·s is the sum of external moments in the transverse direction.
For the frictional interaction the same Coulomb friction stick–slip model that is used for the

grain–grain interaction is employed. In order to determine the friction force, the assumption that
the grain sticks is first adopted. Therefore vp ·t=0, which leads to the following kinematic relation
at time t+�t :

vi t (t+�t)=ri�is(t+�t) (30)

Using Equations (28)–(30) and Ii = 2
5mir2i for a sphere, the tangential impulse is given by

f f �t=
2

7

{
mi (vi t (t)−ri�is(t))+

∫ t+�t

t
Eit dt− 5

2ri

∫ t+�t

t
Mis dt

}
(31)

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 80:815–845
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Now that the friction force has been determined with the sticking assumption, this assumption
must be verified. If f f >�s fc, then the sticking assumption does not hold and slip occurs. Using
the Coulomb friction model, the friction force is f f =�d fc, where �d is the dynamic coefficient of
friction. In summary, the grain–surface frictional interaction, applied to the discretized equations,
is given by

Wf
i =

⎧⎪⎨
⎪⎩

−| f f |�t
�t

t if | f f |��s | f c|
−�d‖Wc

i ‖t if | f f |>�s | f c|
(32)

4. TEMPORAL DISCRETIZATION AND ITERATIVE SOLUTION

In this work the set of ordinary differential equations is solved using the implicit Euler method. For
the first-order system ẏ= f , the implicit Euler scheme is given by y(t+�t)= y(t)+�t f (t+�t).
The discretization of Equation (1) is then given by

rL+1
i = �t2

mi
Wtot

i (rL+1
i )+rLi +�t ṙLi

xL+1
i = �t

Ii
Mtot

i +xL
i

(33)

where the superscripts L and L+1 correspond to the times t and t+�t , respectively. Note that
Mtot

i corresponds the average moment exerted during a collision, which is taken to be constant
during the impact; therefore, there is no L or L+1 superscript on Mtot

i . To solve Equation (33),
an iterative scheme must be used. One possible solution scheme is Newton’s method; however,
the tangent matrix may not be easy to form due to the lack of smoothness of the trajectories of
the grains. This lack of smoothness is produced by the impacts of grains with other grains or
surfaces. Another option is to use a fixed point iteration that usually converges at a slower rate
but is expected to be more robust. In order to solve Equation (33) with a fixed point iteration, it
is written as

rL+1,k+1
i = �t2

mi
Wtot

i (rL+1,k
i )+rLi +�t ṙLi (34)

where k indicates the iteration count. In [27–30], Zohdi shows that the error at iteration k can be
bounded by ‖ek‖��k‖e0‖, where �∝�t2/mi . Therefore, the fixed point iteration is guaranteed to
converge when �<1, implying that the method converges as long as the time-step size is small
enough. If convergence is slow within a time step, the time-step size can be reduced to increase
the rate of convergence; however, it is desirable that the time-step sizes are maximized in order
to reduce the computation time. By controlling the number of iterations needed for convergence,
Zodhi [27–30] derives the following expression for time-step adaptivity:

�ttol=

⎛
⎜⎜⎜⎝
(
Tol

e0

)1/pkd

(
ek

e0

)1/pk

⎞
⎟⎟⎟⎠�t (35)

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 80:815–845
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where Tol is the convergence tolerance, kd is the desired number of iterations, and p=2 corresponds
to the exponent on �t in the expression �∝�t2/mi . When the solution does not converge in the
desired number of iterations, Equation (35) can be used to compute a new time-step size from the
previous time-step size used. If the solution does converge in less than kd iterations, then the time-
step size can be recomputed in order to achieve convergence in the desired number of iterations
for the next time step. When this occurs the method computes a larger time-step size for the next
time step. It is important that the time-step size does not increase above a point where collisions
are missed or the truncation error becomes too large. For this reason, a maximum time-step size,
�t lim, is chosen to ensure that the physics of the process is not lost in the numerical discretization.
At the implementation level, the smallest of the iteration-limited and collision-limited time-step
sizes is chosen. In event-driven molecular dynamics, the simulation is moved forward as events
occur (i.e. collisions). The reader is referred to [36] or [37] for a detailed description of these
types of simulations. In order to move the time step forward, the time for the next collision is
computed. In these types of simulations only collision interactions are considered; therefore, the
collision times can be computed exactly. In this work, this is not possible since near field and other
external forces are considered. However, as similar approach can be used to control the time-step
size such that no collisions are missed in the simulation.

First, the collision time is calculated as it would be in an event-driven simulation, for this case
near field and external forces are neglected. Consider two spheres i and j with radii ri and r j ,
respectively. The spheres collide when the following is satisfied:

‖r j (tc)−ri (tc)‖=ri +r j (36)

where tc corresponds to the time when the grains first come into contact. Since no forces are
considered to act on the grains, the position of grain i at time tc can be expressed as

ri (tc)=ri (t)+(tc− t)ṙi (t) (37)

where t is the current time. A similar expression can be written for grain j , and using
Equations (36) and (37) produces a quadratic equation for tc

‖ri j +(tc− t)ṙi j‖2=(ri +r j )
2 (38)

where ri j =r j (t)−ri (t) and ṙi j = ṙ j (t)− ṙi (t). Equation (38) is then solved to determine the
collision time interval

tc− t= (−ri j · ṙi j )±
√
Ci j

‖ṙi j‖2 (39)

where Ci j =(ri j · ṙi j )2−‖ṙi j‖2(‖ri j‖2−(ri +r j )2). Equation (39) represents the following three
possible scenarios regarding the collision between grains i and j :

1. Either ri j · ṙi j>0 or ri j · ṙi j<0. If ri j · ṙi j>0 the grains are moving away from each other and
a collision cannot occur; therefore, a collision is only possible if ri j · ṙi j<0.

2. Either Ci j<0 or Ci j>0. If Ci j<0 the collision time is a complex number, this represents
the case when grains do not collide. Therefore, if Ci j>0 and ri j · ṙi j<0 then a collision will
occur and Equation (39) can be used to compute the collision time.

3. If a collision occurs, Equation (39) has either one or two real roots. If there are two roots,
the smaller time represents the actual collision time between the grains. The case where the
solution to Equation (39) has only one real root corresponds to grazing contact.
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In the previous discussion, it was assumed that no external or near-field forces act on the grains.
Since this is not the case, it is not possible to predict the collision time in such a simple manner.
However, in this work it is not necessary to determine exact collision times, the goal is to adapt the
time-step size in order to prevent interpenetration of grains. The time-step size should be chosen so
that at any time two grains may only overlap by a small fraction of their radii. Therefore, at time t ,
the maximum time-step size should be the sum of the collision time interval, �tc= tc− t , and the
maximum allowable overlap between grains, � min(ri ,r j )/‖ṙi j‖. Since no external or near-field
forces were considered in the calculation of the collision time interval, �tc is scaled by a factor
�<1.¶ In summary, the limiting time-step size as determined by grain–grain collisions is

�t limi j =��tc+ � min(ri ,r j )

‖ṙi j‖ (40)

where �tc is determined using Equation (39).
In a similar manner, the limiting time-step size for a grain–surface collision can also be calculated.

In this case, the collision time interval for a grain–surface collision‖ is

tc− t=−di j ·n j

ṙi ·n j
(41)

where di j is a vector from any point on the surface of triangle j to the center of grain i , n j is the
normal to triangle j . Note that if ṙi ·n j>0, the grain is moving away from the surface and contact
is impossible. In practice, the limiting time-step size chosen is the sum of maximum allowable
overlap between the grain and the surface and a scaled factor of the collision time interval. The
limiting time-step size as determined by grain–surface collisions is then

�t limi j =��tc+ �ri
‖ṙi‖ (42)

where, in this case, �tc= tc− t is determined using Equation (41). The pairwise limiting time-step
size, �t limi j , is computed for all of the potential contact partners as determined by a standard binning
algorithm. This is critical to the efficiency of the algorithm since the limiting time-step size is only
computed for grains that are near each other. The limiting time-step size that is used at time t is
then the minimum of all �t limi j .

Time-step adaptivity is critical to the efficiency and accuracy of the solution since the system
fluctuates greatly over time. In this work two levels of adaptivity are used, the iteration convergence
level and the collision interpenetration level. At the iteration convergence level, only the error
(see 3(a) in the list below) between successive iterations is computed which costs order N opera-
tions. For the collision interpenetration level, the approximate collision times are computed for only
grains that are near each other, which depending on the distribution of the grains, is approximately
an order N operation. Therefore, the cost of determining the adaptive time-step size for both the
first and second levels of adaptivity is negligible compared with the force summation operation
for near-field grains. A description of the time-stepping scheme is given in the following list.

¶The values of � and � are usually chosen in the range 0.01<�<0.05 and 0.5<�<0.9.
‖In this work the surface is a triangular mesh; therefore, the grain–surface collision consists of triangle-sphere contact.
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Summary of time-stepping scheme:

1. Set k=0
2. Compute grain positions for i=1 to N for the kth iteraton:

rL+1,k+1
i = �t2

mi
Wtot

i (rL+1,k
i )+(rLi +�t ṙLi )

3. Compute the error for the kth iteration:

(a) ek
def=
∑n

i=1 ‖rL+1,k
i −rL+1,k−1

i ‖∑n
i=1 ‖rL+1,k

i ‖

(b) �k
def=
((

Tol
e0

)1/pkd
(
ek

e0

)1/pk
)

4. If tolerance is met (ek�TOL) and k<kd Then:
(a) Construct new time step: �t=�k�t
(b) Compute �t limi j for possible collision partners and

select �t lim=MIN(�t limi j )

(c) Select minimum: �t=MIN(�t lim,�t)
(d) Increment time (t= t+�t) and go to (1)

5. If tolerance is not met (ek>TOL) and k=kd Then:
(a) Construct new time step: �t=�k�t
(b) Restart at time t and go to (1)

5. TIME- AND VOLUME-AVERAGED QUANTITIES

The simulations are performed over a time range T , during this time the system is in a state
of fluctuation from one configuration to another. In order to determine the effective response of
the system, the observed quantities for each configuration can be averaged in space and time.
Time averaging alone can be used to determine the effective response for quantities that are not
spatially dependent, for example the total kinetic energy of the system. Volume averaging is used
to determine average quantities for a region in space. This can be used with interpolation to build a
‘continuous’ response of the system. Both time and volume averaging can be used in conjunction
to determine an average ‘continuous’ response. In order to determine average quantities in space,
the simulation region is broken up into grid cells. The space is broken up into Nx NyNz grid cells,
where Nx , Ny , and Nz are the number of grid cells in the x , y, and z directions, respectively. Each
grid cell is assigned a set of indices, (ix , iy, iz), and a position, which corresponds to the center of
the grid cell. For a quantity �, its average for the grid cell (ix , iy, iz) is

�̄(ix ,iy ,iz) =
1

N(ix ,iy ,iz)

N(ix ,iy ,iz )∑
j=1

� j (43)
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Figure 4. Time and volume averaged: (a) density and (b) velocity.

where N(ix ,iy ,iz) is the number of grains with their center inside the grid cell with indices (ix , iy, iz),
and � j is the value of the desired quantity for grain j .

In order to determine the effective response in both time and space, volume and time averaging
can be used together. At each time, the value of a desired quantity is determined for each grid
cell, forming a series of ‘snap-shots’ of spatially averaged quantities. These ‘snap-shots’ are then
averaged at each grid cell to determine their time average. Figure 4 shows an example of the
volume average density and velocity for a granular jet simulation.

6. SURFACE STRESS

Since the grain–surface collisions are modeled through coefficients of friction and restitution there
is no measure of the force on the surface during the collision. However, the normal and tangential
impulses from each impact can be determined with Equations (26) and (31). Using these impulses,
an average surface stress can be defined. In the first part of this section, an analytical solution is
presented for the average normal stress on the surface if grain–grain interactions are neglected. In
the next section, a description of the numerical algorithm used to measure the averaged surface
stress is presented.
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v0

θ
dS

Figure 5. Schematic of a jet striking a surface where the grains do not interact with each other.

6.1. Non-interacting granular jet

In order to determine the effect of the grain–grain interactions on the average stress on the surface,
first, the average stress from an idealized non-interacting jet is determined. Figure 5 shows a
schematic of the non-interacting granular jet, where 	 is the angle of attack, dS is the area of a
differential element, and v0 is the velocity of the jet. The pressure on the surface can be derived
using kinetic theory. Let N (v0,	,m, t)dv0 d	dm be the number of grains having velocities within
dv0 of v0, angles within d	 of 	, and masses within dm of m, which approach dS in time dt .
This must equal the volume that contains the grains that approach dS in time dt multiplied by
the number density of the grains within the velocity, angle, and mass range at time t . This is
represented by

N (v0,	,m, t)dv0 d	dm=v0 cos(	)dS dt× N

V
f (v0,	,m, t)dv0 d	dm (44)

where f (v0,	,m, t)dv0 d	dm is the fraction of grains having velocities within dv0 of v0, angles
within d	 of 	, and masses within dm of m, and N is the number of grains within volume V at
time t . Since it is expected that v0, 	, and m are independent, then

f (v0,	,m, t)=�(v0, t)�(	, t)�(m, t) (45)

where �(v0, t), �(	, t), and �(m, t) are the fraction of grains having velocities within dv0 of v0,
angles within d	 of 	, and masses within dm of m at time t , respectively. Using Equation (45),
Equation (44) can be rewritten as

N (v0,	,m, t)dv0 d	dm= N

V
v0 cos(	)�(v0, t)�(	, t)�(m, t)dv0 d	dm dS dt (46)

The momentum transferred to the surface per unit time per unit area is then given by

Pt =
∫

v0

∫
	

∫
m
(m(1+e)v0 cos(	))N (v0,	,m, t)dv0 d	dm (47)

since m(1+e)v0 cos(	) is the normal impulse from a grain–surface collision for a grain of mass m,
velocity v0, angle 	, and a grain–surface coefficient of restitution e. Furthermore, assuming that
the number density of the system, N/V , and the grain–surface coefficient of restitution, e, are
fixed, then Equation (47) can be rewritten as

Pt = N

V
(1+e)

∫
v0

∫
	

∫
m
mv20 cos

2(	)�(v0, t)�(	, t)�(m, t)dv0 d	dm (48)
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Note that the coefficient of restitution is in general dependent on the impact velocity. However
in this case it is assumed that the velocity range is small; therefore, e is taken to be constant.
For a detailed discussion on the velocity dependence of e, the reader is referred to the work by
Goldsmith [34]. Since v0, 	, and m are independent, then

Pt = N

V
(1+e)

[∫
v0

v20�(v0, t)dv0

][∫
	
cos2(	)�(	, t)d	

][∫
m
m�(m, t)dm

]
(49)

and assuming that �(v0, t), �(	, t), and �(m, t) are independent of time, the normal pressure on
the surface is given by

P= 
̄(1+e)v̄20

[∫
	
cos2(	)�(	)d	

]
(50)

where 
̄=Nm̄/V is the average density and v̄20 is the mean square velocity of the flow. For
constant v0, m, and 	 Equation (50) reduces to P=
(1+e)v20 cos

2(	).

6.2. Interacting granular jet

Using the simulation described in Section 2 the average stress on the surface can determined for a
number of parameters. As described above, the normal and tangential impulses from each impact
can be determined with Equations (26) and (31). By computing these impulses for each impact,
the average stress for a given time period can be determined over a patch on the surface. If this is
done over the entire surface it provides information about the profile of stresses as a function of
the position. The average stress for a patch with area A over a total time T is given by

N(T ) =
∑

i ( f n�t)ini
TA

S(T ) =
∑

i ( f t�t)i ti
TA

(51)

where ni and ti are the normal and tangential unit vectors for collision i , respectively, and ( f n�t)i
and ( f t�t)i are the projections of the impulse in the normal and tangential directions, respectively.
Figure 6 shows an example for the normal and tangential stresses on a surface from a three-
dimensional simulation. The surface is divided into grid cells and Equation (51) is used to determine
the average surface stress for each cell over a time interval T . In order to measure the uncertainty in
the stress calculation, the total time interval T is divided into the sub-intervals of time Tn =T/nT .
For each sub-interval the surface stress is computed using Equation (51) at every grid cell. This
gives nT values of the surface stress at different time intervals for each cell. The reported value
of the stress for cell j over the nT samples is the mean value over the nT samples. For example,
for the normal stress the mean value is

N̄ j =
∑nT

n=1N
j (Tn)

nT
(52)

where Tn corresponds to the n′th time interval. The reported uncertainty in the solution is the
standard deviation of the mean over each cell j . Invoking the central limit theorem, the variance
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Figure 6. Example of a surface stress calculation in three dimensions for: (a) the normal
stress and (b) the shear stress, with the units of KPa. Each grid cell corresponds to the

area over which the averaging is performed.

in the sample mean is the variance over all samples divided by the number of samples; therefore,
the reported uncertainty in the normal stress is

DN j =
√∑nT

n=1(N
j (Tn)−N̄ j )2

nT
(53)

6.3. Normalized surface stress

In order to determine the relative effect of the grain–grain interactions on the surface stress, a
normalized stress measure is introduced. This is the ratio of the measured stress, as described
in Section 6.2, to the stress from a non-interacting granular jet, as described in Section 6.1. For
the normalized normal stress, the average normal stress is scaled by the pressure from the non-
interacting granular jet, whereas the normalized shear stress is scaled by the product of the pressure
and the static coefficient of friction. Note that normalization by the static coefficient of friction
is a somewhat arbitrary choice since the dynamic coefficient of friction or a weighted average of
the static and dynamic coefficients of friction could be used. Using Equation (50) the normalized
normal and shear stresses for grid cell j are given by

N̂ j = N̄ j


̄(1+e)v̄20[
∫
	 cos

2(	)�(	)d	]

Ŝ j = S̄ j

�
̄(1+e)v̄20[
∫
	 cos

2(	)�(	)d	]
(54)

where S̄ j is computed in the same way as N̄ j using Equation (52).
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7. PARAMETER STUDIES FOR TWO-DIMENSIONAL SURFACE
STRESS CALCULATIONS

Parameter studies are conducted for two-dimensional examples to determine the effect of different
parameters on the surface stress. In this case the normalized surface stress is computed in order
to determine how the parameters influence the surface stress through the grain–grain interactions.
The effect of the following parameters will be examined: the angle of attack 	, the strength of the
near-field forces, the flow velocity v0, the volume fraction at the inflow region �= 
̄/m̄, and
the grain–surface coefficient of restitution. For the examples, the following base values for the
parameters are used: 	=30◦, �=0.1, the flow velocity is uniform with v0=20m/s, the grain–grain
coefficient of restitution is e=0.3, the grain-wall coefficient of restitution is ew =0.3, and the static
and dynamic coefficients of friction for both the grain–grain and grain–surface interactions are
�s =0.3 and �d =0.2. For each example the base values are used for all of the parameters except
for the parameter that is being varied within that example.

Figure 7 shows the effect of the near-field force strength on the normalized normal (N̂) and
shear (Ŝ) stresses. For this analysis, the near-field coefficients in Equation (3) are chosen such
that �1=2 and �2=3 are constant and �1/�2=0.002 is constant. The magnitude of the near-field
forces is varied by varying �1 and therefore �2 by the ratio rc, where �1=rc�0. With this choice
of parameters, the magnitude of the forces is clearly proportional to rc. For these examples �0 is
chosen such that �0/m̄=5.0×10−4, where m̄ is the average mass of the grains. For this choice of
parameters, it is seen from Figure 7 that the near-field forces have the effect of reducing the peak
stresses on the surface but increasing the size of the region with non-zero stresses. This effect
is largely dependent on the equilibrium distance between the grains. For this case, the near-field
parameters cause the granular jet to spread out, this leads to the ‘spreading’ of the surface stress
profile. However, if the near-field parameters are chosen so that the granular jet agglomerates, one
would expect that the profile would become narrower as rc increases.

For the remaining examples in this section near-field effects are neglected. The first of these
examples investigates how the angle of attack, 	, affects the normalized normal (N̂) and shear
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Figure 7. Normalized: (a) normal stress and (b) shear stress as a function of the near-field strength ratio rc.
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Figure 8. Normalized: (a) normal stress and (b) shear stress as a function of angle of attack.
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Figure 9. Normalized: (a) normal stress and (b) shear stress as a function of velocity.

(Ŝ) stresses (Figure 8). For 	=0◦ the normal and shear stresses are symmetric as expected. The
shear stress is positive in the region where the grains flow in the positive direction and negative
in the region where the grains flow in the negative direction. Initially, as 	 is increased, more
material flows to the left than to the right. This causes an increase in the positive shear stress,
while the negative part of the shear stress vanishes. Also, by increasing the angle of attack the
contact area widens, and therefore the grain–grain interactions decrease. This is seen in Figure 8
as an increase in the magnitude of the normalized normal and shear stresses with increasing 	.
As 	 is further increased, there comes a point where the grains moving toward the surface are not
deflected by grains rebounding from the surface. At this point, the grains in that region should
exert a normal and shear stress equivalent to that of the non-interacting granular jet. This is seen
in Figure 8 for 	=45◦ and 	=60◦, where ‖N̂‖≈1 and ‖Ŝ‖≈1 in the region where the grains do
not interact with each other.
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Figure 10. Normalized: (a) normal stress and (b) shear stress as a function of the particulate volume fraction.

Figure 9 shows the effect of varying the flow velocity, v0, on the normalized normal and shear
stresses. The simulations are carried out for three different velocities. From Figure 9 it is apparent
that the normalized stress is independent of velocity. In this simulation the coefficient of restitution
was assumed to be a constant. In general, the coefficient of restitution depends on the velocity at
impact. Clearly, if this velocity dependence were included in the model the normalized stresses
would depend on the velocity.

Figure 10 shows the effect of varying the volume fraction of grains, �, on the normalized
stresses. As the volume fraction decreases, the grain–grain interaction decreases as well. It would
be expected that with decreasing volume fraction, the stress would approach that of the ideal
non-interacting case. In this case the pressure is constant in the impact region and vanishes outside
of this region, resembling a square wave. In Figure 10 it is seen that as � decreases, the normalized
stresses increase and start to ‘flatten’ out. While at high values of � the stresses are fairly peaked,
at low values of � they become more flat in the impact region.

Figure 11 shows the effect of varying the grain–surface coefficient of restitution, ew, on the
normalized stresses. In Figure 11 the stress is seen to increase with decreasing grain–surface
coefficient of restitution. As the coefficient of restitution decreases, the grains rebound with less
energy from the surface. In turn, these grains have less effect on reducing the kinetic energy of
grains approaching the surface.

8. PARAMETER STUDIES FOR THREE-DIMENSIONAL SURFACE
STRESS CALCULATIONS

In this section, a three-dimensional example is presented where the angle of attack is varied
for a nozzle with a circular cross-section. For this example, the following parameters are used:
�=0.1, the grain–grain coefficient of restitution is e=0.3, the grain-wall coefficient of restitution
is ew =0.3, and the static and dynamic coefficients of friction for both the grain–grain and grain–
surface interactions are �s =0.3 and �d =0.2. The flow velocity is chosen such that the velocity
is in the direction of the axis of the jet along the center of the jet and spreads with an angle
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Figure 11. Normalized: (a) normal stress and (b) shear stress as a function of the
grain–surface coefficient of restitution.

�=(2�/L)�o from the axis at a radial distance � from the center of the jet, where L is the
diameter of the jet and �o=4◦ is used for this example. The magnitude of the velocity is chosen
to be 20m/s everywhere. Figure 12 shows the normalized stress patterns for 	=0◦. In this case,
the stress patterns are radially symmetric as would be expected. For the given process parameters,
the normal stress is nearly constant in the region directly under the nozzle and quickly decays
outside of this region. The normalized shear stress is nearly zero at the center, this is the region
where the tangential impact velocity of the grains is nearly zero. The shear stress increases as
the radial distance from the center increases, it then reaches a maximum and decreases to zero
as the radial distance from the center increases further. Figure 13 shows the stress patterns for
	=10◦. In this case, the normalized normal stress slightly increases in the effective region as x/L
increases. When compared with the 	=0◦ case, the region where normalized shear stress vanishes
is located at a higher x/L value. The shear stress is maximized near the negative x/L edge of the
effective stress region. Figure 14 shows the stress patterns for 	=20◦. Once again, the normalized
normal stress slightly increases in the effective region as x/L increases and reaches a maximum
at the positive x/L edge. With the higher angle of attack, there no longer exists a region where
normalized shear stress vanishes inside of the effective stress region. When compared with the
	=10◦ case, the maximum shear stress is located at a higher x/L value. Figure 15 shows the
stress patterns for 	=30◦. In this case, the normalized normal stress is nearly constant throughout
the effective region except at the positive x/L edge where it reaches a maximum. The normalized
shear stress also reaches a maximum near the positive x/L edge, then decays rapidly as x/L
decreases to reach a nearly constant value throughout the rest of the effective region. Note that
there are larger stress variation in y direction at these values of 	. Finally, Figure 16 shows the
stress patterns for 	=60◦. Here, the normalized normal and shear stresses show the same patterns.
They achieve a maximum near the positive x/L edge of the effective region, then decay rapidly
as x/L decreases to reach a nearly steady value, and then continue to decrease further as x/L is
further decreased. Note that for 	 between 40 and 60◦ similar trends in the stress appear, with the
exception that the effective region is stretched in the x direction as 	 increases.
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Figure 12. Normalized: (a) normal stress and (b) shear stress for 	=0◦.
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Figure 13. Normalized: (a) normal stress and (b) shear stress for 	=10◦.

9. OUTFLOW CALCULATIONS

In order to determine quantities such as momentum, energy, or mass flux at the outflow region,
the position, mass, and velocity of a grain are recorded when the grain leaves the outflow box.
The outflow region is divided into grid cells and for a time period T and grid size �h the quantity
of interest � is time and volume averaged as

�̄
′
(�hi )=

∑Ni
j=1� j (�hi )

T
(55)
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Figure 14. Normalized: (a) normal stress and (b) shear stress for 	=20◦.
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Figure 15. Normalized: (a) normal stress and (b) shear stress for 	=30◦.

where �̄
′
(�hi ) is the rate of the time-averaged quantity for grid �hi , � j (�hi ) is the quantity

of interest for grain j that crossed grid �hi , and Ni is the number of grains that crossed grid
�hi in the time period T . The outflow profile is determined by using Equation (55) on all of the
individual outflow cells. In order to measure the uncertainty in the outflow calculation, the total
time interval T is divided into sub-intervals of time Tn =T/nT . For each sub-interval the outflow
quantity is computed using Equation (55) at every grid cell. This gives nT values of the outflow
quantity at different time intervals for each cell. The reported value of the outflow quantity for
cell i over the nT samples is the mean value over the nT samples

〈�̄′
(�hi )〉=

∑nT
n=1 �̄

′
(�hi ,Tn)

nT
(56)
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Figure 16. Normalized: (a) normal stress and (b) shear stress for 	=60◦.
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Figure 17. Rate of momentum flux along with its normalized centroid h and the second moment .

where Tn corresponds to the n′th time interval. The reported uncertainty in the solution is the
standard deviation of the mean over each cell j

��̄
′
(�hi )=

√∑nT
n=1(�̄

′
(�hi ,Tn)−〈�̄′

(�hi )〉)2
nT

(57)

where, as with Equation (53), the central limit theorem was used to derive Equation (57). Figure 17
shows the normalized value of 〈�̄′

(h)〉 as a function of the normalized height h/L from the
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surface, where L is the width of the granular jet as depicted in Figure 1, and the normalization
value is a constant which will be defined in Equation (58). Here, 〈�̄′

(h)〉=I[〈�̄′
(�hi )〉], where

I[·] is an operator that takes the data at each grid cell and returns a piecewise continuous function
by linearly interpolating the desired quantity between cells. In Figure 17 a normalized value of
〈�̄′

(h)〉 is shown, where the normalization factor R is given by

R=
∫ ∞

0
〈�̄′

(h)〉dh (58)

In the example shown in Figure 17, �=mvx is the momentum flux through the left side of the
outflow box in the e1 direction, as shown in Figure 1.

In order to characterize the outflow conditions of a quantity � with a statistical measure, the
second and third statistical moments of 〈�̄′

(h)〉 are computed. First, the expected value of h/L is
computed as

h̄=
∫∞
0 h〈�̄′

(h)〉dh
LR

(59)

this value represents the centroid of the flux of �, h̄ is shown for �=mvx in Figure 17. The
normalized second moment is computed as

2=
∫∞
0 (h− h̄)2〈�̄′

(h)〉dh
L2R

(60)

this value represents the spread of the quantity � of the granular jet at the outflow region. Figure 17
shows the value  for �=mvx . The normalized third moment is computed as

�=
∫∞
0 (h− h̄)3〈�̄′

(h)〉dh
L3R

(61)

where �/3 represents the skewness of the quantity � of the granular jet at the outflow region.
The uncertainties in R, h̄, , and � are computed using a Monte Carlo approach.

10. PARAMETER STUDIES FOR OUTFLOW CALCULATIONS

In this section, the effect of the surface morphology and the near-field interaction between the grains
on the rate of flux of momentum through the outflow region is investigated for two-dimensional
simulations. The rate of momentum flux across an interface can be interpreted as being proportional
to the force that would act on the interface if it was replaced by a solid surface. Therefore, the
profile, as shown in Figure 17, represents how the force that would be exerted on a surface varies
with height. For this case, R is a quantity which is proportional to the total force and h̄ is the
centroid of the force that would be exerted on a surface. For the examples in the remainder
of this section, the following parameters are used: 	=30◦, �=0.1, v0=20m/s, the grain–grain
coefficient of restitution is e=0.3, the grain-wall coefficient of restitution is ew =0.3, and �s =0.3
and �d =0.2.

In this example, the effect of varying the magnitude of the grain–grain near-field forces on the
moments of the rate of momentum flux is investigated. For this analysis, the near-field coefficients
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Figure 18. Variation of moments as a function of the near-field forces between grains.

in Equation (3) are the same as those used for the near-field grain–surface stress example in
Section 7. Figure 18 shows the variation of the moments as a function of rc for the rate of
momentum flux. Sub-figure (a) shows that the resultant decreases slightly as the magnitude of the
near-field forces is increased then reaches a minimum and increases once again as rc is further
increased. However, this variation is fairly weak and the total variation of the resultant over the
range of rc chosen is close to that of the uncertainty in R. Therefore, the resultant of the rate of
momentum flux across the outflow interface is fairly insensitive to rc for the entire range used in
this example. Figure 18(b) shows the effect rc on the centroid, h̄. At first, the centroid increases
rapidly as rc increases until it reaches a point where the centroid remains fairly constant with a
further increase of rc. For the range of rc used in this example, h̄ is very sensitive to changes in
rc for rc<1.5 and fairly insensitive to changes in rc for rc>1.5. Figure 18(c) shows the effect rc
on the spread of the granular jet at the outflow region, which is characterized by . Similarly
to the trend of the centroid,  increases rapidly as rc increases until it reaches a point where it
remains fairly constant with a further increase of rc. Clearly, the spread of the granular jet and the
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centroid is closely related. As the flow spreads out, the centroid must increase since the surface
prevents the grains from spreading in the downward direction. Figure 18(d) shows the effect rc on
the skewness of the outflow profile, �/3. At first, the skewness decreases rapidly with increasing
rc until it reaches a point where it remains nearly constant as rc is increased further. The skewness
remains positive for the entire range of rc used in this example. Positive skewness corresponds to
the profile of the outflow having a longer tail in the direction of increasing height. As was the
case with h̄, it is expected that the skewness decreases since there is more space for the grains to
flow out between the surface and the centroid of the flow.

For the next example, the effect of surface morphology on the moments of the rate of momentum
flux is examined. For this case, no near-field effects are considered. The surface is modeled as
a periodic surface that is parametrized by its amplitude A and wavelength �. Figure 19 shows
a schematic of the surface that is constructed with a sinusoidal function. For this analysis, two

different parameter studies are considered. For the first study, the normalized amplitude, Â
def= A/L ,

is held fixed while the number of asperities, na
def= L/� is varied, where L is the width of the jet

(see Figure 1). For the second study, na is varied while Â is fixed.
Figure 20 shows the variation of the moments as a function of na for the rate of momentum

flux. Sub-figure (a) shows the effect on the resultant, R. The resultant decreases as na is increased
then reaches a nearly constant value. This is expected, since as the surface becomes rougher, more
energy is removed from the grains. This decrease occurs more rapidly for smaller values of na and
then tends to level off for higher values of na . Therefore, the resultant of the rate of momentum
flux across the outflow interface is more sensitive for small na than for large na . Figure 20(b)
shows the effect na on the centroid, h̄. The centroid is seen to increase at a fairly constant rate with
respect to na . The first point in Figure 20 (na =0) corresponds to a perfectly flat surface. Clearly,
there is a large change between a perfectly flat surface and the first non-zero data point of na . It
is expected that the results approach those of a flat surface as na →0 and Â→0. For values of
na<2, h̄ is very sensitive to changes in na and is less sensitive as na is further increased. Figure
20(c) shows the effect na on . As was seen with the sensitivity of h̄ and  to rc, the centroid
and spread of the flow are closely related. Here, h̄ and  show similar trends of a nearly constant
increase in  as na is increased for na>2. Figure 20(d) shows the effect na on the skewness of
the outflow profile. The skewness decreases with increasing na at a fairly constant rate for na>2.
The skewness is positive for na<10 and negative for na>12, this corresponds to an outflow profile

Figure 19. Schematic of surface morphology showing its amplitude A and wavelength �.
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Figure 20. Variation of moments as a function of the number of asperities on the surface.

having a longer tail in the direction of increasing height for na<10 and a longer tail in the direction
of decreasing height for na>12.

Figure 21 shows the variation of the moments as a function of the normalized amplitude, Â,
for the rate of momentum flux. Sub-figure (a) shows that at first the resultant decreases as Â is
increased and then R reaches a nearly constant value as Â is further increased. Therefore, the
resultant is highly sensitive to changes in the height of the asperities up to a certain height at which
point it becomes insensitive to further changes in Â. As the height of the asperities is increased
beyond a critical point the grains become stagnant in between the asperities and fill the asperities.
After this point, any changes in the height of the asperities have no effect on the outflow of the
grains. Figure 21(b) shows that the centroid increases rapidly with increasing Â at first and less
rapidly as Â is further increased. It is also noted that as Â→0, h̄ approaches the value obtained
from a perfectly flat surface that corresponds to Â=0 in Figure 21(b). Figure 21(c) shows that
 has a similar trend to h̄ as Â is varied. However, while h̄ keeps increasing slightly for Â>0.04,
 remains nearly constant for this range of Â. Figure 21(d) shows that the skewness decreases
with increasing Â for Â<0.04 and is nearly constant for Â>0.04.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 80:815–845
DOI: 10.1002/nme



SIMULATION OF GRANULAR JETS 843

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.32

0.34

0.36

0.38

0.4

0.42

0.44

Normalized Amplitude

R
es

ul
ta

nt

(a)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Normalized Amplitude

C
en

tr
oi

d

(b)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.14

0.145

0.15

0.155

0.16

0.165

0.17

0.175

0.18

0.185

0.19

Normalized Amplitude

S
ta

nd
ar

d 
D

ev
ia

tio
n

(c)
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0

0.2

0.4

0.6

0.8

1

Normalized Amplitude

S
ke

w
ne

ss

(d)

Figure 21. Variation of moments as a function of the normalized amplitude on the surface.

11. CONCLUDING REMARKS

In this paper a simulation of near-field granular jets impinging on a surface was developed, and an
analysis of the following three areas was performed: (1) volume-averaged quantities; (2) surface
tractions; and (3) outflow conditions. In particular, the analysis of surface tractions has tangible
applications for industrial processes. For blast cleaning applications, Ciampini et al. [32] performed
parametric studies to determine how particle interference affects the amount of power that is
transmitted to the surface with respect to the total power available. Their parametric studies were
performed at lower grain volume fractions than those reported here, but similar trends were found
in this work. For example, they found that increasing the grain–surface coefficient of restitution
decreased the amount of power transferred to the surface as is evident here from Figure 11. Another
application of the surface stress profile calculations is the generation of desired surface geometries,
for example using abrasive jet micromachining (see [38] and [39]). The surface stress patterns
could be used to predict the initial surface geometry. Conversely, an inverse problem could be
solved to generate a desired surface from a range of possible flow parameters. For example, the
large variations in the stress profiles for varying angle of attack could be used to generate a range
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of geometries on a surface. Zohdi [27–30] has dealt with the solution of inverse problems in
granular flow applications using genetic algorithms. These same techniques could be used to deal
with these granular jet applications.
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