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Abstract
In this study, high‐quality soil moisture data derived from the Soil Moisture Active Passive 
(SMAP) satellite measurements are evaluated from a perspective of improving the estimation of 
the global gross primary production (GPP) using a process‐based ecosystem model, namely, the 
Boreal Ecosystem Productivity Simulator (BEPS). The SMAP soil moisture data are assimilated 
into BEPS using an ensemble Kalman filter. The correlation coefficient (r) between simulated 
GPP from the sunlit leaves and Sun‐induced chlorophyll fluorescence (SIF) measured by Global 
Ozone Monitoring Experiment‐2 is used as an indicator to evaluate the performance of the GPP 
simulation. Areas with SMAP data in low quality (i.e., forests), or with SIF in low magnitude 
(e.g., deserts), or both are excluded from the analysis. With the assimilated SMAP data, 
the r value is enhanced for Africa, Asia, and North America by 0.016, 0.013, and 0.013, 
respectively (p < 0.05). Significant improvement in r appears in single‐cropping agricultural land
where the irrigation is not considered in the model but well captured by SMAP (e.g., 0.09 in 
North America, p < 0.05). With the assimilation of SMAP, areas with weak model performances 
are identified in double or triple cropping cropland (e.g., part of North China Plain) and/or 
mountainous area (e.g., Spain and Turkey). The correlation coefficient is enhanced by 0.01 in 
global average for shrub, grass, and cropland. This enhancement is small and insignificant 
because nonwater‐stressed areas are included.

1 Introduction

Gross primary production (GPP) is an important component in the global carbon cycle [Gitelson 

et al., 2006; Le Quere et al., 2015]. Quantitative estimates of the spatial and temporal 

distributions of GPP on regional to global scales are critical to the understanding of climate‐

carbon cycle feedback [Xia et al., 2015]. GPP is widely modeled using process‐based ecosystem 

models [Morales et al., 2005]. Soil moisture plays a crucial role in vegetative processes and links

https://agupubs.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=He%2C+Liming
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016JG003603#jgrg20808-bib-0051
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016JG003603#jgrg20808-bib-0073
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016JG003603#jgrg20808-bib-0044
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016JG003603#jgrg20808-bib-0026
https://agupubs.onlinelibrary.wiley.com/servlet/linkout?suffix=s0&dbid=16384&type=tocOpenUrl&doi=10.1002/2016JG003603&url=http%3A%2F%2Fucelinks.cdlib.org%3A8888%2Fsfx_local%3Fsid%3Dwiley%26iuid%3D2396784%26id%3Ddoi%3A10.1002%2F2016JG003603
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2016JG003603#citedby-section
https://doi.org/10.1002/2016JG003603
https://agupubs.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Luo%2C+Xiangzhong
https://agupubs.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=B%C3%A9lair%2C+St%C3%A9phane
https://agupubs.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Liu%2C+Jane
https://agupubs.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Chen%2C+Jing+M


the carbon, water, and energy cycles in the physical climate system and biogeochemical cycles 

[Seneviratne et al., 2010]. Therefore, soil moisture is one of the key variables in ecosystem 

models that constrains stomatal conductance and controls both plant water use and carbon uptake

[G. B. Bonan et al., 2014; Liming He et al., 2014; Mu et al., 2007]. However, a large uncertainty 

is associated with simulating soil moisture in these ecosystem models in applications on global 

and continental scales, because the simulation relies on the quality of input precipitation data, 

which often have large errors. Therefore, the estimate of terrestrial GPP is often biased due to 

errors in meteorological data sets [Barman et al., 2014].

Soil moisture varies greatly in space and time so it is challenging to accurately map its 

variations. Recently, the Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active 

Passive (SMAP) missions have been providing global maps of surface soil moisture with a target

accuracy of 0.04 m3 m−3 based on L‐band radiometric measurements [Entekhabi et 

al., 2010; Font et al., 2001; Kerr et al., 2012]. SMAP and SMOS are designed to map global soil

moisture in a temporal resolution of every 2–3 days to improve our understanding of the 

coupling energy, water, and carbon cycles. It has been shown that assimilation of such remotely 

sensed surface soil moisture [Kerr et al., 2012] can improve the modeling of various land surface

processes [Han et al., 2014; Wanders et al., 2014].

Up to now, the potential capability of new SMAP soil moisture data to improve the performance 

of ecosystem models has not yet been well explored. Recently, it has been shown that spaceborne

Sun‐induced chlorophyll fluorescence (SIF) observations offer new possibilities for monitoring 

photosynthesis from space [Frankenberg et al., 2011; L. Guanter et al., 2014]. SIF captures the 

seasonal variation of GPP and can be used as a reliable proxy for validating the trend of GPP 

[Lee et al., 2013; Wagle et al., 2016]. The objective of this study is to evaluate the improvement 

of the global GPP simulation with the assimilated SMAP soil moisture in Boreal Ecosystem 

Productivity Simulator (BEPS) against SIF observations in the period of April to December 

2015. This paper is organized in five sections starting with Introduction as section 1. 

Section 2 describes the ecosystem model, data assimilation system, and materials. The 

experiments for evaluating model performance are detailed in section 3. Section 4 provides the 

results and discussions. Finally, the conclusions are drawn in section 5.

2 Model, Method, and Materials

2.1 The BEPS Model
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The Boreal Ecosystems Productivity Simulator (BEPS) is a process‐based ecosystem model 

including water, energy, and carbon budgets and soil thermal transfer modules [Chen et 

al., 2007; Chen et al., 1999; Chen et al., 2012]. In this model, GPP is modeled by scaling 

Farquhar's leaf‐level biochemical model [Farquhar et al., 1980] up to the canopy level using a 

“two‐leaf” approach [Chen et al., 1999; Norman, 1982]. The bulk stomatal conductances of the 

sunlit and shaded leaves for water vapor and CO2 are calculated using a modified Ball‐Woodrow‐

Berry (BWB) stomatal model [Ball et al., 1987]. The Penman‐Monteith equation 

[Monteith, 1965] is used to calculate the evaporation of intercepted water from the canopy and 

the ground surface, and canopy transpiration from sunlit and shaded leaves is computed 

following Wang and Leuning [1998]. The soil water dynamics is governed by the Richards 

equation [Chen et al., 2007]. The soil profile is stratified in five layers with depths of 0.05 m, 

0.10 m, 0.20 m, 0.40 m, and 1.2 m from top layer to bottom layer.

In BEPS, the influence of soil water on GPP is modeled through the modified BWB equation 

following G. B. Bonan [1995] and Ju et al. [2006]:

(1)
where g is the stomatal conductance (μmol m−2 s−1) in leaf level; A is the net photosynthesis rate 
(μmol m−2 s−1); m is a plant species dependent coefficient; hs and Cs are the relative humidity and 
CO2 concentration at the leaf surface, respectively; b is the residual conductance; and fw is a soil 
water stress factor to adjust the slope of BWB equation and modeled as [Chen et al., 2012; Ju et 
al., 2006]:

(2)
where fw,i is the soil water stress factor in layer i and calculated as

(3)
where fi(ψi) is a function of matrix suction ψi(m) [Zierl, 2001]:

(4)
where α is suggested to be a function of plant type [Chen et al., 2012]. The effect of soil 
temperature on soil water uptake is described as follows [Gordon B. Bonan, 1991]:

(5)
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where t1 and t2 are parameters determining the sensitivity of root water uptake to soil temperature 
and Ts,i is the soil temperature at the ith layer. In BEPS, t1 = −0.02 and t2 = 2.0. To consider the 
variable soil water potential at different depths, the weight wi is calculated as

(6)
where Ri is the root fraction in layer i. The fw is updated in an hourly step in BEPS.

2.2 The Data Assimilation of SMAP Soil Moisture

Data Assimilation of soil Moisture in Parallel (DAMP) is a package primarily developed to run 

at High Performance Computer in parallel mode for assimilating satellite‐observed surface soil 

moisture into ecosystem models for this study. In this study, the SMAP soil moisture is 

assimilated into BEPS using DAMP in an hourly interval. In DAMP, BEPS is run on the Earth‐

fixed, global, cylindrical 36 km Equal‐Area Scalable Earth Grid, Version 2.0 (EASE‐Grid 2.0, 

964 columns and 406 lines) [Brodzik et al., 2014] in 36 km resolution. When SMAP data are 

available, an ensemble Kalman filter (EnKF) is used to adjust soil moisture states:

(7)

where  and  are the analyzed and forecast soil moisture, respectively, in five layers at a 
time instant k; Yk refers to the vector of corrected surface soil moisture observations from satellite
using cumulative distribution functions (CDF) matching approach [Reichle and Koster, 2004]; 
and H is the measurement operator that maps the model state Xk, e.g., the predicted soil moisture,
to Yk, e.g., the observations. K is the Kalman gain matrix:

(8)
where R is a diagonal matrix with each element indicating the soil moisture error variance and

 is the cross covariance between any given state and prediction ,

(9)

(10)

 is the error covariance matrix of the prediction:

(11)
and,
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(12)
u is the number of members in the ensemble.

One of the large limitations for EnKF‐based DA systems is the resource‐limited ensemble size. 

In our DA system, the model state vector size is on the order of one million (964*406*6*30% of 

the Earth's surface area) even for such a coarse spatial resolution (36 km). A localization method,

by artificially reducing the spatial domain of influence of observations during the update, is 

usually used to reduce the necessary ensemble size by a few orders [Sakov and Bertino, 2011]. 

Another reason for using the localization method in EnKF is to avoid “spurious covariances,” 

referring to covariances between distant or physically not connected state vector elements. In this

study, the retrieved soil moisture from satellite measurement can be safely treated as local 

observations; i.e., the soil moisture value for one pixel is not correlated to its neighbor's values. 

With this assumption, the ensemble size in our DA system is reduced to the order of 10,000.

In this study, we used the covariance localization method, which modifies the update equation by

replacing the state error covariance by its element‐wise (Schur or Hadamard) product with a 

distance‐based correlation matrix ρ [Hamill et al., 2001; Houtekamer and Mitchell, 2001]:

(13)

In our DA system, the localized state error covariance matrix is not calculated explicitly. Instead, 

the terms  and  in equations 9 and 11 are approximated as follows:

(14)
where the elements of ρ1 is one when the observation location is the same as the location of soil 
moisture status vector (soil moisture in five layers). Otherwise, its element values are zeros.

(15)

where the ρ2 is a square identity matrix with the same size of .

By conducting each assimilation, the soil moisture status vector is updated and the new vector is 

used to calculate fw for GPP modeling. When SMAP observation is unavailable for a grid at a 

specific hour, their ensemble members (soil moisture in the five layers for the grid) evolve based 

on Richards law in the BEPS soil moisture module and are not adjusted by the data assimilation. 

However, the accuracies of soil moisture can gradually deteriorate due to accumulation of 

uncertainties in forcing data and model structures, and therefore, the accuracy of GPP simulation 

may decrease depending on quality of forcing data.

2.3 Materials
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The MERRA (Modern‐Era Retrospective Analysis for Research and Applications) data (Version 

2) [Rienecker et al., 2011] from Goddard Space Flight Center, National Aeronautics and Space 

Administration (NASA), are used to drive BEPS. The data have a spatial resolution of 0.625° 

(longitude) by 0.5° (latitude) and a temporal resolution of 1 h. To drive BEPS, relative humidity, 

wind speed, and air temperature at 2 m above the surface, surface atmosphere pressure and 

incoming solar shortwave flux, and total precipitation at the surface level are spatially 

interpolated into 36 km grids. The precipitation data from MERRA are corrected by global 

gauge‐based NOAA Climate Prediction Center “Unified” (CPCU) precipitation product.

The reprocessed Moderate Resolution Imaging Spectroradiometer (MODIS) leaf area index 

(LAI) product in 1 km resolution for 2015 is upscaled to 36 km resolution and used in BEPS [H 

Yuan et al., 2011]. The fraction map of C4 plants is derived from “NACP Model Driver Data: 

Global Grassland C3 and C4 maps 0.5‐Degree” (http://webmap.ornl.gov/). To separate sunlit and

shaded leaves in the canopy, we use the clumping index map derived from MODIS bidirectional 

reflectance distribution function product [Liming He et al., 2012]. The land cover map 

(classification system of plant function types (PFTs)) is from the MODIS land group [Friedl et 

al., 2002]. The key BEPS parameters, such as Vcmax (the maximum rate of carboxylation) [Zheng 

et al., 2017] and m (slope of the BWB equation), are mapped according to the PFTs and C4 

fraction maps. The soil texture map from the SMAP team is used in BEPS [O'Neill et al., 2015].

The “SMAP Level‐2 Radiometer Half‐Orbit 36 km EASE‐Grid Soil Moisture” product from 

April to December 2015 is downloaded from the NASA National Snow and Ice Data Center 

Distributed Active Archive Center [O'Neill et al., 2015]. This L2 soil moisture product provides 

estimates of global land surface conditions retrieved by SMAP passive microwave radiometer 

during the 6:00 A.M. descending half‐orbit passes. SMAP L‐band brightness temperatures are 

used to derive the surface soil moisture (0–5 cm) in unit of cm3/cm3, which are then resampled to 

the EASE‐Grid 2.0 in 36 km resolution. The SMAP soil moisture is retrieved using brightness 

temperature in the V‐polarization. Retrievals with “high‐quality” flag are only located in 

semiarid and arid areas where vegetation is sparse. Unfortunately, there is no high‐quality soil 

moisture retrieval in dense forest areas (Figure S1 in the supporting information).

Before data assimilation, the SMAP soil moisture in high quality is rescaled by the CDF 

matching approach for bias removal [Reichle and Koster, 2004]. This is done by matching the 

SMAP soil moisture CDF to BEPS simulated soil moisture CDF in the top layer for each pixel.

In this study, the Global Ozone Monitoring Experiment‐2 (GOME‐2) version 26 (V26) 740 nm 

terrestrial chlorophyll fluorescence data [Joiner et al., 2013] are used to evaluate BEPS 
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simulated GPP. The GOME‐2 L3 product contains the monthly mean SIF data at latitude and 

longitude gridded file. The spatial resolution for the L3 data in 2015 is 40 km by 40 km, which is

compatible to our GPP simulation in 36 km by 36 km.

3 The Design of Experiment

All data sets are reprojected to the global 36 km EASE‐Grid 2.0. Starting with one third total 

available water holding capacity in the top layer and higher soil moisture in deeper layers for 

each pixel, BEPS is run for at least five times, with each run initialized following the status of 

the previous run, to spin‐up using forcing data in whole 2015. The last BEPS run is referred to as

a “reference‐run” or a “single‐run,” representing a simulation of GPP without assimilating 

observations. In contrast, the data assimilation of SMAP observations in DAMP is referred to as 

an “EnKF‐run.”

In DAMP, an EnKF‐run is initialized with an exact starting status of the single‐run to assimilate 

the rescaled SMAP soil moisture data. In the EnKF‐run, the uncertainty of SMAP soil moisture 

is set to 0.04 m3 m−3, which is very close to the recent assessment (0.038 m3 m−3) [Chan et 

al., 2016]. A white noise in 0.015 m3 m−3 is added to the soil moisture state vector for covariance 

inflation in daily intervals. The ensemble average of 100 BEPS replicates is used to compare 

with results of single‐run.

BEPS outputs sunlit and shaded GPP and evapotranspiration (ET) in hourly step. Both the 

single‐run and EnKF results are summed to daily, monthly, and annual intervals for further 

analysis. For the monthly values, the temporal correlation (correlation coefficient, r) between 

simulated GPP (sunlit, shaded, and total) and GOME‐2 SIF is used as an indicator of the 

performance of the ecosystem model in GPP simulation. Areas with SMAP data in low quality 

(i.e., forests as shown in Figure S1) or with SIF in low values (e.g., deserts) are excluded from 

the analysis. Since some monthly SIF data are missing, pixels with less than five valid SIF values

in a year are also excluded. The difference in the temporal correlation between EnKF and single‐

run (Δr) is used to indicate if the model performance is improved after data assimilation (DA).

4 Result

4.1 Global Pattern of GPP and ET

Our ensemble‐estimated global GPP from the EnKF‐run in 2015 is 139.1, 82.7, and 

56.4 Pg C yr−1 from the total, sunlit, and shaded leaves, respectively, which is similar to the 

estimate from the single‐run of BEPS (138.3, 82.0, and 56.3 Pg C yr−1). Shaded leaves contribute 
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41% of the total GPP in average globally. Our estimate of global GPP is slightly above the 

average value from literatures (Table 1). Large GPP values are found in humid and semihumid 

areas of the tropical and temperate rainforests (Figure 1). GPP values decrease along with 

deceasing solar radiation and/or available water.

Table 1. Global GPP Estimates Documented and in This Study

Period (Year) GPP (Pg C yr−1) Reference

2000–2003 108 Y. J. Zhang et al. [2009]

2000–2003 111 W. P. Yuan et al. [2010]

2000–2003 113 Zhao et al. [2005], W. P. Yuan et al. [2010]

1998–2005 123 ± 8 Beer et al. [2010]

2003 132 ± 22 Chen et al. [2012]

2000–2010 128 ± 1.5 Yan et al. [2015]

1990–2009 112 to 169 from 10 models Anav et al. [2015]

2015 139 This study
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Figure 1
Open in figure viewer  PowerPoint
The distribution of the global annual GPP (the ensemble mean) in 2015 estimated by ensemble 
Kalman filter.
Caption

Though the total GPP estimates from EnKF and single‐run are close, their spatial distributions of

GPP are quite different. The difference can be as large as ±300 g C m−2 yr−1 in some patches, 

suggesting that the carbon flux strongly responds to soil moisture changes in the model 

(Figure 2). In the Northern Hemisphere, these patches of positive differences are associated with 

irrigated cropland, which will be described in details in the next section. As expected, there is no 

difference in GPP estimates in the dense forest area where there are no SMAP soil moisture 

retrievals with high quality.
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Figure 2
Open in figure viewer  PowerPoint
The difference in the annual global GPP estimates between the two approaches (EnKF‐mean 
minus single‐run).
Caption

The GPP estimates from both EnKF and single‐run highly correlate to GOME‐2 SIF for most of 

the land area with the Pearson correlation coefficient (r) larger than 0.8 (Figure 3). High r is 

located at temperate and boreal forests where the seasonal variations of SIF and GPP are high. 

Negative correlations appear in the tropical rain forest. These negative correlations are due to the

errors in the seasonal variation of LAI/SIF in the tropical area where cloud fractions are high all 

year round. In these areas, only few LAI data are available for a pixel during a year, making the 

temporal interpolation of LAI impossible. In the desert and arid areas, both the LAI and SIF 

values are too small to produce reliable temporal correlations. Thus, we exclude the tropical 

rainforests, desert, and arid areas in the following analysis.
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Figure 3
Open in figure viewer  PowerPoint
The correlation coefficient (r) between SIF and EnKF estimated GPP. In tropical rainforest, the 
numbers of leaf area index (LAI) and SIF values are rather limited due to cloud contamination. 
In desert areas, both the values of LAI and SIF are too small to produce reasonable correlation. 
Therefore, data in desert and tropical rainforest are excluded from our analysis.
Caption

The Δr maps for the total, sunlit, and shaped GPP components are produced. The three maps 

reveal same trend of the difference in r, although their magnitudes are different. Significant 

changes of Δr are found for sunlit GPP (Figure 4). The absolute values of Δr for shaded GPP are 

smaller than sunlit GPP. Though the same water stress factor is applied to both sunlit and shaded 

leaves in equation 1, the net photosynthesis rate for shaded leaves is lower than that of the sunlit 

leaves due to their lower solar irradiance. Therefore, shaded leaves demand less water than sunlit

leaves, resulting in smaller|Δr|. Thus, Δr for the total GPP is between the Δrvalues for sunlit and 

shaded GPP. In the following, we will use Δr for sunlit GPP to assess the improvement of GPP.
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Figure 4
Open in figure viewer  PowerPoint
The difference in the correlation coefficient (SIF versus sunlit GPP) between EnKF and single‐
run. Positive values indicate that the simulation of sunlit GPP is improved owe to SMAP.
Caption

Based on Figure 4, there are vast areas with Δr close to zero in America, Asia, and Africa. At 

high latitudes, water is rarely a stressing factor for photosynthesis. Therefore, the value of |Δr| is 

expected to be close to zero. In low and middle latitudes, these low |Δr| values suggest that the 

performance of BEPS is rarely improved by assimilating SMAP soil moisture from the single‐

run which uses the gauge‐corrected precipitation product.

The land area in Figure 4 mainly includes shrub, grass, and cropland. With the assimilation of 

SMAP data, the r for these land covers is improved by only 0.01 since nonwater‐stressed area is 

included [Vorosmarty et al., 2010] (http://12.000.scripts.mit.edu/mission2017/wp  ‐

content/uploads/2013/11/Figure  ‐  2.jpg). Forests are rarely included in our analysis except for 

Africa (Table 2). The degree of improvement of r varies among continents and land cover types 

(Table 2). The r for Africa, Asia, and North America are improved by 0.016, 0.013, and 0.013, 

respectively (p < 0.05). In Europe, the simulation of GPP shows a negative effect as r is reduced 

by 1.2%.

Table 2. (a) The Change of Correlation Coefficient (r) Between SIF and BEPS Simulation of 
Sunlit GPP After Using SMAP Soil Moisture for Data Assimilation for Various Plant Functional 
Typesa
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Asia North

America

Europe Africa South

America

Australia All

Continents

Evergreen 

needleleaf trees

0.0* −0.009 −0.002 −0.006

Evergreen broadleaf

trees

0.036*

*

−0.004 0.016* 0.006 0.015*

Deciduous 

needleleaf trees

0.001* 0.001*

Deciduous 

broadleaf trees

0.035*

*

0.009* 0.011 0.02** −0.006 −0.007 0.016**

Shrub 0.0 0.0 −0.019 0.02** 0.012* 0.008 0.005*

Grass 0.013*

*

0.001 −0.007 0.017*

*

0.004* −0.006 0.009*

Cereal crops 0.022*

*

0.09** −0.008 0.003* −0.007 −0.002 0.015**

Broadleaf crops 0.023*

*

0.008* −0.003 0.011* −0.009 0.01*

All land cover 0.013* 0.013** −0.012 0.016* 0.003* 0.001 0.01*



Asia North

America

Europe Africa South

America

Australia All

Continents

Evergreen 

needleleaf trees

0.0* −0.009 −0.002 −0.006

Evergreen broadleaf

trees

0.036*

*

−0.004 0.016* 0.006 0.015*

* *

(b) The Number of Pixels Used in Table 2a for Statisticsb

Asia North America Europe Africa South America Australia Total

Evergreen needleleaf trees 21 147 45 0 0 0 213

Evergreen broadleaf trees 14 14 0 28 6 0 62

Deciduous needleleaf trees 102 0 0 0 0 0 102

Deciduous broadleaf trees 91 94 6 716 135 11 1053

Shrub 1350 704 146 713 267 447 3627
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Asia North

America

Europe Africa South

America

Australia All

Continents

Evergreen 

needleleaf trees

0.0* −0.009 −0.002 −0.006

Evergreen broadleaf

trees

0.036*

*

−0.004 0.016* 0.006 0.015*

Grass 1547 1296 163 3508 2473 562 9549

Cereal crops 1776 471 1337 680 96 247 4607

Broadleaf crops 590 580 262 41 222 0 1695

Total 7701 4239 2737 9048 4577 1459 29761

 a Positive value indicates that the simulation of GPP is improved. Note: that the mark “*”

(or “**”) indicates that t test is in favor of the alternate hypothesis that the data come from a 

population with a mean greater than 0 (or 0.01), at the 5% significance level.

 b Note that each pixel has an area of ~1296 km2. Only pixels having a dominating land 

cover type and occupying more than 50% of pixel area are included in lines 1 to 8 for analysis. 

Line 9 shows the total pixel number for each continent. The sum of numbers in lines 1 to 8 may 

not be exactly equal to the number of pixels in the last line (total).

4.2 Cropland

Significant improvement of r is achieved in single‐cropping agricultural land, especially in North

America.



After assimilating SMAP data in BEPS, significant improvement of GPP simulation is found in 

the cereal cropland along the Canada‐U.S. boundary, with r being improved by 9% on average. 

The MERRA‐2 precipitation data are corrected by global gauge‐based NOAA Climate 

Prediction Center “Unified” (CPCU) precipitation product to enhance the data's accuracy. 

However, the information on agricultural irrigation is not available. Our results indicate that 

SMAP can capture the positive impacts of agricultural irrigation on GPP.

In Canada, the information on irrigation is well documented; the irrigation volume varies by 

provinces, crop types, and available precipitation annually (http://www.statcan.gc.ca/pub/16  ‐

402  ‐  x/2011001/part  ‐  partie1  ‐  eng.htm). For example, more than 60% of irrigation water was used 

in the South Saskatchewan drainage region in 2010. From our analysis, it is clearly shown that 

the significant improvement of GPP simulation in Canada overlaps with the North and South 

Saskatchewen, and Assiniboine‐Red drainage regions of 2006 Agricultural ecumene 

(http://www.statcan.gc.ca/pub/16  ‐  402  ‐  x/2011001/m002  ‐  eng.htm). How SMAP has captured the 

irrigation effect in Canada is shown in Figures 5-8. In Figure 5, the single‐run shows dry summer

and fall for a pixel. However, the EnKF shows a wetter summer as corrected by the SMAP data. 

Whenever the soil moisture estimate from single‐run deviates from the SMAP‐CDF observation,

the soil moisture estimate from EnKF shows a clear tendency toward the SMAP‐CDF 

observation, suggesting that the EnKF system works well as expected. As a result, the EnKF 

shows almost no water stress from July to October in contrast to the single‐run case, which often 

shows significant water stress (Figure 6). Correspondingly, the EnKF predicts higher sunlit GPP 

from July to September than the single‐run (Figure 7). The increase of GPP predicted by EnKF is

supported by the SIF data (Figure 8). In the spring, both the single‐run and EnKF overestimate 

GPP relative to the SIF data. This is because BEPS uses a constant Vcmax(maximum value of the 

growth season), but in fact the Vcmax increases from a very low value in the early growth season to 

its maximum following the accumulation of chlorophyll [Liming He et al., 2014].
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Figure 5
Open in figure viewer  PowerPoint
The simulation of soil moisture in top layer (5 cm) by EnKF and a single‐run at a pixel in 
Canada (47.3233°N, 98.0290°W). “SMAP‐CDF” indicates the SMAP soil moisture that has been
adjusted using the CDF matching approach. The red background color indicates one standard 
deviation of soil moisture simulated from the EnKF.
Caption

Figure 6
Open in figure viewer  PowerPoint
Soil water stress factors (fw) calculated by EnKF and single‐run at a pixel in Canada (47.3233°N, 
98.0290°W).
Caption
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Figure 7
Open in figure viewer  PowerPoint
Time series of sunlit GPP estimates by EnKF and single‐run at a pixel in Canada (47.3233°N, 
98.0290°W).
Caption

Figure 8
Open in figure viewer  PowerPoint
Monthly time series of SIF, sunlit GPP estimates by EnKF, and single‐run at a pixel in Canada 
(47.3233°N, 98.0290°W). The left y axis indicates the monthly averaged daily GPP estimation. 
The overestimation of Sun‐GPP in early growth season may be attributed to a 
consistent Vcmaxvalue used in the model.
Caption

Similar improvement of GPP simulation is also seen along the cropland belt (~50°N) going 

through Ukraine, Russia, Kazakhstan (most of its land is farm), in an oasis in Xinjiang province, 

and Northeast China where irrigation practice is common. In an Asian irrigation map (2000–

2010) (http://waterdata.iwmi.org/applications/irri_area/), Kazakhstan was highlighted for the vast
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rain‐fed single cropping area. In Figure 4, the improvement of GPP simulation suggests that 

irrigation activities are captured by SMAP [Saltanat et al., 2015]. India has the largest irrigated 

areas in the world. The belt area in northern India closely overlaps with an independent mapping 

of irrigation areas from remote sensing [Thenkabail et al., 2009].

Figure 4 can also confirm the irrigation areas in South Africa [Altchenko and Villholth, 2015]. 

The improvement of GPP in other African areas may be related to recent development of 

irrigation systems in developing African countries.

Another example is given in Figure S2 to demonstrate the benefit of using SMAP data to 

improve GPP simulation. The pixel in Figure S2 is located in a cropland for maize in Northeast 

China, where the maize is sowed in spring and harvested in autumn. The single‐run predicts low 

soil moisture (Figure S2a) and high water stress (Figure S2b) in August and September in 

contrast to the EnKF‐run which adjusts the values of soil moisture according to SMAP 

observations. Correspondingly, the EnKF‐run predicts high GPP in August and September 

(Figure S2c) and that is confirmed by the SIF data (Figure S2d).

5 Discussion

The SMAP data can be used for many studies on weather, climate, droughts, floods, wildfires 

landslides, human health, national security, and the global vegetation productivity. This study 

offers an enhanced understanding of assimilating SMAP soil moisture data into ecosystem 

models for global applications. The usefulness of SMAP data have not been fully exploited 

possibly due to some issues in data quality and limits. We focus our discussion on the data 

uncertainties and some inadequacy in data assimilation with details described in the following 

sections.

5.1 Uncertainty of SIF‐GPP Relationship

As chlorophyll pigments can absorb photons to power photosynthesis, monitoring chlorophyll 

pigments from space has become a promising way to derive global photosynthetic productivity 

in recent years [Cogliati et al., 2015]. SIF occurs during photosynthesis in leaves under 

excessive radiation [Verrelst et al., 2016]. Measurements of SIF from vegetation by Greenhouse 

gases Observing Satellite [Frankenberg et al., 2011; L. Guanter et al., 2012; Joiner et al., 2011] 

and GOME‐2 satellite sensors [Joiner et al., 2013; Joiner et al., 2016] are well correlated with 

GPP simulations [Duveiller and Cescatti, 2016; Frankenberg et al., 2011; Joiner et al., 2014; X. 

Yang et al., 2015; Yoshida et al., 2015; Yao Zhang et al., 2016b]. Over the last few years, 

research regarding to the SIF‐GPP relationship has been rapidly advanced. Significant 
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correlations between SIF and GPP have been found in croplands [Guan et al., 2016; Wagle et 

al., 2016], tundra [Luus et al., 2017], and forests [Walther et al., 2016; H. Yang et al., 2016], 

with r values over 0.9 for land cover types that have large SIF variations [Verrelst et 

al., 2016; Yongguang Zhang et al., 2016a; Yao Zhang et al., 2016b]. It suggests that SIF can be a 

powerful tool to track photosynthetic rates on the canopy and ecosystem scales [Liming He et 

al., 2017b]. Although the slope between GPP and SIF is higher for C4 crops than for C3 

vegetation [Liu et al., 2017; Wood et al., 2017] and environmental conditions also affect the 

relationship [Verma et al., 2017], the correlations between SIF and GPP appear to be robust.

Satellite sensors receive SIF signals from both sunlit and shaded leaves. Since shaded leaves are 

less stressed in the absence of direct sunlight, their photoprotective mechanisms, like chlorophyll

fluorescence, are less active. Therefore, sunlit foliage is responsible for most of the canopy far‐

red SIF emission received by satellite sensors. As a result, SIF is better correlated to GPP in 

sunlit leaves [Z Wang, 2014] and is used as a proxy of GPP in sunlit leaves in this study.

Large uncertainties of GOME‐2 SIF occur over bright areas associated with high photon noise, 

e.g., shrub lands, deserts, and regions with snow/ice [Kohler et al., 2015]. Because these areas 

often have low GPP and small ranges of GPP values, the SIF‐GPP correlations are also low, 

which do not contribute much to statistic gains of data assimilation.

5.2 Accuracy of SMAP Data

Recent validations show that the accuracy of SMAP soil moisture products has achieved the 

mission's goal (0.04 m3 m−3) [Chan et al., 2016; Colliander et al., 2017]. However, there are still 

several issues with the soil moisture retrieval from the L‐band radiometer [Wigneron et 

al., 2017]. For example, the soil moisture from SMAP data is found to dry more rapidly than in 

situ observations after rainfall events Shellito et al. [2016a], SMAP appears to be overly sensitive

to summer precipitation [Cai et al., 2017], the radio‐frequency interference in SMAP is not fully 

solved yet [Aksoy et al., 2016], and Sun‐glint might cause dry bias in soil moisture, especially in 

mountain areas [L. He et al., 2017a].

These mentioned issues suggest that the uncertainties of SMAP soil moisture vary 

spatiotemporally and information on these uncertainties is unavailable yet. A uniformed root‐

mean‐square error (0.04 m3 m−3) is not adequate to address the variation of uncertainty in data 

assimilation. The CDF matching approach is a way to remove biases between the model 

simulation and satellite retrieval of soil moisture so that the soil moisture observations can be 

used efficiently. This approach is particularly useful when there are no accurate soil texture data 
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available for global applications, as in this study. The sensitivity depth of L band also changes 

with soil moisture itself, suggesting that the CDF approach is necessary [Shellito et al., 2016a]. 

Typically, the approach relies on a long time series (e.g., a few years) of satellite data and model 

simulations. In this study, only SMAP data in 8 months are available for the CDF matching. 

Once extreme events such as drought or flood happen during this period, the SMAP data 

adjusted to match a CDF could not represent the usual local variation of the time series of soil 

moisture. For example, Europe experienced a severe drought in 2015 summer. Relying on the 

input of precipitation data, the single‐run of BEPS predicts a dry summer and low soil moisture. 

So in the CDF matching, the SMAP data in Europe, even containing the irrigation information, 

would be forced to match an unusual CDF from BEPS simulation which contains numerous low 

soil moisture values. As a result, the DA of SMAP in these areas hardly produced improvement 

in GPP simulation.

Large and highly variable slopes over mountainous areas will adversely affect the soil moisture 

retrievals as suggested by the SMAP algorithm. Nevertheless, soil moisture retrievals are still 

made over mountainous terrains. The soil moisture data in mountainous areas with moderate 

slopes, e.g., Spain and Turkey, are still marked with high quality in the SMAP product and used 

in our data assimilation. However, the BEPS performance over the regions becomes worse after 

incorporating the simulated SMAP data, suggesting that more attention should be paid on soil 

moisture retrievals over mountainous areas.

5.3 Cropping System

For global soil moisture simulation, there is little attention paid to the crop diversity in 

agriculture. Mono‐cropping is the agricultural practice of growing a single crop year after year 

on the same land, in the absence of rotation through other crops or growing multiple crops on the

same land. Multiple (double or triple) cropping is a practice of growing two or more cropsin the 

same piece of land during a single growth season [Gallaher, 2009]. Improvement with the 

assimilation of SMAP data is found to be weak in double or triple cropping cropland (e.g., part 

of North China Plain) and/or mountainous area (e.g., Spain and Turkey) (Figure 4).

When the crop rotation is in double or triple cropping system, the simulation of the seasonality of

GPP becomes problematic, such as in the North China Plain (e.g., around Shandong, Henan, and 

An'hui provinces in China) [Li et al., 2014; Zabel et al., 2014] and parts of Europe [Wu et 

al., 2015]. Without spatially explicit information of the cropping system, BEPS assumes a single 

cropping system, and therefore, the transition from a crop to the other and the gaps between two 

crops are not considered, causing unrealistic simulations of GPP of cropland with multiple 
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cropping systems. A typical double cropping system is the winter wheat and maize rotation in the

North China Plain where the winter wheat is sowed in the later autumn after the harvest of maize

and harvested in early summer in the next year, and the maize is sowed a few weeks before the 

harvest of winter wheat. Wheat is a C3 plant with a Vcmax value of 85 μmol m−2 s−1and m of 8 (m is 

a plant species dependent coefficient, see equation 1). While maize is a C4 plant with 

a Vcmax value of 50 μmol m−2 s−1 and m of 4 [Mo et al., 2012]. The winter wheat is replaced 

gradually in June since the cropland is managed by individuals. From the C4 map, we know that 

the fraction C4 plant is ~1/3 while we do not know when the cropping is rotated. So in the BEPS 

simulation, constant Vcmax and m values weighted by C4 fraction are assigned for each pixel for 

the entire growth season. In these areas, an improvement of GPP with SMAP data is not always 

expected.

5.4 Other Issues

In this study, BEPS is driven by the MERRA‐2 reanalysis data in an off‐line mode, for which the

precipitation product is corrected by global gauge measurement so that soil moisture simulation 

is with an enhanced certainty. Some irrigation practice in cropland can be well modeled based on

historical climate data. However, when SMAP soil moisture data are used for operational 

purpose, such as for crop growth monitoring and prediction, such high‐accuracy precipitation 

product may be unavailable. Therefore, it is more beneficial to assimilate the real‐time SMAP 

data.

Table 3 summarizes the degree to which improvement is made from data assimilation of SMAP 

soil moisture data for estimating GPP of various plant functional types.

Table 3. Summary of the Improvements From Assimilation of SMAP Soil Moisture Data for 
GPP Modeling

Regions Significances of

Improvement (Δr)

Reasons

Global land surface Nonsignificant improvement (0.01). Use of gauge‐corrected precipitation in reanalysis forcing data; bias

in SMAP data and short data period for CDF correction; large areas

without water stress

Cropland in single‐ Significant improvement (0.09 in Strong SIF variation for validation; explanation of irrigation practices
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Regions Significances of

Improvement (Δr)

Reasons

cropping system North America, 0.02 in Asia) in SMAP product

Cropland in

multicropping system

Non or negative improvement Constant Vcmax value across seasons

Shrubland Minor improvement (0.02 in Africa,

0.01 in South America)

Low SIF variation; use of gauge‐corrected precipitation

Grassland Minor improvement (0.02 in Africa,

0.01 in Asia)

Low SIF variation; use of gauge‐corrected precipitation

Mountain Non or negative improvement Low soil moisture accuracy but not masked in the product

Tundra No improvement Water is usually not a stress factor in these area.

Forest No evaluation except some sparse

forests in Africa and mixed forests in

Asia

Limited number of soil moisture in high quality due to high

vegetation water content

6 Conclusion

Soil moisture is an essential climate variable controlling hydrological and ecosystem processes. 

However, there is large uncertainty in the metrological input data (mainly precipitation), which 

can prevent ecosystem models from accurately simulating soil moisture. In order to improve the 

simulation of the global GPP, it is desirable to make full usage of the remotely sensed soil 

moisture and to assimilate the soil moisture into these models. In this study, we used a data 



assimilation (DA) system called DAMP to assimilate SMAP‐observed soil moisture into an 

ecosystem model named BEPS, where the water, energy, and carbon exchanges between 

vegetation and the atmosphere are tightly coupled.

We found that the benefit of assimilating SMAP soil moisture for GPP simulation varies by 

regions and land cover types. Significant improvement is found in the single‐cropping 

agricultural land. This is because the SMAP captured the agricultural irrigation activities that are 

not part of the meteorological inputs. Without the SMAP data, the GPP in cropland is 

underestimated. SMAP also reveals that the previous rain‐fed croplands are turned into irrigation

areas in many developing countries. In general, there is minor improvement of GPP simulation in

Africa, Asia, and North America where there are vast areas with no water stress. In Europe, the 

GPP simulation becomes slightly worse after assimilating SMAP data, especially in mountainous

Spain and Turkey. Our study also suggests that the current soil moisture product derived from 

SMAP data is already useful for improving ecosystem carbon flux estimation on the global scale,

especially for irrigated cropland. However, the usefulness of the product for tropical, temperate, 

and boreal forests is still limited because high‐quality retrievals of soil moisture over these 

ecosystems are limited.
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