
Authors
Biegalski, MD
Qiao, L
Gu, Y
et al.

Publication Date
2015-05-25

DOI
10.1063/1.4921711

Peer reviewed

Michael D. Biegalski, Liang Qiao, Yijia Gu, Apurva Mehta, Qian He, Yayoi Takamura, Albina Borisevich, and Long-Qing Chen

Citation: Applied Physics Letters 106, 219901 (2015); doi: 10.1063/1.4921711
View online: http://dx.doi.org/10.1063/1.4921711
View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/106/21?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Phenomenological theory of phase transitions in epitaxial Ba x Sr1− x TiO3 thin films on (111)-oriented cubic substrates

Impact of symmetry on the ferroelectric properties of CaTiO3 thin films

Effect of elastic compliances and higher order Landau coefficients on the phase diagram of single domain epitaxial Pb(Zr,Ti)O3 (PZT) thin films
AIP Advances 4, 127150 (2014); 10.1063/1.4905265

Low-temperature dielectric behavior of BiFeO3-modified CaTiO3 incipient ferroelectric ceramics

Effect of anisotropic in-plane strains on phase states and dielectric properties of epitaxial ferroelectric thin films
Appl. Phys. Lett. 86, 052903 (2005); 10.1063/1.1855389

Michael D. Biegalski,¹ Liang Qiao,¹,a) Yijia Gu,² Apurva Mehta,³ Qian He,⁴ Yayoi Takamura,⁵,b) Albina Borisevich,⁴ and Long-Qing Chen²

¹Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
²Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA
³Stanford Synchrotron Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
⁴Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
⁵Department of Chemical Engineering and Materials Science, University of California-Davis, Davis, California 95616, USA

(Received 8 May 2015; accepted 12 May 2015; published online 26 May 2015)

[http://dx.doi.org/10.1063/1.4921711]

There is a typo of the space group. All the Pnmb should be Pbnm (or Pnma). So the Glazer notation should be changed to (a/a’ c’) for Pbnm space group on page 4 of the article.¹ We have also noticed that the thermodynamic analysis of CaTiO₃ thin film is not correct. The films are (001)PC-oriented or (101)-oriented. Therefore, there is no need to rotate the coordinate system (on page 4 of the article¹). By applying the thin film boundary condition, i.e., \(\varepsilon_{11} = \varepsilon_{22} = \varepsilon_{33} = 0 \), and minimizing the total free energy with respect to epitaxial strain, \(\varepsilon_{s} \), a temperature-strain phase diagram is determined. All the strain and stress components should be in the original coordinate system. The corrected phase diagrams are shown in the figures below. For LSAT phase diagrams (Figs. 5(a) and 5(b)), the ferroelectric transition is better described using the Fmm2 phase because the calculated phase boundary is much closer to the experimental value than using the Aba2 phase. The NGO phase diagram, as shown in Fig. 5(c), is essentially the same as Gu’s orthorhombic Pbnm CaTiO₃ film calculation,² which is also (001)PC-oriented. All the other analysis and conclusions in the article¹ are not affected. We apologize to the readers for the confusion that might have been caused. The authors would like to thank Ryan Haislmaier for pointing out the mistake.

FIG. 5. The calculated temperature-strain phase diagram for CaTiO₃ films grown on (a) and (b) LSAT and (c) NGO substrates. The corresponding measured experimental transition temperatures are indicated on the phase diagrams. \(P_1 \) and \(P_2 \) are in-plane polarization component and \(P_3 \) is out-of-plane component. The polarization component not shown for a specific phase is zero.

a)Present address: School of Materials, The University of Manchester, Manchester M13 9PL, United Kingdom.
b)ytakamura@ucdavis.edu

This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:
169.237.64.153 On: Fri, 07 Aug 2015 16:42:34