
Lawrence Berkeley National Laboratory
LBL Publications

Title

Exploiting variability for energy optimization of parallel programs

Permalink

https://escholarship.org/uc/item/2hr7k4zz

ISBN

9781450342407

Authors

Lavrijsen, Wim
Iancu, Costin
de Jong, Wibe
et al.

Publication Date

2016-04-18

DOI

10.1145/2901318.2901329

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2hr7k4zz
https://escholarship.org/uc/item/2hr7k4zz#author
https://escholarship.org
http://www.cdlib.org/

Exploiting Variability for Energy
Optimization of Parallel Programs

Wim Lavrijsen, Costin Iancu,
Wibe de Jong

Lawrence Berkeley National Laboratory
{wlavrijsen, cciancu, wadejong}@lbl.gov

Xin Chen, Karsten Schwan
Georgia Institute of Technology
{xchen384, schwan}@gatech.edu

In this paper we present optimizations that use DVFS
mechanisms to reduce the total energy usage in scientific ap-
plications. Our main insight is that noise is intrinsic to large
scale parallel executions and it appears whenever shared
resources are contended. The presence of noise allows us
to identify and manipulate any program regions amenable
to DVFS. When compared to previous energy optimizations
that make per core decisions using predictions of the run-
ning time, our scheme uses a qualitative approach to recog-
nize the signature of executions amenable to DVFS. By rec-
ognizing the “shape of variability” we can optimize codes
with highly dynamic behavior, which pose challenges to all
existing DVFS techniques. We validate our approach us-
ing offline and online analyses for one-sided and two-sided
communication paradigms. We have applied our methods to
NWChem, and we show best case improvements in energy
use of 12% at no loss in performance when using online
optimizations running on 720 Haswell cores with one-sided
communication. With NWChem on MPI two-sided and off-
line analysis, capturing the initialization, we find energy sav-
ings of up to 20%, with less than 1% performance cost.

1. Introduction
Optimizations using Dynamic Voltage and Frequency Scal-
ing (DVFS) have been shown [16, 17, 19, 21, 30, 34] to re-
duce energy usage in HPC workloads. A rather impressive
amount of work has focused on developing energy optimiza-
tions for MPI codes, with the main purpose of saving energy
without affecting performance. As we continue to scale sys-
tems up and out towards Exascale performance, power be-
comes an important system design constraint and thus in-
centives grow to deploy these optimizations in production.

Publication rights licensed to ACM. ACM acknowledges that this contribution was authored or co-authored by an
employee, contractor or affiliate of a national government. As such, the Government retains a nonexclusive, royalty-
free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

EuroSys ’16, April 18 - 21, 2016, London, United Kingdom
Copyright © 2016 is held by owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4240-7/16/04. . . $15.00
DOI: http://dx.doi.org/10.1145/2901318.2901329

This research was started as an effort to develop global
control strategies and policies for large scale HPC systems.
We were interested in developing lightweight and practical
methods that can handle highly optimized codes that use
modern programming practices, running on production sys-
tems with the latest hardware available.

Most existing techniques [17, 20, 21, 30] exploit the idea
that the presence of slack, occurring when tasks wait at
synchronization points, indicates that DVFS can be applied
on those cores waiting for external events. Our survey of
these state-of-the-art techniques indicates that: 1) results are
demonstrated on codes that use static domain decomposi-
tion and exhibit static load imbalance; 2) decisions are made
based on predictions of program running time; and 3) DVFS
is always controlled per core. The current dogma states that
dynamic load balancing and runtime adaptation techniques
are required for performance on very large scale systems.
Thus we are interested in developing efficient DVFS tech-
niques for this class of codes. Furthermore, due to hardware
or system idiosyncrasy, per core control may not be available
or it has has limited impact when shared resources will not
scale down unless all cores scale down. Thus, we were in-
terested in coarser grained DVFS control; this functionality
may also be required when the HPC community moves from
flat Single Program Multiple Data (SPMD) parallelism, e.g.
MPI, towards hierarchical and hybrid parallelism.

To handle dynamic program behavior, in this paper we
put forth an alternative to the existing tenet that slack is
predictable. We argue that making quantitative predictions
on timings of individual processes in dynamic codes (par-
allelism or load balancing) is challenging because of ran-
dom variability. But, one can use a qualitative approach and
make use of variability itself. Our insight, and the main pa-
per contribution, is that noise is intrinsic to large scale paral-
lel executions, that it appears whenever shared resources are
contended and that we can recognize its signature whenever
code amenable to DVFS executes. As a signature we use the
combination of the dispersion (measured as sample standard
deviation) and skewness of task duration timings between
two task group synchronization points. The DVFS amenable

1

regions are “dominated” by any of: 1) blocking or nonblock-
ing one-sided or two-sided communication; 2) file I/O; and
3) DRAM bandwidth limited execution. In a production sys-
tem, the first two are also affected by external events, outside
of control available within one application.

We have developed single-pass online optimizations us-
ing context sensitive classification, as well as multi-pass off-
line approaches. Note that input and concurrency indepen-
dent online analyses [21, 30] are required in practice for scal-
ability and the long term success of DVFS optimizations.

To provide coarse grained DVFS, our algorithms were
developed to select a global system frequency assignment
for codes using either two- or one-sided communication. To
handle the high latency of DVFS control on production sys-
tems we use clustering algorithms after candidate classifica-
tion. We present extensions to previous work [21], manda-
tory for efficacy on modern hardware.

As a case study we have chosen an application that poses
challenges to existing DVFS control techniques that use
quantitative predictions of execution time. NWChem [33]
is a framework for complex computational chemistry that
provides a range of modules covering different theoretical
models and computational approaches. NWChem is writ-
ten using non-blocking one-sided communication (RDMA)
for overlap and communication latency hiding, augmented
with dynamic load balancing mechanisms. Ours is the first
study able to handle this class of codes. To provide a com-
parison with state-of-the-art MPI centric techniques, we use
UMT2K [32], an unstructured mesh radiation transport code
and a common benchmark.

We validate results on three architectures: circa 2012
AMD A10-5800K and Intel Ivy Bridge deployed in current
production systems, and 2015 Intel Haswell to be installed
in the new generation of very large scale production [1, 4]
systems. The combination of qualitative modeling with clus-
tering methods provides us with a programming model and
runtime independent approach. The variability criteria can
handle both one- and two-sided communication paradigms,
while timing predictions fail for one-sided or are less effi-
cient for two-sided. Clustering is required in most cases for
improved performance, but needs to be done with care. The
importance of recognizing variability increases with scale.

With the online algorithm, we observe energy savings as
high as 12% with a small speed up due to reduced congestion
for one-sided communication at high concurrency. For two-
sided communication we observe energy savings as high as
16% with negligible slowdown. The offline algorithm is able
to double the energy savings for one-sided communication.
Surprisingly, this is not due to its ability to use the optimal
frequency for any region cluster in the program, but because
it captures the one-off initialization stages, which are usually
dominated by disk access. In all cases, savings are obtained
where structural inefficiencies are causing contention, with-

out the CPU going idle enough for long enough; or where
the CPU itself is a driver of the contention.

We believe that hardware-driven scaling will soon usurp
most opportunities for user-level DVFS within a node, but
coarse-grained scaling may still have a role. Global assign-
ments of DVFS settings have more benevolent statistics than
per-core or per-node assignments. When a per-core assign-
ment is correct, the gain is small (and is getting smaller
in manycores); when it is wrong, the penalty is huge (and
increasing with scale). They are therefore made conserva-
tively, and favor long regions that allow for accurate mea-
surements while covering enough of the program execution
time to be worth it. That, however, reduces opportunity and
increases the penalty for being wrong. Conversely, the bene-
fits obtained from a correct global assignment are very simi-
lar to the penalty for being wrong, regardless of scale. Scal-
ing can be applied more aggressively and on shorter regions,
further reducing the cost of being wrong and enabling recov-
ery, after learning through measuring, of bad decisions.

2. Background and Motivation
Slack is the most often used measure to identify DVFS
opportunities in scientific codes and it is commonly defined
as time spent blocked or waiting in communication calls:
waiting tasks can be slowed down. As MPI two-sided has
been dominant, most of the existing approaches [16, 17, 19,
21, 30] are tailored for its semantics.

Existing MPI energy optimizations try to construct a criti-
cal path through the program execution and minimize slack:
ranks on the critical path (slowest ranks) need to run fast,
while all others can be (down) scaled to “arrive just in time.”
At the heart of these approaches is the ability to predict
the running time on each rank between two synchroniza-
tion operations, either point to point (MPI Send/MPI Recv)
or collective (e.g. MPI Barrier). Initial studies [28] used
offline, trace based analyses that often solve a global op-
timization problem. For generality and scalability, modern
approaches use online analyses. Rountree et al [30] present
Adagio, which uses context sensitive techniques to predict
the critical path at runtime and minimize slack for each MPI
communication call in its context.

We do embrace the notion that demonstrating success-
ful online analyses is mandatory for the future adoption
of DVFS techniques, either in hardware or software. Our
conjecture when starting this work was that emerging pro-
gramming models and optimization techniques together with
modern hardware architecture all work against techniques
using quantitative prediction of execution times at the gran-
ularity required for successful DVFS.

Our survey of the techniques proposed in [16, 19, 21, 28,
30] shows that they were evaluated only on codes with static
domain decomposition and static load balancing: each rank
in each iteration works on the same data partition, making
execution time predictable. In newer codes that use dynamic

2

load balancing, each rank in each iteration can process dif-
ferent data partitions, leading to more unpredictable duration
per rank per iteration. To our knowledge, DVFS optimiza-
tions for dynamically load balanced codes at scale have not
yet been demonstrated.

All codes1 surveyed in literature use blocking two-sided
communication. Non-blocking communication and overlap
add another dimension of noise and unpredictable [14] be-
havior. To our knowledge, energy optimizations on appli-
cations using one-sided communication have not yet been
demonstrated. On these codes, the existing state-of-the-art
of scaling fails: dynamic load balancing explicitly attempts
to remove slack and makes any slack that is left-over unpre-
dictable. Furthermore, one-sided communication removes a
great many (implicit) synchronization points.

Finally, modern CPU hardware is tuned for energy ef-
ficiency and employs aggressive dynamic control. It begs
the question how much software techniques (perhaps global)
can still improve on existing hardware mechanisms in prac-
tice. From the hardware perspective many approaches [16,
19, 21, 27, 28, 30] have been validated assuming availability
of per core DVFS, some even using a single core in con-
figurations with as many as eight cores per socket. Modern
hardware either offers only per socket control (e.g. Intel Ivy
Bridge), or per-core control interferes with the execution on
cores sharing resources within the socket (e.g. hyperthreads,
rings on Intel Haswell[13], caches). Other system compo-
nents (e.g. the Mellanox FDR InfiniBand2 driver) may re-
quire a single frequency assignment per socket or node.
Another hardware trend is the presence of ”Turbo-boost”,
which allows individual cores to run at a higher frequency
depending on system load. Not only does this reduce the
amount of slack in a natural way, it also makes schedules
harder to control, as the initial drop from Turbo-boosted fre-
quencies to the first user-selectable frequency tends to be
huge (of the order of 20%-35%, depending on load). An
algorithm that relies on a detailed per-core schedule there-
fore needs to find “imbalance” of similar magnitude before
it can apply DVFS. For practicality, extensions to existing
techniques to provide coarser grained control over groups of
cores are required. And these are even more desirable for
whole system optimization goals.

2.1 Predicting Timings for Dynamic Behavior
We first examine what is predictable in an application that
uses dynamic load balancing. NWChem [33] is a framework
for large scale computational chemistry codes, written to
use as a communication transport either MPI two-sided,
or one-sided communication with MPI 3.0, ARMCI [24],
ComEx [8] or GASNet [11]; see Section 5.3 for more details.

1 Bar one trivial usage of MPI Isend/MPI Irecv in one code.
2 During this work we have uncovered performance and functionality bugs
in the current generation of Mellanox drivers.

ranking percentile (%)
0 10 20 30 40 50 60 70 80 90 100

pr
ob

ab
ili

ty
 (

%
)

0
1
2
3
4
5
6
7

critical path

ranking percentile (%)
0 10 20 30 40 50 60 70 80 90 100

pr
ob

ab
ili

ty
 (

%
)

0

1

2

3

4

5

fastest path

Figure 1: Quality of prediction of the critical path based on calling
context and process in NWChem, for a run of 1024 processes. Shown is the
ranking of the critical (top) and fastest (bottom) process, in the subsequent
re-occurrences of tasks. The probability of the critical path remaining
critical, and of the fastest remaining so, is less than 10%.

Given that one-sided communication (Put or Get) does
not carry any inter-task synchronization semantics like
MPI Send/MPI Recv pairs do, we have started by trying to
predict slack between two barrier operations. We configure
NWChem to use one-sided communication and collect the
durations per task between barriers, taken as the difference
between the exit time of one barrier and the entrance time of
the next. The slack associated with a task is the difference in
execution time when compared with the slowest task.

For each region (i.e. barrier pair), we label each task with
its index in the sorted array of all timings for all tasks. We
collect these rankings per process and calling context (de-
scribed in Section 4). We select only those regions that are
long enough (at least 300µs3) and have a minimum of 5%
difference in duration between the fastest and slowest pro-
cess, compared to their average (i.e. there is a minimum 5%
slack). This selects regions for which DVFS is potentially
practical and beneficial.

We select those calling contexts that occur at least 10
times, providing enough repetition to allow both predict-
ing/learning and scaling to occur. From these, we take the
slowest process, i.e. the critical path, at the first occurrence
of each, and plot their “ranking”, expressed as a percentile
from fastest to slowest, at each subsequent re-occurrence of
the same context. The results are in the top of Figure 1, for
a run with 1,024 processes. If the time duration of the first
occurrence of a calling context can be used to predict the du-
rations on subsequent calls, then there should be a sharp peak
at 100%, i.e. the critical path should remain close to critical.
What we observe, however, is an almost flat distribution, that
moderately tapers off towards zero, with less than 10% of the
critical path “predictions” being on the mark.

3 About 3× the latency of the system specific DVFS control.

3

Figure 2: Variability measures for a mixed parallel computations on Edison: dispersion (left) and skewness (right) of the timing distributions across ranks,

as a function of scale and fraction of CPU-limited code. At 100%, the code is fully CPU intensive, mixing in memory- and network-limited code (at roughly a

3:1 ratio) until no longer CPU-limited.

Mispredicting the critical path leads only to missed op-
portunities. Mispredicting the fastest path, i.e. the process to
scale down the most, can have performance consequences.
A similar analysis for the fastest path (Figure 1), shows that
it is as hard to predict, with the same ∼ 10% hit rate.

Overall, this data indicates that schemes relying on pre-
dicting the per rank duration of execution [16, 19, 21, 30] are
likely to under-perform for our target application, as an in-
correct schedule is likely on 90% of the tasks/cores affected.

3. Employing Variability as a Predictor
Fortunately, it turns out that the tables can be turned around:
timings of individual processes/events may fluctuate, but we
can predict, and make use of that variability itself. For the
rest of this study we use the term dispersion to refer to the
sample standard deviation of all timings on all tasks exe-
cuting between a pair of group synchronization operations.
Note that code between two barriers is also referred to as a
region. For simplicity we will interchange the terms barrier
and collective during the presentation. The implementation
handles any flavor of operation, as described in Section 5.2.

Dispersion is induced by two main causes. Application
dispersion is induced by domain decomposition and algo-
rithms, which determine the execution duration on each task.
Load balanced codes, either with static domain decomposi-
tion or dynamic load balancing, have low dispersion. Load
imbalanced codes exhibit higher dispersion. The system it-
self contributes to dispersion through performance variabil-
ity and noise introduced into the execution.

We conjecture that, given a load balanced code, disper-
sion is caused by the intrinsic nature of the system and the
computation, when activities compete for the same shared
resource4. Identifying these causes, determining their vari-
ability “signature” and their amenability to DVFS optimiza-

4 Resources are either hardware, e.g. memory, or software, e.g. locks inside
runtime implementations.

tions may allow us to build energy optimizations using a
qualitative approach without any need to predict individual
timings. Our insight is that no matter what the programmer’s
original intentions were, the stochastic nature of large scale
computations allows us to predict the distribution of ineffi-
ciencies (e.g. timing of slack) in the code and react whenever
“signature” distributions are identified.

System induced dispersion: We use micro-benchmarks that
time code executed in between two barrier operations to un-
derstand where and how variability appears. We start with
a statically load balanced benchmark, where each rank per-
forms the same work, either communication, memory, I/O,
or compute intensive. We then mix the types of work on
ranks, as well as varying the amount of load imbalance.
We distinguish between Flops-limited (CPU-limited) and
DRAM bandwidth-limited code in the computation bench-
marks, as the latter is amenable [9] to DVFS.

Intuitively, pure computation in SPMD codes is expected
to be more predictive and static in nature. Communication,
synchronization and I/O are prime culprits for variability,
therefore prime candidates for DVFS, since there processes
compete for hardware resources.

As shown in Figure 2 (left), dispersion in Flops-limited
code is negligible at any scale up to 2,000 cores. Disper-
sion increases with DRAM pressure and inter-node com-
munication, ending up more than 10× larger, at any scale.
The shape of the distributions, measured with skewness and
shown in Figure 2 (right), gives an extra distinction at scale.
Memory-limited code uses many components of the hard-
ware: the CPU, the hierarchy of caches, memory controllers,
etc. Stochastic behavior combined from many sources leads
to normal distributions, per the central limit theorem, and
that is what we observe: skewness is small to non-existent. In
contrast, variability in CPU-limited code comes from a sin-
gle source, which leads to an asymmetric distribution with

4

first occurrence relative standard deviation
0 2 4 6 8 10

su
bs

eq
ue

nt
 o

cc
ur

re
nc

es
 r

el
. s

td
. d

ev
.

0

2

4

6

8

10

Figure 3: Quality of prediction of variability per context in NWChem,
using 1024 ranks. The dispersion of a re-occurring context is highly corre-
lated with that of its first occurrence, leading to good predictivity.

large positive skew, caused by a few stragglers. CPU limited
code grows a statistically significant5 right-side tail.

We have considered all combinations of code with differ-
ent characteristics and assembled a set of micro-benchmarks
to tune the optimization engine. For brevity we omit detailed
results for communication and I/O intensive operations, we
note that their behavior is qualitatively similar to memory
intensive codes when combined.

Application induced dispersion: This is a measure of the
intrinsic application load balance, and previous work relies
on its predictability for static codes. Our insight is that “use-
ful” imbalance can be recognized even for dynamically load
balanced codes. For the NWChem experiment shown as un-
predictable in Figure 1, we compute the dispersion for each
region in its calling context, identified by the program stack
traces. Figure 3 shows the results of comparing the disper-
sion of the first occurrence of each context with its subse-
quent occurrences, for contexts that repeat at least 10 times.
The correlation is high and it is more likely that dispersion
increases than decreases when contexts re-occur. Clearly its
presence provides a good indicator of DVFS opportunities.

Selecting DVFS candidates: The previous results indicate
that the type of behavior amenable to DVFS (communica-
tion, I/O, memory intensity) causes increased dispersion in
“well” load balanced regions. These regions can be the result
of either static domain decomposition or dynamic load bal-
ancing mechanisms. As misclassification may hamper per-
formance, we still need criteria to handle the load imbal-
anced candidate regions.

While dispersion gives a measure of contention, skewness
gives an indication of the shape (asymmetry) of the distribu-
tion, and thus an estimate of the behavior of the slowest tasks
(critical path). For statically load imbalanced codes this be-

5 Normalized by standard deviation; not in an absolute (i.e. wall time) sense.

havior is quantitatively predictable, while for unsuccessful
dynamic load balancing it is more or less random.

Negative skew means the mass of the distribution is con-
centrated towards the right of the value range: it indicates
that most tasks take a long time, with a fat tail of fast tasks.
Intuitively, this happens when most tasks execute on the
“critical path”. Conversely, positive skew means most tasks
are fast, with a fat tail of slow tasks, meaning that one or a
few tasks form the critical path.

Each task has some minimum duration, limiting the pos-
sible extent of tails on the left. When anything affects a task’s
execution (e.g. the operating system briefly pre-empting), it
will invariably lead to a slowdown compared to the other,
unaffected tasks. This creates a small tail on the right side
of the value range, the likelihood of which is higher at scale.
As more and more tasks are affected, such as happens on
an increasingly contended resource, the distribution widens
and the concentration of tasks moves to the right of the value
range. This decreases skew, and may eventually flip it to neg-
ative. If the contention does not affect all tasks equally, e.g.
in the case of a shared cache6, the fat tail of stragglers con-
tinues to grow and skew remains positive. Thus, we want to
exclude such regions, as it indicates no or uneven contention,
such as CPU- or cache-bound code, and DVFS scaling will
negatively impact performance.

Contention widens the distribution, skew is normalized
to dispersion, and there is a lower limit on task duration.
Thus unless the random variations are (much) greater than
the region duration itself, system induced factors or poor dy-
namic load balancing will not cause a large negative skew.
Large negative skew is more likely to correspond to static
imbalance with some tasks consistently faster. We may ei-
ther exclude such regions outright or apply a histogramming
method to quickly look for bi-modal distributions. If found,
only the dispersion of the slower (right-most) mode, which
represents the tasks on the critical path, matters in principle.
However, the presence of clearly detectable modes means
that the dispersion of those sets of tasks that make up the
modes is low, and that they are thus most likely not affected
by contention.

Figure 4 summarizes our strategy of applying DVFS
based on dispersion and skewness. The strategy is guided us-
ing the micro-benchmarks already described in this Section.
These are supplemented, as described in Section 5.2, with
micro-benchmarks to characterize the behavior of collective
operations, as they can be either memory, CPU, or commu-
nication intensive. These cover all characteristics that we
expect: uncontested, symmetrically (all tasks equally) and
asymmetrically contested, balanced and imbalanced. The
goal of this mapping is to find an easily identifiable region
that indicates contention on resources and where we can thus
apply DVFS scaling.

6 After a first miss, a (now slower) process faces a higher chance of seeing
its cache lines evicted under any temporal locality eviction policy

5

0

-high

+high

Variance

Sk
ew

ne
ss

cut

cut

cut

NO: L3-bound, likely on
critical path NO: likely flop-bound

pr

oc
s

NO: maybe slack, can’t tell

NO: statistically impossible

YES: likely comm,
 I/O or DRAM bound

high

flop-intensive, many cores

flop-intensive, few cores

L3 cache

DRAM bw limited

real imbalance

(a)

(b)

(c)

(d)

(e)

Figure 4: Classification by skewness and variance. Regions using only uncontended resources, e.g. CPU, show low variance, whereas regions using
contended resources, such as memory, have high variance. Flop-bound code has large positive skew at scale, as does any code that has a significant critical
path. This leaves the lower right corner (high variance, low or negative skew) as most amenable to DVFS.

For any observed execution falling in Tile (e) we apply
DVFS. The high variance (larger than a threshold), small
positive or negative skew are characteristics of communica-
tion, I/O or DRAM bandwidth limited codes. These corre-
spond to contention that affects all tasks in the same way.
Applying a cut on large negative skew is not needed in our
target applications and we chose not to: the slower tasks
drive the timing and if these indicate (because of their disper-
sion) contented resources, then applying DVFS works fine.
As outlined above, strongly statically load-imbalanced CPU-
bound tasks can exhibit a bi-modal distribution, and a more
general implementation should detect those.

For any other execution summarized by Tiles (a), (b), (c)
and (d) we do not attempt DVFS. For brevity, we give only
the intuition behind our decision, without any benchmark
quantification. Tile (a) captures flop-bound code. In this
case note that skewness increases with concurrency. Tile
(b) captures code with real load imbalance, but we cannot
determine where, or what actual code mix is executed. Code
in Tile (d) is unlikely to occur in practice (and doesn’t in
NWChem). Finally, Tile (a) captures code that executes in
the last level of shared (contended) cache or code with a
critical path.

Our approach can handle statically load balanced and dy-
namically load balanced codes. It can also handle static load
imbalanced codes provided that imbalance is less that sys-
tem induced variation. The algorithm is designed to filter out
very large static load imbalance (see Figure 11). In contrast,
existing work in energy optimizations for HPC codes han-
dles codes with large static load imbalance.

It may seem worthwhile to use hardware performance
counters and instrument system calls to get more detail of

the programs behavior, and use that to refine the selection.
However, we have found that logical program behaviors do
not map so neatly. For example, a polling loop while wait-
ing for one-sided communication to finish is fully CPU-
bound, but does benefit from DVFS. In addition, regions
contain a mixture of different behaviors, which combined
with true stochastic behavior severely risks over-fitting when
too many parameters are considered. Finally, the hardware
itself and the operating system already use the information
available from performance counters and system calls to ap-
ply DVFS, pocketing most of the energy savings accessible
that way.

4. Design and Implementation
We develop single-pass, online optimizations, as well as off-
line optimizations. The online approach exploits the iterative
nature of scientific codes: for each region first observe exe-
cution under different frequencies, then decide the optimal
assignment and apply it when re-executed. Regions are dis-
tinguished in their calling context using the program stack
traces. The online optimization is built for scalability and
practicality, while we use the offline version to understand
and tune the online optimization engine.

Region Partition: In one sided communication, inter-task
synchronization is explicit and not associated with the regu-
lar Put/Get operations. Often these codes use non-blocking
communication overlapped with independent computation,
separated by group synchronization operations, such as bar-
riers, to maintain data consistency. To capture the dynamic
nature of the execution we use a context sensitive approach
where we identify regions with a hash, created from the re-

6

turn addresses of the full stack trace, at the preceding collec-
tive operation.

Region Selection and Clustering: To estimate dispersion
and skewness, we replace Barrier with Allgather and
augment other collective calls such as Allreduce with
Allgather, using linker wraps and gather the execution
times of all processes. A region is then considered a candi-
date for frequency scaling if these three criteria are met:

• Total region duration above THRESHOLD.
• Dispersion above STDEV of average duration.
• Skewness below SKEW.

The numerical values of the parameters above depend on
system and concurrency, e.g. dispersion increases with scale.
See Section 5.2 below for a full discussion.

The purpose of clustering is to create larger sections to
scale, and thus save on switching overhead. Clustering for
tolerating DVFS latency was first proposed by Lim et al [21],
which present an algorithm to identify chains of MPI calls
that occur close in time during execution. In our case, to ob-
tain results in practice we had to develop two extensions to
this algorithm. The three principle components of our clus-
tering are: 1) collect regions which each meet the necessary
criteria, similar to Lim’s approach; 2) extending these clus-
ters with regions of short duration (assumes communication
is not CPU limited); and 3) accepting a small loss of per-
formance to cover a gap between clusters when switching
would be even more expensive (“super-clusters”).

With reference to Algorithm 1 it can be seen that attempts
to build clusters are the normal case. Cluster building resets
if a long region that does not meet the criteria is encountered,
but does not stop. Once a cluster reaches THRESHOLD, it is
marked for scaling, which will happen on the next repetition
of the context that started the cluster. Any region with a du-
ration less than SHORT will always be accepted into the cur-
rent cluster, because of the assumption that it is dominated
by communication. Simply setting SHORT to 0 will remove
this clustering feature from the algorithm. Finally, a BRIDGE
cutoff is used to allow clusters to combine to super-clusters,
where the cost of the bridge is preferable compared to the
cost of switching frequencies twice. A bridge is built until a
new bona fide cluster forms, or if it gets too large, at which
point the algorithm resets. Super-clustering can be switched
off, by setting BRIDGE to 0.

Frequency Selection: For each cluster we want to determine
a global frequency assignment to adjust all cores.

In the online analysis we execute the instrumented pro-
gram and data is collected at each collective operation, then
clustering runs and candidate clusters are created. On the
second occurrence of a candidate, the algorithm attempts a
different global frequency. As learning needs to be short for
practical reasons, we use only two target frequencies. We
try each frequency only once per cluster. The algorithm has
a safety valve, tracking the maximum duration per context

Algorithm 1: Clustering of regions
Input: context, region, and is noisy
Result: program state update

1
2 /* decisions is a map of <context, DVFS decision>; program State is either CLUSTERING,

SCALING, or BRIDGING; SHORT, STDEV, SKEW, and BRIDGE are tunable (see text) */

3
4 if is noisy then
5 /* collect this region into a cluster */

6 COLLECT(context, region)
7 return
8 else
9 /* reject, unless very short, or not too long and in between clusters */

10 if SHORT < region then
11 if State == SCALING then
12 /* potential end of previous cluster, start of a new bridge */

13 cluster ← 0

14 State← BRIDGING

15 if State == BRIDGING then
16 BRIDGING(context, region)
17 return
18 RESET LOCAL STATE()
19 else
20 /* short region: communication dominates, collect anyway */

21 COLLECT(context, region)
22 return
23
24 procedure COLLECT(context, region)
25 if State == BRIDGING then
26 /* (potential) start of a new cluster */

27 cluster ← 0

28 State← CLUSTERING

29 switch State do
30 case CLUSTERING
31 cluster ← SUM(cluster, region)
32 local decisons[context] = SCALE

33 if THRESHOLD < cluster then
34 /* cluster has grown large enough */

35 State← SCALING

36 SCALING(context, region)
37 case SCALING
38 SCALING(context, region)
39
40 procedure SCALING(context, region)
41 if pending decisions then
42 decisions.update(local decisions)
43 decisions.update(bridge decisions)
44 RESET LOCAL STATE()
45 decisons[context] = SCALE

46
47 procedure BRIDGING(context, region)
48 cluster ← SUM(cluster, region)
49 bridge decisons[context] = SCALE

50 if BRIDGE < cluster then
51 /* distance from last cluster has grown too large */

52 RESET LOCAL STATE()

where DVFS is applied. If the scaling causes unwarranted
slow-down (determined by the ratio of the frequencies plus
a margin) on the slowest rank compared to the unscaled iter-
ation, the region is reverted if it is above the BRIDGE thresh-
old, or re-entered into the decision process if not. All pro-
cesses have the same data, so reach the same conclusion. If
the decision gets reverted, it applies to the next occurrence.

Putting a limit on the number of trial frequencies is moti-
vated by several factors. First, the number of dynamic repe-
titions of a context may be small, e.g. at most ten repetitions
in NWChem. Second, as some trials are bound to degrade
performance, fewer trials eliminate potential slowdown. Fi-
nally, the region selection criteria and acceptable slowdown
are not independent. The actual frequency values are quanti-
fied in Section 5.2.

While the online analysis is concurrency and input inde-
pendent, the offline analysis gives us an indication of how
much optimization is unexploited for a given problem (fixed
concurrency and input), when comparing to online. Here,
we execute the program once for each discrete frequency

7

level available for DVFS and collect traces. A trace analy-
sis combines all experiments, forms clusters and selects the
optimal frequency assignment: this can be any of the avail-
able frequencies on the system. Thus, contexts that occur
only once, most importantly initialization, and the first it-
eration of a repeating context can scale when re-executing
the program. Further, the offline analysis can select the most
energy-optimal candidate, given a constraint on performance
loss, from a static set of frequencies.

When using the offline analysis, the optimized execution
does not augment collectives with Allgather, resulting in
faster execution. Note that the scalability of Allgather is
not a real concern for the online analysis: we can revert to
the original collective after making a decision, but in doing
so give up the safety valve. In our experiments, reversals do
not happen after the first successful scaling, so we could re-
vert to the original collective on the third occurrence. Fur-
thermore, changes in collectives can only have a measurable
effect over the full run, if the original collectives consumed
a significant portion of the overall running time. If so, rever-
sals are unlikely to happen.

5. Evaluation
We evaluate the efficacy of our optimizations on the NWChem
and UMT2K applications described in Section 5.3. We com-
pare the online and offline optimization approaches using
up to 1,034 cores on two clusters and one large scale HPC
production system. For completeness we have attempted to
compare against MPI based quantitative approaches, Ada-
gio [30] and the clustering [21] algorithm used by Lim et al.
The results are described in Section 5.6.

5.1 Experimental Methodology

Platforms: The Teller [31] cluster has four AMD A10-
5800K quad-core processors and 16GB main memory per
node. There are seven available frequencies for scheduling,
ranging from 1.4 GHz to 3.8 GHz. Each core can be indi-
vidually controlled; in the idle state cores consume 45W,
55W at 1.4 GHz and 110W at 3.8 GHz. Each node runs
on Red Hat Enterprise server 6.2 and Linux kernel 2.6.32,
and the frequency switching is implemented on top of the
cpufreq [5] library. The Edison [10] Cray XC30 system at
NERSC [23] is a large scale production system, with two
12-core Intel Ivy Bridge 2.4 GHz processors per node and
5,576 total nodes, 133,824 cores in total. Frequencies can
be set in increments of 0.1 GHz from 1.2 GHz to 2.4 GHz,
only at socket granularity. At idle cores consume about 65W,
to 115W at 1.2 GHz and up to 250W at 2.4 GHz. Shep-
ard is a 34 node cluster with dual socket Intel Haswell 16-
core processors. This processor is to be deployed in the next
generation large scale systems at DOE Labs [1, 4] in early
2016. The frequency on Haswell can be selected per (hyper-
threaded) core, from 1.2 GHz to 2.3 GHz. However, cores
share many resources, which are not affected until all cores

in the socket scale down. Additionally, on Shepard, the Mel-
lanox InfiniBand FDR driver requires a single frequency to
be set across all cores. At idle a node draws 76W, 104W at
1.2 GHz, 150W at 2.3 GHz and 220W in Turbo mode.

Methodology: We measure at-the-wall power consumption,
as it is the ultimate indicator of any energy savings. We
use micro-benchmarks to determine the DVFS latency. On
Teller and Shepard we use the PowerInsight [?] interface
to collect power data, and integrate it with application level
time stamps to get the energy used. The DVFS switching
latency is ≈ 100µs on Teller and Shepard [13]. Measured
results on Teller and Shepard are with our optimizations
during the application execution.

On Edison power is measured by the Cray power moni-
toring counters, which sample at a frequency of about 10 Hz
and are read from a virtual file system under /proc. As Edi-
son is a large scale production system, the only DVFS con-
trol allowed is at job startup, when a single frequency can
be selected. Therefore, results on Edison are estimated using
modeling on timing and trace data. We run the application at
all available frequencies, including default Turbo mode. To
account for optimization overhead, the algorithm is executed
during each run, all except the final DVFS calls. To account
for DVFS switching overhead we use ≈ 100µs delays, which
is a conservative estimation [22] for this system. Trace files
for each frequency are obtained by averaging on each task
the duration of a region across at least five runs.

As an extra validation step for the Edison results, we have
compared the clusters selected by the model with the clus-
ters selected by the online algorithm on Teller and Shepard at
similar concurrency. There is a very high overlap in selected
regions, confirming that we do indeed select in the simula-
tion that portion of the execution amenable to DVFS due to
contended hardware resources.

5.2 Tuning Parameters
On each system, we select the high and low frequency
thresholds using the performance micro-benchmarks de-
scribed in Section 3.

For the high frequency we choose between Turbo mode
and the highest static frequency available. On HPC produc-
tion systems, the Turbo mode is enabled by default as it usu-
ally attains the best performance: this is the case on Teller
and Edison where we select it. For reference, 2.4 GHz is
the highest possible static frequency on Edison, but setting
it explicitly will switch off Turbo-boost and DVFS by the
hardware. In comparison to static 2.4 GHz, Turbo gains 8%
in performance at a cost of 13% in energy for NWChem,
running CC. On Shepard, best performance is obtained at a
static frequency of 2.3 GHz due to performance bugs in the
Mellanox InfiniBand driver, uncovered during this work. On
Shepard we select static 2.3 GHz as the high frequency. In
Turbo mode, communication is significantly slower than at
static 2.3 GHz. The driver expects that all cores are set at the

8

same frequency as it reads the current CPU configuration file
and uses it throughout to estimate delays. Turbo mode is log-
ically denoted by the 2.301 GHz frequency, while in reality
the cores will run anywhere between 2.8 GHz-3.4 GHz, de-
pending on load. In our experiments we have modified the
driver to configure the NIC with the correct high Turbo fre-
quency. This recouped some of the loss, but a vendor fix is
required before Turbo mode can match the performance at
2.3 GHz.

Note that all MPI quantitative approaches[29] cannot
handle well Turbo mode since they rely on a static refer-
ence frequency.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

1 1.5 2 2.5 3

E
ne

rg
y

re
l.

to
 1

.8
G

H
z

Frequency (GHz)

Memory

CPU

Network

Files

11.6

Time-optimal
downscaling

Figure 5: Relative energy usage (1.8 GHz == 1) for micro-benchmarks
that are CPU, memory, network, and file access limited, on Shepard. Net-
work results are before driver fixes, and using all cores. Arrows indicate the
lowest frequency possible while remaining time optimal.

We select the low frequency based on the energy cost of
codes that are limited by specific resources. Figure 5 shows
such experimental results on Shepard. Different resources
are impacted differently, thus the choice for low frequency
determines what regions we want to select for DVFS, and
that means it determines the dispersion and skewness cut-
offs. In a few iterations this converges on an optimal set.

For example, start with a low frequency of 2.1 GHz.
This scaling affects network- and CPU-bound codes, and the
latter the most. Next, create dispersion and skewness plots
for codes for different mixtures of part CPU- and network-
bound, part not. See for example Figure 2 where we have
done this for Edison. Scaling down to 2.1 GHz for CPU-
bound code incurs a cost of 33% (assuming most cores are in
use, i.e. an effective Turbo frequency of 2.8 GHz). The effect
of intra-node communication is the same, the effect of inter-
node communication is a speed-up, but only marginally so
after our driver fixes. Assume in the first iteration that 20%
of the program time will be scaled. Thus, the cost could be
20% of 33%, or 6.6%. We want to bound this by 2%, so the
scaled regions may not be more than 30% CPU- or network-
bound. We now read the dispersion and skewness cut-offs
directly from their respective plots at the cross of 30% and
the desired scale. Run a test, verify the 20% assumption, and

iterate with an improved selection (possibly with an adjusted
low frequency)7 until convergence on an optimal set.

Since the parameter set is over-constrained, we can make
trade-offs. For example, choosing a higher low frequency
allows looser cut-offs, and thus a greater selection of pro-
gram regions. The higher frequency results in lower sav-
ings, but these are applied to a larger portion of the pro-
gram, netting the same result: the algorithm is very robust
over a range of parameters. However, the trade-off between
performance and energy is not a linear function of the CPU
frequency for most resources: the largest gains are had by
coming down from the highest frequencies, with only small
gains as we approach the frequency at which the memory
runs. We therefore choose a low frequency roughly mid-way
between memory and max: 3.4 GHz for Teller, 2.1 GHz for
Edison, and 2.1 GHz on Shepard.

Finally, for clustering, we choose the SHORT threshold
to be 5× the communication cost of a Barrier, and the
BRIDGE cutoff to be 10× the cost of DVFS latency (i.e.
the expected average bridge size would be half that). The
actual values chosen need not be highly tuned, and we don’t
change them with scale, because the different parts of the
algorithm complement each other. For example, if SHORT is
too tight, bridging will cover most cases anyway. Likewise,
collecting short regions does not so much increase the size
of clusters, but rather allows building longer bridges in parts
of the program that are dominated by communication.

5.3 Application Benchmarks
NWChem [33] delivers open source computational chem-
istry software to a large user community. It uses Coupled-
Cluster (CC) methods, Density Functional Theory (DFT),
time-dependent DFT, Plane Wave Density Functional The-
ory and Ab Initio Molecular Dynamics (AIMD). It contains
roughly 6M lines of code. The main abstraction in NWChem
is a globally addressable memory space provided by Global
Arrays [25]. The code uses both one-sided communication
paradigms (ARMCI [24], GASNet [11], ComEx [8], MPI
3.0 RMA), as well as two sided communication (MPI).
Most methods implement a Read-Modify-Update cycle in
the global address space, using logical tasks that are dy-
namically load balanced. Communication is aggressively
overlapped with other communication and computation op-
erations. The code also provides its own resilience approach
using application level checkpoint restart, thus file I/O dom-
inates parts of the execution.

With two sided MPI as the transport layer, the code
performs a sequence of overlapped Isend — Probe —
Recv(ANY SOURCE) operations. With ARMCI as the trans-
port layer, the code runs in an asymmetric configuration
where proper “ranks” are supplemented with progress threads

7 This assumes a distribution in mixtures across regions; true in large,
complex applications, but not in highly synchronized, simple codes.

9

that perform message unpacking and Accumulate opera-
tions, driven by an interrupt based implementation.

We have chosen NWChem since no previous work han-
dled dynamic load balance mechanisms, nor one-sided com-
munication in large scale application settings. Furthermore,
note that the ARMCI back-end is challenging due to its
asymmetric runtime configuration using progress threads.
We have experimented with both MPI and ARMCI. For
brevity we concentrate on presenting ARMCI results, see
Section 5.6 for MPI.

For this paper we experiment with the CC and DFT meth-
ods, as these account for most usage of NWChem. CC is
set to run with and without I/O (writing partial simulation
results to disk for resilience reasons). We used two science
production runs: simulation of the photodissociation dynam-
ics and thermochemistry of the dichlorine oxide (Cl2O)
molecule, and of the core part of a large metalloprotein.

Dynamic Behavior of NWChem: Slack is virtually non-
existent, as a result of dynamic load balancing in NWChem.
When running on 1,034 cores on Edison, a very large frac-
tion of regions (more than 50%) are very short, on the order
of several tens of µs. On the other hand, these short regions
account for at most 10% of the total execution time and need
to be clustered to prevent excessive frequency switching. For
reference, the program executes 204,452 barriers during this
run. The most relevant regions for DVFS are longer (in the
few ms range) and repeat only about 10 times, which indi-
cates that online learning needs to be fast. This also means
that an energy optimization approach needs to be able to
handle both short execution regions, as well as long running
program regions. As already shown, predictions of execu-
tion time between synchronization operations in NWChem
are likely to fail. We examine each method at increasing
concurrency, up to 1,034 cores. CC executions exhibit dif-
ferent dynamic behavior with increased concurrency. DFT
execution is CPU-intensive.

UMT2K [32] is a 3D, deterministic, multigroup, photon
transport code for unstructured meshes [32]. It is written in
MPI and OpenMP and it provides its own checkpoint/restart
mechanism. We have chosen this benchmark as it provides
a common reference point with state-of-the-art quantitative
approaches able to handle MPI codes. UMT2K contains
roughly 170K lines of code.

Dynamic behavior of UMT2K: The benchmark is CPU-
intensive and performs blocking MPI communication, i.e.
no overlap. Communication regions account for about 20%
of the execution time. It is largely load balanced, with some
communication regions having increased work for MPI
Rank 0. The time intervals between two collective opera-
tions are large (≈ 250ms), the benchmark performs about
1000 Barrier and Allreduce operations each over a 4
minutes long execution. Overall, UMT2K is reasonably well

balanced with coarse grained computation between collec-
tive operations.

5.4 Impact of Algorithmic Choices
For brevity, we do not discuss the Teller results in detail.
The Edison and Shepard CPUs are one and two generations
ahead respectively, have better hardware power management
and energy optimizations on these platforms are more chal-
lenging. For reference, on Teller for CC we observe as much
as 7.4% energy savings for a 1.7% slowdown provided by
an online optimization that uses 3.4 GHz as the target fre-
quency, running on 128 cores.

We’ll concentrate our interest on Edison, as this is a
tightly integrated production HPC system. Figure 6 presents
results for the online optimizations of the CC run. The la-
bels contain the concurrency, e.g. CC-1034 refers to a run
on 1,034 cores. For each configuration we allow the low
frequency to take the values indicated on the x − axis. For
reference, the runs perform 75,233, 75,085 and 204,452 re-
gions when running on 132, 528 and 1,034 cores respec-
tively. These occur in roughly 6,000 to 9,000 distinct calling
contexts, depending on the input. The typical execution is on
the order or 20 minutes or more.

-‐2.0%	

0.0%	

2.0%	

4.0%	

6.0%	

8.0%	

10.0%	

12.0%	

14.0%	

CC
-‐1
32
	

CC
-‐5
28
	

CC
-‐1
03
4	

CC
-‐1
32
	

CC
-‐5
28
	

CC
-‐1
03
4	

CC
-‐1
32
	

CC
-‐5
28
	

CC
-‐1
03
4	

CC
-‐1
32
	

CC
-‐5
28
	

CC
-‐1
03
4	

CC
-‐1
32
	

CC
-‐5
28
	

CC
-‐1
03
4	

CC
-‐1
32
	

CC
-‐5
28
	

CC
-‐1
03
4	

CC
-‐1
32
	

CC
-‐1
32
	

CC
-‐5
28
	

CC
-‐1
03
4	

CC
-‐1
32
	

CC
-‐5
28
	

CC
-‐1
03
4	

CC
-‐1
32
	

CC
-‐5
28
	

CC
-‐1
03
4	

CC
-‐1
32
	

CC
-‐5
28
	

CC
-‐1
03
4	

CC
-‐1
32
	

CC
-‐5
28
	

CC
-‐1
03
4	

CC
-‐1
32
	

CC
-‐5
28
	

CC
-‐1
03
4	

2.4	 GHz	 2.2	 GHz	 2.1	 GHz	 2	 Ghz	 1.8	 GHz	 1.6	 GHZ	 2.4	 GHz	 2.2	 GHz	 2.1	 GHz	 2	 Ghz	 1.8	 GHz	 1.6	 GHZ	

Energy	 Savings	 Program	 Slowdown	

Figure 6: Summary of results on Edison for CC running at increasing
concurrency (132,518,1034) and with different target low frequency for the
online algorithm.

The execution of CC-132 is memory bandwidth limited
and we observe energy savings as high as 7.8% for a slow-
down of 3.9% when varying to 1.6 GHz. When using the
“default” target 2.1 GHz frequency, the optimization saves
6.5% energy for a 1% slowdown. A low frequency is se-
lected for about 25% of the total program execution using
≈ 3,600 DVFS switches. The execution of CC-528 is domi-
nated by a combination of memory intensive execution and
communication. The energy savings are as high as 8.3%, for
a slowdown of only 0.8%. Low frequency is selected roughly
for 33% of the execution, using ≈ 8,000 switches. The ex-
ecution of CC-1034 is dominated by a combination of I/O
and communication. In the best case we observe savings of
4.4% with a 1.5% slowdown. Low frequency is selected for
about 23% of the execution, using ≈ 70,000 switches.

Figure 6 also illustrates that most of the benefits are
obtained when lowering the frequency to 2 GHz or 2.1 GHz,

10

close to the memory frequency but not lower. This validates
our choice of considering only one target frequency and in
practice we use 2.1 GHz as default.

0.00%	
1.00%	
2.00%	
3.00%	
4.00%	
5.00%	
6.00%	
7.00%	
8.00%	
9.00%	

AL
L	

-‐	 S
U
PE

R	

-‐	 S
HO

RT
	

-‐	 S
KE

W
	

-‐	 S
TD

DE
V	

AL
L	

-‐	 S
U
PE

R	

-‐	 S
HO

RT
	

-‐	 S
KE

W
	

-‐	 S
TD

DE
V	

AL
L	

-‐	 S
U
PE

R	

-‐	 S
HO

RT
	

-‐	 S
KE

W
	

-‐	 S
TD

DE
V	

CC-‐132	 CC-‐528	 CC-‐1034	

Energy	 Savings	 Slowdown	

Figure 7: Impact of algorithmic design choices on the efficacy of the
online algorithm using a target frequency of 2.1 GHz on Edison.

0.00%	

5.00%	

10.00%	

15.00%	

20.00%	

25.00%	

30.00%	

35.00%	

AL
L	

-‐	 S
U
PE

R	

-‐	 S
HO

RT
	

-‐	 C
LU

ST
ER

	

-‐	 S
TD

DE
V	

AL
L	

-‐	 S
U
PE

R	

-‐	 S
HO

RT
	

-‐	 C
LU

ST
ER

	

-‐	 S
TD

DE
V	

AL
L	

-‐	 S
U
PE

R	

-‐	 S
HO

RT
	

-‐	 C
LU

ST
ER

	

-‐	 S
TD

DE
V	

CC-‐132	 CC-‐528	 CC-‐1034	

Execu=on	 Coverage	

Figure 8: Percentage of the execution time at low frequency as determined
by algorithmic choices on Edison using a target of 2.1 GHz.

Figures 7 and 8 provide some quantitative detail about the
influence of our algorithm design choices. Overall, they il-
lustrate the fact that both clustering and the variability crite-
ria are required in practice to cover the spectrum of code dy-
namic behavior. We present energy savings, slowdown and
execution coverage for multiple algorithms, compared to the
complete online algorithm labeled ALL. Each label desig-
nates the criteria we subtract from the full algorithm in a pro-
gressive manner: “-SUPER” denotes lack of forming super-
clusters (i.e. BRIDGE = 0 Algorithm 1), “-SHORT” denotes
ignoring short regions (i.e. SHORT = 0), “-CLUSTER” de-
notes no clustering at all. Finally “-STDDEV” denotes an
algorithm that ignores completely variability, but still cuts
on skewness. For reference, the series labeled “-SHORT”
(i.e. no refinement beyond clustering) is the equivalent of
the algorithm presented by Lim et al [21].

For CC-132 and CC-528, most of the benefits are pro-
vided by the clustering, rather than the variability selec-
tion criteria. Also note that forming super-clusters is manda-
tory for performance, as illustrated by the increase in en-
ergy savings and decrease in overhead for “-SUPER” when
compared to “-SHORT” for CC-132 and CC-528. When in-
creasing concurrency, the variability selection criteria pro-

vides most of the benefits of the optimization, and clustering
improves behavior only slightly. Similar conclusions can be
drawn when examining the execution coverage in Figure 8,
rather than performance improvements.

-‐4.0%	

1.0%	

6.0%	

11.0%	

16.0%	

CC
-‐1
32
	

CC
-‐IO

-‐1
32
	

CC
-‐1
32
-‐M

PI
	

DF
T-‐
12
0	

CC
-‐5
28
	

CC
-‐IO

-‐5
28
	

CC
-‐1
03
4	

CC
-‐IO

-‐1
03
4	

CC
-‐1
32
	

CC
-‐IO

-‐1
32
	

CC
-‐1
32
-‐M

PI
	

DF
T-‐
12
0	

CC
-‐5
28
	

CC
-‐IO

-‐5
28
	

CC
-‐1
03
4	

CC
-‐IO

-‐1
03
4	

Online	 Offline	

Energy	 Savings	 Slowdown	

Figure 9: Comparison of energy savings and slowdown for CC, CC-IO,
DFT and CC-MPI when using online and offline optimizations on Edison
with a target low frequency of 2.1 GHz.

For brevity, we did not provide detailed results for all
benchmarks as they show similar trends to the CC runs. In
Figure 9 we show results for runs of CC-IO, which runs the
resilience methods, DFT and selected configurations running
on MPI. For CC-IO we observe even better energy savings
than for CC, due to extra optimization potential during I/O
operations. The DFT execution is flops-limited and as al-
ready described in Section 3 our approach does not identify
many regions as DVFS candidates. MPI results are further
discussed in Section 5.6.

On Shepard, like on Teller, results are obtained with
DVFS during application execution and summarized in Fig-
ure 10. For CC, we used molecules of increasing sizes as
input: (Cl2O) (OCT) and (C4H6N3O2) (DCO). As shown,
we observe as much as 12% energy savings with in most
cases only a small performance penalty.

-4.0%	

1.0%	

6.0%	

11.0%	

16.0%	

DC
O
	C
C-
12
0	
2.
3	

DC
O
	C
C-
12
0	
2.
1	

DC
O
	C
C-
12
0	
1.
8	

DC
O
	C
C-
24
0	
2.
1	

DC
O
	C
C-
36
0	
2.
1	

O
CT

	C
C-
36
0	
2.
1	

O
CT

	C
C-
72
0	
2.
1	

DC
O
	C
C-
12
0	
2.
3	

DC
O
	C
C-
12
0	
2.
1	

DC
O
	C
C-
12
0	
1.
8	

DC
O
	C
C-
24
0	
2.
1	

DC
O
	C
C-
36
0	
2.
1	

O
CT

	C
C-
36
0	
2.
1	

O
CT

	C
C-
72
0	
2.
1	

Full	clustering	 SHORT	=	0	

Energy	Savings	 Slowdown	

Figure 10: Comparison of energy savings and slowdown for CC (a
small and large molecule), at different low frequencies and with and without
clustering of short regions.

As we scale up the small molecule input, it becomes
increasingly dominated by communication, which is CPU-
dependent if intra-node. As a result, “blindly” accepting
short regions carries an increasingly large cost, requiring
SHORT set to 0 to get good results.

11

For DFT, timings are dominated by file access on Shepard
(even at small scale) and their range is huge (up to 4x),
putting doubt in the usefulness of the results. Nevertheless,
we ran a large number of jobs and averaged them, achieving
savings of 9% for no appreciable loss in performance. That
result is encouraging, but much larger savings can be had by
installing a better I/O system.

As expected, we did not achieve energy savings on the
UMT2K benchmark on Shepard, nor did we slow it down.
The load balanced parts are CPU-intensive and rejected by
our criteria. Some communication regions have increased
work for Rank 0: the imbalance is within our threshold and
the algorithm decides to apply DVFS. However, at subse-
quent executions of the context the variation in the execution
time of Rank 0 is too large and the algorithm disables DVFS.
Compared to 9000 in NWChem, the dynamic behavior is
much simpler: we observe only 40 distinct calling contexts.

5.5 Optimality of Online Algorithm
The online algorithm observes the execution of any region
for a small number of repetitions and if necessary varies the
frequency to a unique predetermined value. This leaves un-
tapped optimization potential. In Figure 9 we include for ref-
erence the energy savings and the slowdown for the offline
trace based optimization approach which chooses the opti-
mal frequency for any given cluster. As illustrated, the off-
line approach almost doubles the energy savings for similar
or slightly lower runtime overhead. In particular, we now
observe 11% savings at 1,034 cores for CC-1034. More than
half of the additional energy gains come from the ability to
perform DVFS on the first occurrence of any region, rather
than from choosing the optimal frequency assignment for a
particular region. To us, this validates the algorithm robust-
ness and relative lack of sensitivity to the selection of the
low frequency threshold; it is better to act fast but imprecise,
rather than wait for enough data for statistical significance to
compute an optimal solution.

5.6 Impact of Communication Paradigm
The results presented so far have been for NWChem config-
urations using one-sided communication. For brevity we of-
fer a summary of our findings when running NWChem con-
figured to use MPI. First, the application runs slower, and
we have observed more than 4× slowdown on Edison when
comparing MPI with ARMCI performance on 1,034 cores.
A large contribution is attributed to slower communication,
which implies larger possible gains from DVFS. Due to the
two-sided nature, instrumenting at barrier granularity shows
that the code exhibits less imbalance than runs with ARMCI,
as induced by the multiple ISend/IRecv/Probe operations
performed between barriers.

With MPI we observe much higher energy savings (up
to 20% using offline analysis, up to 16% using online), rel-
ative to the one-sided results. The portion of the execution
affected is also higher, up to 50%. Since the MPI code is

seemingly balanced, clustering provides most of the opti-
mization benefits, while the variability criteria provides a
safety valve. This is in contrast with the one-sided behav-
ior, where recognizing variability is required at scale. When
compared to Lim’s approach, we use different selection cri-
teria when clustering, namely variability, but after that, we
do add back short regions, which is what their algorithm uses
for its clustering criteria. For example, our full optimiza-
tion (ALL) provides energy savings of 13% with a slow-
down of 3.3%, while an algorithm similar to Lim’s that does
pure clustering (-SHORT) attains 9.3% savings with 0.9%
slowdown. Note that adding the (presumed communication
bound) short regions (-SUPER) so that the selection criteria
are similar, too, results in 11.8% savings, for a cost of 2.9%.

The network hardware also emphasizes the differences
between communication paradigms. InfiniBand on Shepard
has little hardware assist for message injection, while Cray
Aries [2] on Edison provides FMA and BTE hardware sup-
port for small and large messages respectively.

On InfiniBand, one-sided small transfers and collective
operations are dominated by CPU overhead: our approach
classifies them accordingly and does not attempt DVFS. In-
deed, scaling down the frequency during these operations
leads to execution slowdown. Our approach classifies MPI
two-sided transfers as amenable to DVFS: lowering the fre-
quency during these transfers does not affect execution time.
Two-sided communication combines data transfer and inter-
task synchronization semantics: here waiting and network
latency dominates the message initiation CPU overhead.

On Edison, our criteria identifies both one-sided and two-
sided small transfers and collectives as amenable to DVFS:
indeed this is the case and lowering the frequency does not
affect their performance.

Overall, it seems that MPI codes exhibit more DVFS
potential due to their over-synchronized behavior. This be-
comes apparent when strong scaling NWChem on Shepard
enough that messages become small. Our method still finds
DVFS opportunities, however, because file system access is
heavily contented at scale.

5.7 Comparison to Adagio
Adagio [30] provides state-of-the-art scaling of MPI appli-
cations using a quantitative approach. To provide a fair com-
parison, we started with the official source [3], fixed the
baked-in assumptions about the hardware (e.g. four cores
per node, no hyperthreads), made the code “hyperthread-
aware”, extended it to handle Turbo, optimized frequency
setting, and built it in optimized (-O3) mode. With that, we
verified with the provided tests and under the same origi-
nal conditions of one MPI rank per DVFS/clock domain that
the algorithm indeed works as expected. When applied to
our test applications Adagio finds no energy saving poten-
tial in NWChem and causes a 60% slowdown (at an 28%
energy increase) in UMT2K, due to selecting a too low fre-

12

Figure 11: The savings effect as a function of imbalance for Adagio (left) and our algorithm (right) for a memory bandwidth limited micro-benchmark. The
smaller structures are an artifact of the plotting and limited sampling.

quency in communication regions, which are CPU sensitive
on Shepard.

The results showcase the differences between quantita-
tive and qualitative approaches. Adagio predicts the timing
for each region and computes its ideal frequency as a lin-
ear combination of the discrete frequencies available. Fre-
quency on each core is changed during a region using inter-
rupts and this poses scalability problems with the number of
cores. To amortize overheads, it requires relatively long re-
gions (a multiple of 100ms) executed at a given frequency.
Such long region times do not occur often in NWChem: the
typical region times are too short to even accept the overhead
of the additional frequency shifts, and clustering is neces-
sary. Besides coarse grained regions, Adagio requires load
imbalance between ranks proportional to the frequency dif-
ferential between two consecutive assignments. When lack-
ing an optimal choice, the algorithm conservatively assumes
a CPU-bound code, or a slowdown equal to the frequency
differential. The original Adagio implementation uses the
highest static frequency as reference. With our extensions
to handle Turbo mode, the differential to next frequency is
large and depends on the number of cores in use (e.g. from
18% to 32% on Shepard), and none of our applications ex-
hibit imbalances of that magnitude. Figure 11 shows results
for a memory bandwidth limited micro-benchmark designed
to favor Adagio with regions of several seconds long. Ada-
gio (left) works best when only a few ranks are slow (i.e.
most cores can be scaled down) and the imbalance is signif-
icant enough. When most cores are slow, the energy savings
effect of scaling down only a few cores is negligible. Our
algorithm scales down more aggressively, which allows it to
capture larger savings even in much smaller regions, but con-
versely, it can not find savings if there is significant imbal-
ance. Note that Adagio performs similarly for a CPU-limited
micro-benchmark, whereas our algorithm will not achieve
any savings at all in that case. Contrarily, on Shepard where
small to medium communication and collectives are CPU-

bound, Adagio indiscriminately scales down communication
resulting in large performance penalties for NWChem and
UMT2K.

6. Other Related Work
Energy and power optimizations have been explored from
different perspectives: hardware, data center, commercial
workloads and HPC. At the hardware level, memory inten-
sity [9] has been used to identify DVFS opportunities. To our
knowledge, approaches similar in spirit are implemented in
hardware in the Intel Haswell processors.

Raghavendra et al [26] discuss coordinated power man-
agement for the data center level. They present a hierarchi-
cal control infrastructure for capping peak or average power.
Their detailed simulation for enterprise workloads illustrates
the challenges of tuning these schemes even at small scale.

In the HPC realm, most optimizations use slack in MPI
communication to identify optimization opportunities. Ini-
tial studies [28] used offline, trace based analyses that often
solve a global optimization problem using linear program-
ming. An optimization strategy is built for a single input at
a given concurrency. While more generality can be attained
by merging solutions across multiple inputs or scales, these
methods suffer an intrinsic scalability problem introduced
by tracing. Furthermore, these analyses do not handle non-
blocking MPI communication Isend/Wait.

Later approaches improve scalability using online analy-
ses [21, 30] and mitigate high DVFS latency using cluster-
ing [21] techniques. Some of these techniques [30] consider
in addition computational intensity (instructions per cycle or
second) as a measure of application speed under DVFS. We
have already highlighted the differences and extensions in-
troduced in our work.

Other approaches that consider hybrid MPI+OpenMP
codes [19], are able to make per DVFS domain (socket) de-
cisions, as long as only one MPI rank is constrained within
a DVFS domain. The initial studies use offline analyses

13

and consider MPI and OpenMP in disjunction, running in
a master-slave configuration. The preferred strategy for the
OpenMP regions is to reduce parallelism and turn cores off
completely, referred to as dynamic concurrency throttling.
Extensions are required to handle codes with more dynamic
parallelism, or when running either multiple MPI ranks per
clock domain or OpenMP over multiple clock domains.

Programming model independent approaches tend to be
used by hardware or only within the node [9] and use time
slicing. The program is profiled for a short period of time
and a DVFS decision is made for the rest of the time slice.
For HPC, CPU-Miser [12] employs this technique. Applica-
tion dependent approaches identify and annotate algorithmic
stages and iterations, using either online (Jitter [16]) or off-
line [17] analyses. The workloads considered in these studies
are MPI with static (im)balance and DVFS control per core.

Energy optimizations for one-sided communication is ex-
amined by Vishnu [34] using the ARMCI implementation.
They design interrupt based mechanisms for the ARMCI
progress thread and lower voltage when waiting for commu-
nication completion. The evaluation is performed on micro-
benchmarks doing blocking communication, e.g. Put fol-
lowed by Fence (quiesce) with no overlap, and with per core
DVFS. The ARMCI implementation of NWChem performs
overlapped non-blocking communication.

Recent work by Ribic and Liu [27] describes the design
of an energy efficient work-stealing shared memory only
runtime for Cilk. Their approach tries to optimize for the
critical path (workpath-sensitive), while keeping in mind the
relative speed of workers (workload-sensitive). While the
hardware used for evaluation supports clock domains and
hyperthreading, the evaluation is performed running with
only one thread per domain, to avoid interference between
decisions made on each core.

7. Discussion
Our approach works for SPMD codes that use one- and two-
sided communication and dynamic load balancing: none
were successfully handled by previous DVFS optimizations
for distributed memory programming. We can also handle
static load balance, provided no extreme imbalance. Previ-
ous approaches are best suited for codes with large static
imbalance. During this research, we have striven to pro-
vide hardware and runtime independent mechanisms and
eschewed the use of hardware performance counters. These
may be used by libraries and hijacking them hampers porta-
bility in large code bases. By sampling hardware counters
we believe we can extend out the variability criteria to rec-
ognize and avoid CPU intensive regions in codes with static
load imbalance. Although expected gains are small, sam-
pling counters is also likely to allow choosing a better low
frequency for any region, using the methodology described
in Section 5.2.

We can further improve the efficacy of the online algo-
rithm by lowering its runtime overhead: augmenting collec-
tives with Allgather in large scale runs introduces as much
as 1% runtime overhead in our experiments. One can easily
imagine approaches where collectives revert to their original
operation after frequency learning stops.

Programming languages such as Chapel [6], X10 [7] and
Habanero [18] embrace dynamic parallelism and load bal-
ancing as first class citizens. Their runtime implementation
uses either MPI or one-sided communication libraries: we
have shown the ability to handle both. The equivalent of
group synchronization in these cases is the “finish” of a
parallel region. We believe our variability based approach
provides the right framework for these new languages: per
core behavior is likely to be unpredictable and measuring
dispersion of a finish construct is likely to uncover the
DVFS potential during its execution, without need for track-
ing communications or sampling performance counters.

Recognizing the shape of variability is useful in other op-
timization scenarios. One can easily imagine building other
global control algorithms, e.g. communication or I/O con-
gestion avoidance schemes.

Comparing the three generations of hardware, margins
are diminishing on the newer machines due to better hard-
ware power management. Furthermore, cores share more
and more resources which are not only outside the control
of software DVFS, but also remain at higher clock speeds
as long as some of the cores that share them are not scaling
down. Scaling individual cores has a much smaller impact
and only a global assignment achieves the desired energy
savings, as illustrated by Figure 11.

8. Conclusion
To ensure scalability, developers spend significant effort to
load balance their codes. Previous DVFS-based energy op-
timizations have been successful at handling statically load
balanced codes using two sided communication and relied
on the predictability of runtime behavior. In this paper we
propose a qualitative approach designed to handle codes us-
ing dynamic load balancing whose behavior is hard to pre-
dict. Our main insight is that we can recognize the statistical
signature of executions that can benefit from DVFS. Using
variability and skewness as primary indicators for proclivity
for execution at low frequency, we develop DVFS control
algorithms. A good feature of our algorithm is that it can
compute a unique system-wide frequency assignment, and it
therefore eliminates the limitations of previous work that re-
lies on per core DVFS control. Our evaluation for NWChem
shows that our online approach is able to provide good en-
ergy savings at high concurrency in production runs, with
little runtime overhead. The method is built using pragma-
tism and we believe that the variability criteria is likely to be
useful in building global control mechanisms besides energy.

14

References
[1] Cori. https://www.nersc.gov/users/computational-

systems/cori/.

[2] The cray xc30 network.

[3] A power aware runtime. Available at
https://github.com/scalability-llnl/Adagio.

[4] The trinity advanced technology system.
http://www.lanl.gov/projects/trinity/specifications.php.

[5] D. Brodowski. Linux cpufreq governors.
https://www.kernel.org/doc/Documentation/cpu-
freq/governors.txt.

[6] B. L. Chamberlain, D. Callahan, and H. P. Zima. Parallel pro-
grammability and the chapel language. Int. J. High Perform.
Comput. Appl, 63(3):291–312, 2007.

[7] P. Charles et al. X10: An object-oriented approach to non-
uniform cluster computing. SIGPLAN Not., 40(10), Oct. 2005.

[8] ComEx: Communications Runtime for Exascale.
http://hpc.pnl.gov/comex/.

[9] Q. Deng, D. Meisner, A. Bhattacharjee, T. F. Wenisch, and
R. Bianchini. Coscale: Coordinating cpu and memory sys-
tem dvfs in server systems. In Proceedings of the 2012 45th
Annual IEEE/ACM International Symposium on Microarchi-
tecture, MICRO-45, pages 143–154, Washington, DC, USA,
2012. IEEE Computer Society.

[10] Edison. https://www.nersc.gov/users/computational systems/edison/.

[11] GASNet: Global-Address Space Networking.
http://gasnet.lbl.gov/.

[12] R. Ge, X. Feng, W.-c. Feng, and K. W. Cameron. Cpu miser: A
performance-directed, run-time system for power-aware clus-
ters. In Proceedings of the 2007 International Conference on
Parallel Processing, ICPP ’07, pages 18–, Washington, DC,
USA, 2007. IEEE Computer Society.

[13] D. Hackenberg, R. Schöne, T. Ilsche, D. Molka, J. Schuchart,
and R. Geyer. An energy efficiency feature survey of the
intel haswell processor. In Proceedings of the 11th Workshop
on High-Performance, Power-Aware Computing, HPPAC ’15,
2015.

[14] C. Iancu and E. Strohmaier. Optimizing communication over-
lap for high-speed networks. In Proceedings of the 12th ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPOPP, 2007.

[15] D. D. James H. Laros III, Phil Pokorny. Powerinsight -
a commodity power measurement capability. In The Third
International Workshop on Power Measurement and Profiling
in conjunction with IEEE IGCC 2013, Arlington Va, 2013.

[16] N. Kappiah, V. W. Freeh, and D. Lowenthal. Just in time dy-
namic voltage scaling: Exploiting inter-node slack to save en-
ergy in mpi programs. In Supercomputing, 2005. Proceedings
of the ACM/IEEE SC 2005 Conference, pages 33–33, Nov
2005.

[17] D. Kerbyson, A. Vishnu, and K. Barker. Energy templates:
Exploiting application information to save energy. In Cluster
Computing (CLUSTER), 2011 IEEE International Conference
on, pages 225–233, Sept 2011.

[18] V. Kumar, Y. Zheng, V. Cavé, Z. Budimlić, and V. Sarkar.
Habaneroupc++: A compiler-free pgas library. In Proceedings
of the 8th International Conference on Partitioned Global
Address Space Programming Models, PGAS ’14, pages 5:1–
5:10, New York, NY, USA, 2014. ACM.

[19] D. Li, B. de Supinski, M. Schulz, K. Cameron, and
D. Nikolopoulos. Hybrid mpi/openmp power-aware comput-
ing. In Parallel Distributed Processing (IPDPS), 2010 IEEE
International Symposium on, pages 1–12, April 2010.

[20] J. Li, L. Zhang, C. Lefurgy, R. Treumann, and W. E. Denzel.
Thrifty interconnection network for hpc systems. In Proceed-
ings of the 23rd International Conference on Supercomputing,
ICS ’09, pages 505–506, New York, NY, USA, 2009. ACM.

[21] M. Y. Lim, V. W. Freeh, and D. K. Lowenthal. Adaptive,
Transparent CPU Scaling Algorithms Leveraging MPI Com-
munication Regions. In Parallel Computing, 37(10-11), 2011.

[22] A. Mazouz, A. Laurent, B. Pradelle, and W. Jalby. Evalua-
tion of cpu frequency transition latency. Computer Science -
Research and Development, 29(3-4):187–195, 2014.

[23] NERSC. https://www.nersc.gov/.

[24] J. Nieplocha and B. Carpenter. ARMCI: A portable remote
memory copy libray for distributed array libraries and com-
piler run-time systems. In Proc. of the 11 IPPS/SPDP’99
Workshops Held in Conjunction with the 13th Intl. Parallel
Processing Symp. and 10th Symp. on Parallel and Distributed
Processing, 1999.

[25] J. Nieplocha et al. Advances, applications and performance of
the global arrays shared memory programming toolkit. Int. J.
High Perform. Comput. Appl., 20(2), May 2006.

[26] R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and
X. Zhu. No ”power” struggles: Coordinated multi-level power
management for the data center. In Proceedings of the 13th
International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, ASPLOS XIII,
pages 48–59, New York, NY, USA, 2008. ACM.

[27] H. Ribic and Y. D. Liu. Energy-efficient work-stealing lan-
guage runtimes. In Proceedings of the 19th International Con-
ference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’14, 2014.

[28] B. Rountree, D. K. Lowenthal, S. Funk, V. W. Freeh, B. R.
de Supinski, and M. Schulz. Bounding energy consumption
in large-scale mpi programs. In Proceedings of the 2007
ACM/IEEE Conference on Supercomputing, SC ’07, pages
49:1–49:9, New York, NY, USA, 2007. ACM.

[29] B. Rountree, D. K. Lownenthal, B. R. de Supinski, and
M. Schulz. Practical performance prediction under dynamic
voltage frequency scaling. In Proceedings of the Interna-
tional Green Computing Conference and Workshops, IGCC
’11, pages 1–8. IEE, 2011.

[30] B. Rountree, D. K. Lownenthal, B. R. de Supinski, M. Schulz,
V. W. Freeh, and T. Bletsch. Adagio: Making dvs practical
for complex hpc applications. In Proceedings of the 23rd
International Conference on Supercomputing, ICS ’09, pages
460–469, New York, NY, USA, 2009. ACM.

[31] Teller. http://www.sandia.gov/asc/computational systems/HAAPS.html.

15

[32] The umt benchmark code.
https://asc.llnl.gov/computing resources/purple/archive/benchmarks/umt/.

[33] M. Valiev et al. NWChem: A comprehensive and scal-
able open-source solution for large scale molecular simu-
lations. Computer Physics Communications, 181(9):1477–
1489, 2010.

[34] A. Vishnu, S. Song, A. Marquez, K. Barker, D. Kerbyson,
K. Cameron, and P. Balaji. Designing energy efficient com-
munication runtime systems: a view from pgas models. The
Journal of Supercomputing, 63(3):691–709, 2013.

16

	1 Introduction
	2 Background and Motivation
	2.1 Predicting Timings for Dynamic Behavior

	3 Employing Variability as a Predictor
	4 Design and Implementation
	5 Evaluation
	5.1 Experimental Methodology
	5.2 Tuning Parameters
	5.3 Application Benchmarks
	5.4 Impact of Algorithmic Choices
	5.5 Optimality of Online Algorithm
	5.6 Impact of Communication Paradigm
	5.7 Comparison to Adagio

	6 Other Related Work
	7 Discussion
	8 Conclusion

