Title
NEUTRON DENSITY DISTRIBUTION IN [SUP] 11 LI

Permalink
https://escholarship.org/uc/item/2gw4j1c9

Author
Harvey, B.G.

Publication Date
1969-05-01
Submitted to Physics Letters B

Neutron Density Distribution in ^{11}Li

B.G. Harvey

May 1989
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
NEUTRON DENSITY DISTRIBUTION IN 11Li*

Bernard G. Harvey
Nuclear Science Division, Lawrence Berkeley Laboratory
1 Cyclotron Road, Berkeley, CA 94720

ABSTRACT

The radial density distribution of neutrons in 11Li is deduced from the measured perpendicular momentum distribution of 9Li fragments coming from the interaction of 11Li (790 MeV/A) with a carbon target and from the reaction cross section. The results confirm that the neutron density distribution in 11Li extends to very large radii.

*This work was supported by the Director, Office of Energy Research, Division of Nuclear Physics of the Office of High Energy and Nuclear Physics of the U.S. Department of Energy under Contract DE-AC03-76SF00098.
The reaction of ^{11}Li (790 MeV/A) with a carbon target was studied by Tanihata et al. at the Berkeley Bevalac (1-3). The perpendicular momentum distribution of ^9Li coming from this reaction was found to contain two Gaussian components with widely different widths (23 ± 5 and 95 ± 15 MeV/c). The ratio of their areas (broad/narrow) is $1.73 \pm 0.33(2)$. The reaction cross section was found to be 1055 ± 14 mb2, substantially larger than the value obtained for the interaction of ^{12}C with carbon (939 ± 49 mb2) at 870 MeV/A. Thus the ^{11}Li nucleus must be larger than ^{12}C even though it contains one less nucleon.

It was suggested by Migdal5 that the dineutron might become bound in the field of a nucleus. Hansen and Jonson6 applied this concept to ^{11}Li, which has two neutrons outside the closed $p_{3/2}$ shell, and suggested that the wave function of the outer neutrons in the force-free region should be proportional to $\exp (-r/L)/r$, where L is a decay length whose value was calculated to be 8.2 fm from the binding energy of the two neutrons to the ^9Li core.

The present calculation investigated the formation of ^9Li as a result of the collision of target nucleons with projectile nucleons. The method has already been described7,8. The spatial coordinates of the ^{12}C target nucleons were chosen at random from a Fermi distribution with diffusivity a of 0.521 fm and half-density radius c of 2.222 fm. The coordinates of the projectile protons were chosen from a Fermi distribution with a of 0.583 fm, c of 1.79 fm, and those of the neutrons from the sum of a Fermi distribution and an exponential distribution:

$$\rho_n(r) = 0.08458 / \{1 + \exp [(r - 2.222) / a]\} + N \exp (-2r/L)/r^2$$ (1)

where N is a normalization parameter which determines the contribution of the loosely bound neutrons to the exponential tail. In calculations in which less than the full two
loosely bound neutrons fell in the exponential tail, the balance was added to the Fermi distribution, keeping the central density and half-density radius at the values of ^{12}C (0.08458 N/fm3 and 2.222 fm respectively), but allowing the diffusivity a to change so that the volume integral over the Fermi component was equal to the number of neutrons that it was assumed to contain. In all calculations, a value of 6 fm was assigned to the decay length L, and the exponential density contribution was added only at radii greater than 2.5 fm.

Having fixed the coordinates of all nucleons, the target and projectile nuclei were allowed to collide at a given impact parameter. When two nucleons approached each other with a minimum separation less than a collision distance given by the free nucleon-nucleon scattering cross sections, they were assumed to collide. The projectile nucleon was assumed to be scattered in the direction of the line between the two nucleons at the collision point. Therefore, in about half of the NN collisions, the projectile nucleon was scattered towards the projectile. A mean free path of 4 fm was assumed to determine the probability that this nucleon induced a secondary reaction in the projectile fragment or whether it escaped with no final state interaction (FSI). Harmonic oscillator wave functions were used to calculate the probability that the scattered nucleon came from the s-shell. If it did, the residual fragment was assumed to be too excited to survive as ^{10}Li or ^9Li.

The calculation was repeated at each of 151 different impact parameters in steps of 0.1 fm from 0 to 15 fm for a total of 100,000 nucleus-nucleus collisions. Only the larger impact parameters, though, contributed to the formation of ^{10}Li or ^9Li. The number of events in which ^{10}Li and ^9Li primary fragments were formed without FSI or s-shell hole were recorded, along with the identity of the lost neutrons, i.e. whether they came from the six tightly bound $p_{3/2}$ neutrons or from the two loosely bound neutrons.
Since 9Li is so slightly bound against neutron decay, it was assumed, and confirmed by decay calculations(8), that the decay of 11Li or 10Li nuclei that were formed in excited states by FSI or s-shell hole would contribute only a few percent to the final yield of 9Li. Thus 9Li came from a) the removal of two tightly or loosely bound neutrons, or one of each, or b) by the removal of one tightly or one loosely bound neutron followed by neutron decay of the 10Li thus formed. The 9Li recoiled by the momentum (36.94 MeV/c) of the emitted neutron: this momentum was assumed to be isotropic in the projectile frame. Its perpendicular component was added to that of 10Li arising from the loss of the first neutron.

Friedman has suggested(10) that the width of the momentum distribution of a fragment formed by the removal of a nucleon is related to the separation energy of the lost nucleon. Thus the broad momentum component observed experimentally should contain those events in which one or more of the tightly bound neutrons were lost, and the narrow component to those in which all lost neutrons came from the loosely bound pair. The width σ of the Gaussian distributions is approximately related to separation energy ϵ by(2,3):

$$\sigma^2 = \sigma_0^2 F(B-F) / (B-1)$$

with

$$\sigma_0^2 = M_n \epsilon (B-1) / B$$

(2)

where B, F are the projectile and fragment masses and M_n is the neutron mass. The observed widths correspond to separation energies of about 0.34 MeV for the outer neutrons and 6.0 MeV for the $p_{3/2}$ neutrons(2).

Since the separation energies have to be treated as parameters to fit the observed widths, nothing can be learned from them other than a general confirmation of Friedman's suggestion. The ratio of momentum peak areas, though, is a measure of the probability
that the lost neutrons came from the tightly or loosely bound groups, and therefore of the
density ratio of these two groups in the tail of the 11Li neutron distribution. The calculated
value of the reaction cross section is sensitive to the total neutron density at large radii.

Table I shows a comparison of the experimental values$^{(2)}$ of the reaction cross section
and the ratio of broad/narrow peak areas with the values of these quantities calculated for
several values of N (eq. 1) and the corresponding Fermi diffusivity a. Since Coulomb
excitation is not included in the calculation, its estimated contribution to the experimental
reaction cross section ($7 - 30 \text{ mb}^{(9)}$) has been subtracted. The nuclear part of the reaction
cross section is therefore $1036 \pm 19 \text{ mb}$.

The best agreement is obtained for an exponential tail containing 1.0 loosely bound
neutrons. Fig. 1 shows a comparison of the experimental and calculated perpendicular
momentum distribution for this case. "Separation energies" of 5.0 and 0.15 MeV were
used for the tightly bound and loosely bound neutrons respectively. These values are
lower than those of ref. 2 because the present calculation contains the contribution to the
9Li momentum from the neutron decay of 10Li.

The calculation identifies the sources of the broad and narrow momentum
distributions. 79.1% of the broad component comes from the removal of a single tightly
bound neutron, 9.4% from removal of two tightly bound, and 11.5% from removal of one
tightly bound and one loosely bound neutron. The narrow component comes from the
removal of one loosely bound neutron (98.1%) or two loosely bound neutrons (1.9%).
The last process is rare because the loosely bound neutron in the exponential tail of the
density distribution is found only at large radii where the density is so low that a collision
with a second neutron is improbable. The fit to a double Gaussian distribution is a
reasonable approximation only because nearly all (85.8%) of the 9Li comes from removal
of either a tightly bound or a loosely bound neutron from 11Li. Removal of two neutrons,
which would introduce components with additional widths, is responsible for only 14.2% of the total ^9Li.

It is worth noting that a calculation in which the fragment recoiled with the Fermi momentum of the struck neutrons gave equally good results for the ^9Li momentum distribution. The Fermi momentum was assumed to be proportional to the cube root of the total density at the radius of the neutron (the local Fermi gas model(11)). However, both broad and narrow momentum components were found when the method was applied to neutron distributions that did not contain an exponential tail to large radii, although the narrow component was reduced in amplitude. This result is in contradiction with the observation that ^6He from the interaction of ^8He with a carbon target has only a single broad component in its perpendicular momentum distribution(2).
FIGURE CAPTION

Fig. 1. Comparison of experimental (filled circles) and calculated (bars) perpendicular momentum distribution of 9Li. The dots show the double Gaussian fit to the calculation. The 11Li neutron distribution with No.N = 1.0 was used in the calculation. The parameters are given in Table I. The calculated distribution was normalized to the height of the experimental peak.
REFERENCES

TABLE 1. Comparison of calculated and experimental values of the reaction cross section σ_t and the ratio R of the areas of the broad and narrow peaks in the perpendicular momentum distribution. Calculations were made for different values of N and a (eq. 1) corresponding to different average numbers (No.N) of neutrons in the exponential tail of the density distribution beyond 2.5 fm.

<table>
<thead>
<tr>
<th>No.N</th>
<th>a (fm)</th>
<th>N</th>
<th>σ_t (mb)</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expt.(a)</td>
<td>—</td>
<td>—</td>
<td>1036 ± 19</td>
<td>1.73 ± 0.33</td>
</tr>
<tr>
<td>Calculations:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.682</td>
<td>0.03052</td>
<td>1010</td>
<td>2.74</td>
</tr>
<tr>
<td>0.8</td>
<td>0.651</td>
<td>0.04883</td>
<td>1023</td>
<td>2.19</td>
</tr>
<tr>
<td>0.9</td>
<td>0.643</td>
<td>0.05494</td>
<td>1019</td>
<td>1.98</td>
</tr>
<tr>
<td>1.0</td>
<td>0.633</td>
<td>0.06104</td>
<td>1021</td>
<td>1.74</td>
</tr>
<tr>
<td>1.5</td>
<td>0.580</td>
<td>0.09155</td>
<td>1023</td>
<td>1.12</td>
</tr>
</tbody>
</table>

(a)Reference 2