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A rigorous analytical solution for the description of wave dynamics originated at the interface between a homo-
geneous half-space and a half-space metamaterial made by arrayed plasmonic nanospheres is presented. The so-
lution is cast in terms of an exact analytical representation obtained via a discretizedWiener–Hopf (WH) technique
assuming that eachmetallic nanosphere is described by the single dipole approximation. The solution analytically
provides and describes the wave species in the metamaterial half-space, their modal wavenumbers and launching
coefficients at the interface. It explicitly satisfies the generalized Ewald–Oseen extinction principle for periodic
structures, and it also provides a simple analytical solution for the reflection coefficient from the half-space. The
paper presents a new WH formulation for this class of problems for the first time, and describes the analytical
solution, which is also tested against a purely numerical technique. While only the case of orthogonal plane wave
incidence and isotropic inclusions is considered here, the method can be easily generalized to the oblique inci-
dence and anisotropic constituent (tensorial polarizability) cases. © 2011 Optical Society of America

OCIS codes: 160.3918, 160.4236, 260.1180, 260.2065.

1. INTRODUCTION
It is known that, when a plane wave impinges on a surface of a
bulk metamaterial, it generates waves that decay away from
the interface and, for what concern transmission and reflec-
tion, the metamaterial may not be considered a homogeneous
material bounded by the interface itself [1–4]. In this paper, we
rigorously analyze the problem of a plane wave orthogonally
incident onto a metamaterial of semi-infinite extent made by a
regular lattice of plasmonic nanospheres as shown in Fig. 1.
With a rigorous formulation, we are able to determine the
wave dynamics arising from the interface, creating reflection
and transmission. However, these two simple concepts, trivial
in standard homogenous materials, assume a more compli-
cated aspect in the present problem because of the periodi-
city. Several waves are excited at the interfaces that travel
away from it, and in most of the cases they decay exponen-
tially. The rigorous analytical treatment allows for a precise
physical description of these phenomena.

Our formulation consists in representing each sphere as a
dipolar scatterer according to the single dipole approximation
(SDA) [5,6], with strength proportional to the nanosphere
polarizability, which exhibits a resonant behavior because
of the fundamental plasmonic mode. Besides this simplified
representation for the nanosphere scattered field, which is,
however, well justified for small nanospheres near the plas-
monic resonance, the rest of our formulation rigorously
accounts for all the coupling interactions. This leads to a
linear system with infinite dimensions, solved here using the
discretized version of the Wiener–Hopf (WH) method [7–11],
which specifically uses the concept of the Z transform, which
is ideal for periodic problems, where the periodicity can be
regarded as space sampling. The same method has been used

in [11] for analyzing currents in planar semi-infinite arrays of
conducting strips and their radiated fields. The reader is ad-
dressed to the Introduction of our previous paper [11] for
more complete information about the discretized WH method
for scattering problems in periodic structures.

In this paper, the discrete WH technique is used for the first
time to study a periodic arrangement of scatterers occupying
a semi-infinite space, which is regarded as a semi-infinite col-
lection of periodically stacked planar arrays of nanospheres.
The same problem was originally studied in Mahan and
Obermair’s seminal work [12], and in the papers thereof ori-
ginated [13–18], within the so-called “nearest neighbor ap-
proximation,” which, however, loses its validity when the
crystal period is not small in terms of the wavelength. In
[1], a comprehensive and critical review of this stream of lit-
erature is given. In [1], the problem solution validity is ex-
tended on the basis of the a generalized version of the
Ewald–Oseen extinction principle, valid for crystals or peri-
odic lattices. Namely, the Ewald–Oseen extinction principle
[19–21], for which the polarization in a dielectric is distributed
so that it cancels out the incident wave and produces the pro-
pagating wave, is extended considering Floquet harmonics in
a periodic structure. Therefore, in [1], the interaction between
particles is described in a complete way, and not only through
the dominant Floquet wave as in the “nearest neighbor ap-
proximation.” Consequently, the accuracy of [1] is extended
beyond the long-wavelength limit. In [1], besides a general for-
mulation, a detailed solution is provided analytically only for
the special case of crystals formed by small scatterers, which
can be treated as point dipoles with fixed orientation, and the
split-ring resonators are then considered as an example. How-
ever, in [1], an analytic solution cannot be given for a crystal of
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metallic spheres, which can also be replaced by point dipoles
but whose orientation depends on the direction of the external
field. The limitation of the available analytic solutions in [1]
resides in the use of the characteristic function method, ac-
cording to [18]. Indeed, authors in [1] say “We hope that with
some modification this method can be used for other special
cases as well.” The solution provided in the present paper by
using the discretized WH method can be regarded as an ex-
tension of the characteristic function method to which it is
strictly related. The main improvement in using the WH meth-
od is that it provides a constructive algorithm to build the so-
lution exploiting the WH factorization and no assumption has
to be made a priori. For simplicity, only the case of orthogo-
nal incidence and isotropic polarizability constituents is here
treated, but the methodology can be easily generalized to the
case with oblique incidence and anisotropic scatterers.
Furthermore, most of the wave dynamics, here observed with
this rigorous method for the first time, would hold also for the
oblique incidence case.

Assuming that the interface between the homogeneous
half-space and the metamaterial is the x–y plane (Fig. 1), it
is found that a plane wave incidence would generate a number
of modes propagating along the z direction, each one repre-
sented as a summation of spatial Floquet harmonics. Most of
the modes are evanescent in the z direction. It is important to
stress that these modes are those that are admitted in a me-
tamaterial with infinite extent. However, the technique here
proposed is able to determine exactly their launching coeffi-
cients (their weights), and these modes can be interpreted as
launched by the interface. We also show that the WH method
permits to determine the exact value of the plane wave reflec-
tion coefficient.

These findings can be applied within homogenization the-
ories since they show (and quantify) exactly that besides a
transmitted Bloch wave, the interface often generates other
waves with significant amplitude that decay exponentially
away from the interface. Indeed, these phenomena associated
to the interface have posed some problems in the character-
ization of metamaterials in terms of effective bulk permittivity
and permeability. To overcome such homogenization pro-
blem, some authors have proposed the insertion of a Drude-
type transition layer (or transition sheet) [2,3] that
accounts for the transition between free space and the bulk

homogenized metamaterial. Since our solution rigorously de-
scribe wave dynamics also in proximity of the interface, it is
intended to shed light into this class of phenomena for future
better understanding. Also, the formulation and interpretation
analysis could be applied to investigate the wave dynamics at
an interface between free space and a photonic crystal.

2. STATEMENT OF THE PROBLEM
We consider an artificial material (or metamaterial) made of
small plasmonic nanospheres arranged in a Cartesian lattice
(Fig. 1), embedded in the free space or in an infinite homoge-
neous background material. The metamaterial fills the z ≥ 0
half-space beyond the interface at z ¼ 0. The z ≤ 0 half-space
is assumed to be free of particles. Nanospheres are located at
rlmn ¼ lax̂þmbŷþ ncẑ, with a, b, and c denoting the lattice
periodicities, while l;m ¼ 0;�1;�2; ::::: and n ¼ 0; 1; 2; :::::
are the associated indexes, along x, y, and z, respectively;
the caret ∧ denotes unit vectors. Any plasmonic nanosphere,
according to the SDA [5,6], is represented by a single electric
dipole plmn and by a scalar isotropic polarizability α, which
relates it to the local electric field by

plmn ¼ αElocðrlmnÞ: ð1Þ
We assume that the metamaterial is illuminated by a plane
wave traveling in the ẑ direction and impinging orthogonally
on the z ¼ 0 interface. Its incident electric field is given by
EincðrÞ ¼ Einc

0 expð−jkzÞ, with Einc
0 ¼ Einc

0 x̂ denoting the plane
wave polarization vector and k denoting the wavenumber in
the background material. The time convention expðjωtÞ is as-
sumed throughout the paper and therefore suppressed.

3. FORMULATION
The scattered electric field at a generic point r produced by a
single metal nanosphere, represented as single electric dipole
at r0 with the dipole moment p0 ¼ αElocðr0Þ, where α is its po-
larizability [5,6] and Eloc is the local electric field at r0, which
is expressed as

EðrÞ ¼ Gðr − r0Þ · p0; ð2Þ
through the unbounded homogeneous material electric dyadic
Green’s function

Gðr − r0Þ ¼
1
ϵ ½k

2Iþ∇∇�Gðr − r0Þ; ð3Þ

in which I is the identity dyad, ϵ is absolute dielectric
permittivity of the background material, and

Gðr − r0Þ ¼
e−jkR

4πR ; R ¼ jr − r0j ð4Þ

is the scalar Green’s function. Performing the differentiation
in Eq. (3), we obtain

Gðr − r0Þ ¼
1
ϵ

��
k2 −

jk
R
−

1

R2

�
I

−
�
k2 −

3jk
R

−
3
R2

�
R̂R̂

�
Gðr − r0Þ; ð5Þ

where R ¼ r − r0 and R̂ ¼ R=R.
The local electric field Elocðr0Þ represents the field pro-

duced by the incident waveEinc and all the other nanospheres,
and its general expression will be clear in the following. Under
orthogonal plane wave excitation EincðrÞ ¼ Einc

0 expð−jkzÞ, the

Fig. 1. (Color online) Geometry of metamaterial particle lattice.
The metamaterial extends in the half-space z ≥ 0 with periodicity a,
b, and c, along x, y, and z, respectively. The particles belonging to
the interface layer are in blue for better visualization.
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periodicity of the problem along x, y will result in a spatial
independence of m and n for the polarization plmn ¼ pn;
i.e., all the particle in the same nth layer, n ¼ const, will have
the same polarization (magnitude and phase). Therefore, it is
convenient to represent the half-space metamaterial as a semi-
infinite stack of layers. Accordingly, the field radiated at a gen-
eric point r by the nth metamaterial layer can be conveniently
expressed as

EðrÞ ¼ Glayerðr − ncẑÞ · pn; ð6Þ
where we have defined the layer Green’s function as

GlayerðrÞ≜
Xþ∞

l;m¼−∞
Gðrþ lax̂þmbŷÞ: ð7Þ

By using the Poisson summation formula, the layer Green’s
function can be expressed, alternatively to its spatial repre-
sentation (7), via its spectral Floquet wave representation:

GlayerðrÞ ¼ 1
j2abϵ

Xþ∞

r;s¼−∞
ðk2I − k�rsk�rsÞ

e−jk
�
rs·r

kz;rs
; ð8Þ

in which kz;rs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − k2x;r − k2y;s

q
, with kx;r ¼ 2πr=a, ky;s ¼

2πs=b, and Imfkz;rsg ≤ 0, and k�rs ¼ kx;r x̂þ ky;sŷ� kz;rsẑ.

The choice of the sign in k�rs accordingly to z≷0 ensures
the series convergence and satisfaction of Sommerfeld radia-
tion condition at jzj → ∞. For the calculation of the local field
ElocðrlmnÞ in the following it is also useful to introduce a
regularized layer Green’s function where the 00th term is
excluded:

ĞlayerðrÞ ¼ GlayerðrÞ −GðrÞ; ð9Þ
which is therefore regular at r ¼ 0. Note that, because of odd
symmetries, kx;r ¼ −kx;−r and ky;s ¼ −ky;−s induced by the

normal incidence, GlayerðrÞ and ĞlayerðrÞ are both diagonal
as extradiagonal terms vanish in the summation (8).

The local electric field at the lmnth particle position, i.e.,
the incident field plus the field radiated by all the other par-
ticles (from all layers) at the location denoted by (l ¼ 0,
m ¼ 0, n), is therefore given by

Eloc
n ¼

X∞
n0¼0

Glayer
n−n0 · pn0 þ Einc

n ; for n ¼ 0; 1; 2; :::::; ð10Þ

with

Glayer
n ¼

�
GlayerðncẑÞ n ≠ 0
Ğlayerð0Þ n ¼ 0

; ð11Þ

while

Einc
n ¼ EincðncẑÞ ¼ Einc

0 e−jkcnx̂; for n ¼ 0; 1; 2; :::::; ð12Þ
where, for the sake of simplicity, an x-polarized incident field
is assumed. For convergence reasons, the expression of
Ğlayerð0Þ is evaluated by using the Ewald method [22]. By
using Eq. (10) into Eq. (1), a linear system of equations (of
infinite dimension) is set whose solution provides the particle
dipole moments

X∞
n0¼0

an−n0 · pn0 ¼ αEinc
n ; for n ¼ 0; 1; 2; :::::; ð13Þ

with an ¼ δ0nI − αGlayer
n . Since an is diagonal, the vector

problem can be separated into three independent scalar pro-
blems. The y and z problems admit a trivial vanishing solution
as they cannot be excited by the x-polarized plane wave ex-
citation, so that only the x component needs to be considered:

X∞
n0¼0

an−n0pn0 ¼ αEinc
0 e−jkcn; for n ¼ 0; 1; 2; :::::; ð14Þ

with x̂ · an · x̂ ¼ an and pn ¼ pnx̂. In particular, the coefficients
are equal to a0 ¼ 1 − αĞlayer

xx ð0Þ and an ¼ −αGlayer
xx ðncẑÞ,

with n ≠ 0.

A. Z-Transformed Problem
The linear system of equation to be solved [Eq. (14)] is in the
form of a discrete convolution between the unknown unilat-
eral sequence pn, with n ¼ 0; 1; 2; :::::, and the bilateral se-
quence an, with n ¼ 0;�1;�2; :::::. Hence, it is convenient
to introduce the (discrete Laplace) Z transforms [23,24] of
the two sequences:

PðζÞ ¼
X∞
n¼0

pnζ−n; AðζÞ ¼
X∞
n¼−∞

anζ−n: ð15Þ

To avoid confusion with the spatial coordinate z, differently
to standard notation, ζ will denote the complex transform
variable. The conformal mapping

ζ ¼ e−jkzc; kz ¼
j
c
ln ζ ð16Þ

is used to establish a correspondence between the ζ and kz
planes. The top (bottom) complex half kz plane is projected
onto the region outside (inside) the unit circle of the complex
ζ plane. Note that kzðζincÞ ¼ k and kzðζrefÞ ¼ −k. Since a dis-
crete sequence convolution becomes a multiplication be-
tween respective Z transforms, Eq. (14) is rewritten in the
transformed domain as

AðζÞPðζÞ ¼ αEinc
0

RðζÞ
RðζincÞ

ζ
ζ − ζinc

; ð17Þ

where RðζÞ is an unknown function that is regular inside the
unit circle, while the pole singularity ζinc ¼ expð−jkcÞ lies
slightly inside the unit circle by assuming vanishing small
losses in the ambient. Note that the inverse Z transform of
the right-hand side (RHS; Appendix A), evaluated via residue
at ζ − ζinc, provides αEinc

0 expð−jkncÞ for n ¼ 0; 1; 2; ::::: (inside
the metamaterial), which is the RHS of Eq. (14).

B. Factorization in the Z Spectral Plane
The Z transform of an is determined in Appendix A and given
by

AðζÞ ¼ 1 − αG
� layer

xx ð0Þ

−
α

j2abϵ
Xþ∞

r;s¼−∞

k2 − k2x;r
kz;rs

� ζrs
ζ − ζrs

−
ζ

ζ − 1=ζrs

�
; ð18Þ

in which ζrs ¼ expð−jkz;rscÞ, with ζ00 ≡ ζinc. Note that, be-
cause of the even symmetry a−n ¼ an, which results from
Green’s function symmetries with respect to z, it holds that
Að1=ζÞ ¼ AðζÞ. Furthermore, AðζÞ exhibits an infinite number
of pole singularities at ζrs, with r; s ¼ 0;�1;�2; :::::, inside the
unit circle and an infinite set of pole singularities outside the
unit circle at 1=ζrs. The two sets of poles accumulate at ζ ¼ 0
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and ζ ¼ ∞, respectively, which are therefore function singular
points, too. Poles ζrs correspond to the z-directed wave-
number of the Floquet harmonics produced by a single layer
considering propagation along the positive z direction. Con-
versely, poles 1=ζrs (outside the unit circle) correspond to
the same wavenumbers produced by a single layer, propagat-
ing along the negative z direction. Finally, note that electri-
cally small periods a and b imply that ζinc ≡ ζ00 and
ζref ≡ 1=ζ00 are the only propagating wavenumbers slightly in-
side and slightly outside the unit circle, respectively; while all
other Floquet modes (produced by a single layer) represented
by ζrs and 1=ζrs are evanescent and the associated poles lie on
the positive real axis. These can still be dominant when the
distance c between layers is much smaller than the wave-
length and comparable to or smaller than the periods a and
b. These critical points characterize the field produced by a
single layer, we now determine the critical points character-
izing directly fields in the three-dimensional (3D) lattice.

Waves in the 3D lattice are characterized by critical points
in the ζ complex plane such that AðζÞ ¼ 0. Indeed, at those
“zeros,” the homogeneous version (i.e., without any excita-
tion) of Eq. (14) admits a nontrivial (nonvanishing) solution.
Note that, if ζmode

q is a zero, 1=ζmode
q is also a zero because of

the symmetry property discussed after Eq. (17). Such eigen-
values ζmode

q and 1=ζmode
q correspond to Bragg’s modes in

the metamaterial (i.e., in the 3D lattice) traveling along the
�z direction. Again, we can split them into two sets: one
set of zeros ζmode

q , q ¼ 1; 2; ::::: inside the unit circle
(jζmode

q j < 1) corresponding to metamaterial modes that at-
tenuate along the positive z direction, and another set of zeros
1=ζmode

q , q ¼ 1; 2; ::::: outside the unit circle corresponding to
the same respective modes but attenuating along the opposite
direction, i.e., along negative z.

By using the procedure described in Appendix B, A is
factorized as

AðζÞ ¼ AþðζÞAþð1=ζÞ; ð19Þ

in which Aþ accounts only for the singularities ζrs and the
zeros ζmode

q inside the unit circle and it is therefore regular
and nonvanishing on and outside the unit circle, including
ζ → ∞, where Aþð∞Þ ¼ aþ0 , with aþ0 denoting the first (n ¼ 0)
sample of the monolateral sequence aþn counterparts of AþðζÞ.
Conversely, Aþð1=ζÞ ¼ A−ðζÞ accounts only for the singulari-
ties 1=ζrs and the zeros 1=ζmode

q outside the unit circle, and it is
therefore regular and nonvanishing on and inside the unit
circle, including ζ ¼ 0, where A−ð∞Þ ¼ aþ0 .

C. Z Transform of Polarization Solution
Using the factorization Eq. (19) in Eq. (17) leads to

AþðζÞPðζÞðζ − ζincÞ
ζ ¼ αEinc

0 RðζÞ
Aþð1=ζÞRðζincÞ

: ð20Þ

Since the Z transform PðζÞ of the unilateral sequence pn, van-
ishing for n < 0, is regular on and outside the unit circle, in-
cluding ζ → ∞, where Pð∞Þ ¼ p0, then the whole left-hand side
in Eq. (20) is regular outside (including ζ → ∞) and on the unit
circle. Conversely, the RHS of Eq. (20) is regular inside and on
the unit circle. Hence both sides of Eq. (20) are demonstrated
to be regular throughout the complex plane (including ζ → ∞)

and therefore they must equal a constant, whose value
αEinc

0 =Aþð1=ζincÞ is calculated by evaluating the RHS at
ζ ¼ ζinc. Whence, the Z transform of the polarization sequence
is obtained:

PðζÞ ¼ αEinc
0 ζ

AþðζÞAþð1=ζincÞðζ − ζincÞ
: ð21Þ

D. Solution for Polarization of Nanospheres in
Metamaterial Half-Space
The polarization sequence at each nth layer, with n ¼
0; 1; 2; :::::, is calculated via the inverse transform Eq. (A2)
of Eq. (21) [23,24]:

pn ¼ 1
2πj

I
C
PðζÞζn−1dζ: ð22Þ

Note that, since Pðζ → ∞Þ ¼ αEinc
0 =½aþ0 Aþð1=ζincÞ�, for any

n < 0, the integral in Eq. (22) can be closed to infinity via
Jordan’s lemma (i.e., by deforming the integration path C onto
a circle of infinite radius), providing a vanishing result pn ¼ 0,
as expected. On the other hand, for n ≥ 0, Eq. (22) does not
converge on a path at infinity but is now regular at ζ ¼ 0;
hence, it is to be calculated via the Cauchy residue theorem
by considering the singularities inside the unit circle C. A de-
scription of such singularities is thus in order. Note that the
singularity at ζ ¼ ζinc in Eqs. (21) and (22) is removable be-
cause Aþðζ → ζincÞ ∝ ðζ − ζincÞ−1 → ∞, and thus by consider-
ing Eq. (18), one has PðζincÞ ¼ −j2abϵEinc

0 =k. Hence, Eq. (21)
exhibits only pole singularities at ζ ¼ ζmode

q , q ¼ 0; 1; 2:::::;,
where Aþðζmode

q Þ ¼ 0, which coincides with the zeros that
AðζÞ has inside the unit circle. Consequently, the integral in
Eq. (22) can be calculated via the Cauchy theorem as series
of residues

pn ¼
X∞
q¼0

Cqðζmode
q Þn ¼

X∞
q¼0

pmode;q
n ; ð23Þ

where pmode;q
n ¼ Cqe−jk

mode
z;q nc is the polarization associated to

the qth mode in the semi-infinite crystal, with propagation
wavenumber kmode

z;q ¼ jc−1 lnðζmode
q Þ obtained via the mapping

Eq. (16), and weight

Cq ¼ ResfPðζÞ; ζmode
q g

¼ Res

�
1

AþðζÞ
; ζmode

q

�
·

αEinc
0

Aþð1=ζincÞðζmode
q − ζincÞ

: ð24Þ

Note that only pole singularites ζmode
q inside the unit circle

contribute to the field in the metamaterial region z > 0. No
other singularities like branch points are present (cf. [11]).
In light of the correspondence established, Eq. (23) is inter-
preted as a superposition of metamaterial modal waves trans-
mitted in the z > 0 half-space that travel with modal
wavenumbers kmode

z;q and with launching coefficients Cq, estab-
lished at the interface. Because of the mapping Eq. (16), the
only waves that can be excited at the interface and travel in
the z > 0 region have wavenumber kmode

z;q , with Imkmode
z;q < 0.

This corresponds to the physical condition that waves cannot
grow when moving away from the interface. The q-modal
series in Eq. (23) is usually very rapidly convergent, especially
for n > 0, since one or no more than a few modes are
propagating, while all the others are strongly evanescent
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(i.e., they attenuate along z). Note that, as stated earlier, in
general, a mode with propagation expð−jkncÞ (i.e., with
ζ ¼ ζinc) is not an admitted solution, as expected. In other
words, modes inside the metamaterial propagate along z with
a wavenumber different from the one of the incident wave, as
explained in Section 4 in relation to the extinction principle.

In addition, it is noted that PðζÞ in Eq. (21) exhibits zeros
at the poles of AþðζÞ; i.e., PðζrsÞ ¼ 0 at any rsth positive z-
directed Floquet harmonic ζrs, except for the fundamental
one ζ00 ¼ ζinc, as stated earlier. Such a property is also a
consequence of the generalized Ewald–Owseen extinction
principle described in [1], as we show in Section 4.

4. SCATTERED FIELD
Once the dipole moment at each n layer is calculated, it is
straightforward from Eq. (6) to derive the exact expression
of the field scattered by the semi-infinite crystal at an arbitrary
observation point r ¼ xx̂þ yŷþ zẑ inside or outside the crys-
tal half-space by using the superposition principle as

Escat
x ðrÞ ¼

X∞
n¼0

Glayer
xx ðr − ncẑÞpn; ð25Þ

where the series can be formally extended to n ¼ −∞, since
pn ¼ 0 for n < 0. Again, because of the periodicity of the pro-
blem, we use the z ransforms whose standard theory was de-
veloped in [23] for sampled functions like pn. Nonetheless, by
resorting to the advanced Z transform [24], both the scattered
field Escat

x ðrÞ and the layer Green’s function Glayer
xx ðr − ncẑÞ,

which are defined continuously as a function of any observa-
tion point r within the periodic cell, can be treated within the
same framework. In this way, analogously to Eq. (14), the
scattered field Eq. (25) can also be interpreted as a convolu-
tion product of sequences and calculated via the inverse Z
transform

Escat
x ðrÞ ¼ 1

2πj

I
C
Glayer

xx ðζ;x; y; z0ÞPðζÞζn−1dζ; ð26Þ

where

Glayer
xx ðζ; x; y; δzÞ ¼

1
abcϵ

Xþ∞

r;s;t¼−∞

ðk2 − k2x;rÞe−jðkx;rxþky;syþkz;tδzÞζΔz=c

k2z;rs − ½kz;t − ðj ln ζÞ=c�2 ;

ð27Þ
with kz;t ¼ 2πt=c, is the extended Z transform of the layer
Green’s function Eqs. (7) and (8) derived in Appendix C. In
Eq. (26), the observation point z coordinate is decomposed
as z ¼ ncþΔz, in which n ¼ ⌊z=c⌋ and Δz ∈ ½0; cÞ denotes
the so called “delay parameter” corresponding to a displace-
ment of the observation point within the periodic cell with re-
spect to the lattice points z ¼ nc. Note that, similar to AðζÞ, in
the ζ complex plane, Eq. (27) exhibits pole singularities at ζrs
inside the unit circle and at 1=ζrs outside the unit circle. The
branch cut on the ζ-negative real semiaxis, introduced in each
term of the series by the logarithm and the fractional power, is
then canceled in the summation over t; therefore, it is ficti-
tious and not present in the entire function.

A. Reflected Field
When observing the field scattered back into the homoge-
neous half-space, z < 0 implies n < 0 so that the integrand
of Eq. (26) provides a vanishing contribution when deforming

the integration path on a circle of infinite radius. In such a
deformation, Eq. (26) is calculated via Cauchy theorem as
the series of the residues of the integrand outside the unit cir-
cle C. Indeed, these are only the pole singularities at ζ ¼ 1=ζrs
of Glayer

xx ðζ; x; y; z0Þ, as PðζÞ is regular outside C. Hence,
Eq. (26) is reduced to

Escat
x ðrÞ ¼

Xþ∞

r;s¼−∞
W scat

x;rse−jk
−
rs ·r; ð28Þ

where W scat
x;rs ¼ ðk2 − k2x;rÞPðζ−1rs Þ=ðj2abϵkz;rsÞ is the weight of

the rsth Floquet wave traveling in the negative z direction.
In the case that only the dominant Floquet mode is propagat-
ing (a; b; c < λ=2), far from the interface (z → −∞) only the
fundamental 00th wave harmonic reflected by the interface
is retained in Eq. (28) and

Escat
x ðrÞ ¼

z→−∞
ΓEinc

0 ejkz; ð29Þ

where Γ denotes the field reflection coefficient given by

Γ ¼ αk
j2abϵ½Aþð1=ζincÞ�2ð1 − ζ2incÞ

: ð30Þ

B. Field Inside the Metamaterial Half-Space and
Relation to the Ewald–Oseen Extinction Principle
On the other hand, when observing the scattered field inside
the metamaterial half-space, z > 0 one has n ≥ 0 so that the
integrand of Eq. (26) is regular at ζ ¼ 0. Therefore, Eq. (26)
is now calculated via the Cauchy theorem as the sum of
the residues at the poles inside C. Now, the integrand exhibits
pole singularities at ζmode

q , which are the poles of PðζÞ, which
lead to the q-indexed modes in the crystal

Emode;q
x ðrÞ ¼

Xþ∞

r;s;t¼−∞
Wmode;q

rst e−jk
mode
rst;q ·r; ð31Þ

where kmode
rst;q ¼ kx;r x̂þ ky;sŷþ ðkmode

z;q þ 2πt=cÞẑ denotes the
wave vector of the rstth 3D crystal Floquet harmonic and

Wmode;q
rst ¼ 1

abcϵ
k2 − k2x;r

k2z;rs − ðkmode
z;q þ 2πt=cÞ2 ð32Þ

denotes its weight. Harmonics are represented by three
indexes according to a 3D periodicity. The singularities at
ζrs, except for rs ¼ 00, are removable because the pole singu-
larities ζrs of Glayer

xx ðζ;x; y; z0Þ inside the unit circle C are
canceled out by the zeros PðζÞ has at the same points. Indeed,
PðζrsÞ ¼ 0, except for rs ¼ 00 for which Pðζ00 ¼ ζincÞ ¼
−j2abϵEinc

0 =k, so that only the pole of Glayer
xx ðζ;x; y; z0Þ at

ζinc gives a contribution to Eq. (26). Hence, the scattered field
(26) is evaluated as

Escat
x ðrÞ ¼ −Einc

0 e−jkz þ
X∞
q¼0

CqE
mode;q
x ðrÞ: ð33Þ

It is worth noting that the first term of the above expression of
the field Escat

x scattered in the metamaterial half-space exactly
contains the negative of the incident field, in accordance with
the Ewald–Oseen extinction principle [19,20]. Consequently,
the total field ExðrÞ ¼ Einc

x ðrÞ þ Escat
x ðrÞ in the metamaterial

(i.e., the sum of the incident and the scattered field) only
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comprises the superposition of crystal modes, i.e., ExðrÞ ¼P
qCqEmode

x;q ðrÞ, where Cq expresses the complex amplitude
of each field crystal mode launched at the interface.

Consistent with [1], we have here rigorously proved that the
field inside the half-space crystal (or metamaterial) is pro-
vided in terms of crystal modes, each of which is represented
in terms of spatial harmonics [Eq. (31)]. We would like to
stress that the exact incident field cancellation by the scat-
tered field is even a more general property than what is shown
here and it happens in a more complicated fashion in other
structures. For example, in [25,26], it has been shown that,
when a planar array is excited by a nearby localized source
(not by plane wave like in this paper), the scattered field along
the array plane, provided by the array itself, cancels the inci-
dent (direct) field provided by the localized source. Indeed, in
the geometry in [25,26], where a localized source excites a
planar array, the electromagnetic modes in the array cannot
cancel the incident field because these are two different wave
species with different phase velocities and exponential/alge-
braic decays. Therefore, besides the array modes, a different
wave species, called “spatial wave” or “space wave” is gener-
ated in terms of Floquet harmonics, whose fundamental one
cancels the incident field along the array plane.

In Section 5, some examples illustrate the presented discre-
tized WH procedure and obtained electric field solutions for
various crystal geometries.

5. ILLUSTRATIVE EXAMPLES
In all the illustrative examples that follow, we consider silver
nanospheres with various radii and lattice constants. The sil-
ver permittivity is described by the Drude relative dielectric
function ϵm ¼ ϵ∞ − ω2

p½ωðωþ iγÞ�−1, where ϵ∞ ¼ 5 is the back-
ground permittivity of the metal, ωp ¼ 1:37 × 1016 rad=s is the
plasmon radian frequency, and γ ¼ 27:3 × 1012 s−1 is the damp-
ing frequency accounting for metal losses [6,27]. This parame-
terization provides a reasonably accurate description of the
dielectric properties of silver across the optical range. In
Eq. (1) and subsequent formulas, we use the Mie expression
of the nanosphere electric polarizability α, shown in [6,27].

A. Example 1
First, we consider a half-space filled with a cubic lattice a ¼
b ¼ c ¼ 100nm of silver nanospheres with radius of 30nm in

free space, illuminated by a unit plane wave Einc
0 ¼ 1V=m at

frequency f ¼ 600THz.

1. Factorization
In Fig. 2, the Z-transform function AðζÞ is plotted in the ζ com-
plex plane; the amplitude is expressed in decibels (left), while
its phase is expressed in radians (right). Since the lattice per-
iod is about λ=5, only one Floquet wave couple is propagating
away from each layer, represented by poles at ζ00 ¼ ζinc, and
1=ζ00 ¼ ζref close to the unit circle C; all the others are hardly
visible close to the origin. Analogously, only the first couple
of zeros, ζmode

0 and 1=ζmode
0 (representing the modes in the me-

tamaterial half-space), are close to C, while all the other are
close to the origin. In Fig. 3, the factorizing function AþðζÞ
is plotted in the ζ complex plane. Now only singularities
and zeros inside C are present while the function is regular
outside C.

Next, in Fig. 4, the Z transform PðζÞ of the dipole moment
sequence is plotted in the ζ complex plane. Namely, we plot
PðζÞζ−1, which has to be integrated to calculate the interface
layer dipole moment p0 via Eq. (22). For the calculation of
inner layer dipole moments pn, the ζn factor will add an
nth-order zero at the origin. Note that the plotted amplitude
of the dimensional quantity PðζÞζ−1 has been normalized to
the polarization of an isolated nanosphere under the same il-
lumination αEinc

0 . It is apparent that PðζÞ exhibits only pole
singularities inside the unit circle. The dominant one is at
ζmode
0 , corresponding to the medium dominant mode, while
all the others are strongly evanescent, very close to the origin,
and hardly visible even for PðζÞζ−1 because they are nearly
cancelled by zeros at ζrs, also very close to the origin. The
dominant mode wavenumber, via kmode

z;0 ¼ neffk, corresponds
to an effective refraction index neff ¼ 1:283 − j0:003, corre-
sponding to an artificial dielectric with small losses.

2. Polarization of Particles
Finally, in Fig. 5, the profile of the induced dipole moment in
the layers is plotted versus the layer number. The WH solution
(red thick line) is compared against a purely numerical
method of moment (MoM) solution of Eq. (14) for a large
(N ¼ 2000) but finite number of layers, and the agreement
is almost perfect; a hardly noticeable deviation reveals an al-
most negligible stationary wave in the numerical solution due
to a reflection at the second interface. Such discrepancy might

Fig. 2. (Color online) Z transform AðζÞ in the ζ complex plane. Amplitude (decibels, left) and phase (radians, right).
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be further reduced by increasing the number of layers consid-
ered, thanks to the presence of losses. The linear phase profile
(left) reveals the presence of a propagating mode inside the
metamaterial (for better readability the phase has been un-
wrapped), which slightly decays exponentially because of
losses, as appears from the amplitude profile (right).

B. Example 2
As a second example, we consider a smaller period cubic lat-
tice a ¼ b ¼ c ¼ 40nm of silver nanospheres with radius of
10 nm, embedded in a silica background ϵh ¼ 2:2, illuminated
by a unit plane wave Einc

0 ¼ 1V=m, at frequency f ¼ 750THz.

Now the topology of the critical points of AðζÞ is similar but
the metamaterial mode wavenumber kmode

z;0 is smaller than the
ambient wavenumber k, as it appears by the reciprocal posi-
tion of ζmode

0 and ζ00 in Fig. 6 (zeros of AðζÞ are on the right of
the poles). Indeed, the metamaterial-dominant mode exhibits
an effective relative refraction index neff ¼ n0

eff − jn00
eff ¼

0:476 − j0:036with n0
eff < 1 and significant attenuation, as con-

firmed by the polarization profile in Fig. 7. Again, the solution
is successfully checked against a numerical reference for
which now just the N ¼ 200 layer is sufficient because of
higher mode attenuation.

Fig. 3. (Color online) Z transform AþðζÞ in the ζ complex plane. Amplitude (decibels, left) and phase (radians, right).

Fig. 4. (Color online) Z transform PðζÞ=ζ in the ζ complex plane. Amplitude (decibels normalized to αEinc
0 , left) and phase (radians, right).

Fig. 5. (Color online) Particle dipole moments pn in the metamaterial versus layer number. Amplitude (normalized to αEinc
0 , decibels, left) and

unwrapped phase (radians, right). The WH solution (red circles) is compared against a numerical MoM solution for a large but finite number of
layers N ¼ 2000 (black dots).
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C. Example 3
The same configuration in Example 2 (Subsection 5.B) is now
analyzed at f ¼ 735THz, which is at the edge between a pass-
band (at higher frequencies like in Example 2) and a stopband
(at lower frequency as in Example 4). Now, the spectral point
ξ0 associated with the metamaterial-dominant mode would ap-
proach the point ζ ¼ 1, if the occurrence of strong losses had
not displaced it deeper inside the unit circle (Fig. 8). Assuming
that kmode

z;0 ¼ neffk, the resulting effective relative refraction

index neff ¼ n0
eff − jn00

eff ¼ 0:110 − j0:270 reveals an extreme
n0
eff ≈ 0 behavior though associated with important attenua-

tion, as revealed by the considerable decaying rate of the layer
polarizability (Fig. 9).

D. Example 4
The same structure analyzed in Examples 2 and 3 is also con-
sidered here. When decreasing the frequency, the spectral
point ξ0 bends onto the real axis and move toward ζ ¼ 0.
At f ¼ 720THz, the ζ complex plane topology is shown in

Fig. 6. (Color online) Z transform AðζÞ in the ζ complex plane. Amplitude (decibels, left) and phase (radians, right).

Fig. 7. (Color online) Particle dipole moments pn in the metamaterial versus layer number. Amplitude (normalized to αEinc
0 , decibels, left) and

unwrapped phase (radians, right). The WH solution (red circles) is compared against a numerical MoM solution for a large but finite number of
layers N ¼ 200 (black dots).

Fig. 8. (Color online) Z transform AðζÞ in the ζ complex plane. Amplitude (decibels, left) and phase (radians, right).
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Fig. 9. (Color online) Particle dipole moments pn in the metamaterial versus layer number. Amplitude (normalized to αEinc
0 , decibels, left) and

unwrapped phase (radians, right). The WH solution (red circles) is compared against a numerical MoM solution for a large but finite number of
layers N ¼ 200 (black dots).

Fig. 10. (Color online) Z transform AðζÞ in the ζ complex plane. Amplitude (decibels, left) and phase (radians, right).

Fig. 11. (Color online) Particle dipole moments pn in the metamaterial. Amplitude (normalized to αEinc
0 , decibels, left) and unwrapped phase

(radians, right). The WH solution (red circles) is compared against a numerical MoM solution for a large but finite number of layers N ¼ 200
(black dots).

Fig. 12. (Color online) Amplitude (decibels) of the Z transform AðζÞ in the ζ complex plane at f ¼ 720THz (left) and f ¼ 735THz (right).
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Fig. 10. Now the metamaterial mode is dramatically decaying
with an effective relative refraction index neff ¼ n0

eff − jn00
eff ¼

0:0989 − j0:8250 that is almost purely imaginary since the
metamaterial mode is in its cut-off regime. Figure 11 shows
the nanosphere dipole moment versus layer number: dipoles
exhibit a strong exponential decay and a very small phase
variation moving away from the interface.

E. Example 5
In the previous examples, the wave dynamics inside the me-
tamaterial was dominated by just one mode. In such cases the
metamaterial behaves very similarly to a homogeneous med-
ium that supports a transmitted plane wave and no peculiar
wave dynamics is observed. To illustrate a different wave dy-
namics, we now consider a parallelepiped lattice with a ¼ b ¼
90 nm and c ¼ 30nm of silver nanospheres with radius of
10 nm, embedded in a silica background ϵh ¼ 2:2, illuminated
by a unit plane wave Einc

0 ¼ 1V=m, at frequencies f ¼ 720 and
735THz. Compared to the previous cases, one can readily no-
tice in Fig. 12 that AðζÞ has more critical points. Two modes
are present, corresponding to ζmode

0 and ζmode
1 , associated with

modal wavenumbers kmode
z;0 and kmode

z;1 , respectively, provided
by the mapping Eq. (16). Both the zeros ζmode

0 and ζmode
1 have

magnitudes smaller than the pole ζ00, associated with the
background wavenumber k, implying that both modes attenu-
ate exponentially away from the interface. However, while at
f ¼ 735THz, jζmode

1 j ≪ jζmode
0 j ≈ 1; i.e., the higher-order mode

ζmode
1 rapidly decays and only the dominant mode ζmode

0 is sig-
nificantly propagating inside the metamaterial, at f ¼ 720THz,
jζmode

1 j ≈ jζmode
0 j < 1 and the two modes contribute to the field

inside the metamaterial. Figure 13 shows the dipole moments
versus layer number at two different frequencies. Note that at
f ¼ 720THz (Fig. 13, left) the magnitude profile is irregular
because of the interference of the two modes, which have
comparable attenuation rates. Instead, at f ¼ 735THz (Fig. 13,
right) only one mode is dominant. Another important obser-
vation is that, at f ¼ 735THz, even when the profile seems reg-
ular, the simple exponential decay behavior excludes the first
layer (n ¼ 0) and therefore a simple homogenization theory
would not work, and more sophisticated “transition layers”
may be necessary, as, for example, hypothesized in [2,3].
Again, there is perfect agreement with the WH solution and
the MoM, as expected.

6. CONCLUSION
Wave dynamics originated by the interface between a homo-
geneous half-space and a half-space metamaterial made of ar-
rayed plasmonic nanospheres is studied in this paper for the
case of plane wave orthogonal incidence. The solution, ob-
tained with a discrete WH method, is cast in terms of an exact
analytic representation of the dipole moment induced in the
nanospheres and of the field at any point. The field inside the
metamaterial is expressed as a superposition of the modes cal-
culated as though it was unbounded. It is shown that more
than one mode can be excited at the interface and propagates
inbound the metamaterial. The WH method determines the
modal wavenumbers and the modal launching coefficients
at the interface. The method can be generalized to a variety
of other cases, including oblique incidence. While this paper is
devoted only to the fundamental aspects of this new approach
for studying waves originated by the interface with a half-
space metamaterial, the exact analytic formulation may also
lead to deeper understanding of the wave dynamics in these
half-space problems. A future paper will be devoted to the
skew incidence case, investigating refraction, anisotropy,
and birefringence there occurring.

APPENDIX A
The (discrete Laplace) Z transform of a sequence f n is defined
as [11,23,24]

FðζÞ ¼
X∞
n¼−∞

f nζ−n; ðA1Þ

and can be inverted by

f n ¼ 1
2πj

I
C
FðζÞζn−1dζ; ðA2Þ

where C denotes a counterclockwise closed path encircling
the origin and entirely in the region of convergence. To calcu-
late the Z transform AðζÞ in Eq. (18), the generic term of the
sequence an, for n ≠ 0, is expressed through Eqs. (11) and (8)
as

an ¼ jα
2abϵ

Xþ∞

r;s¼−∞

k2 − ð2πr=aÞ2
kzrs

e−jkzrs jnjc; ðA3Þ

while a0 ¼ 1 − αĞlayer
xx ð0Þ. Therefore, by splitting the definition

Eq. (A1) for A into the negative and the positive semi-infinite
series and exploiting the symmetry an ¼ a−n,

Fig. 13. (Color online) Particle dipole moments pn in the metamaterial. Amplitude (normalized to αEinc
0 , decibels, left) and unwrapped phase

(radians, right). The WH solution (red circles) is compared against a numerical MoM solution for a large but finite number of layers N ¼ 20 (black
dots).
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AðζÞ ¼ a0 þ
X∞
n¼1

anζ−n þ
X∞
n¼1

anζn; ðA4Þ

and after exchanging the order of summation between the
Floquet r, s, and Z transform n series, the latter reduce to
geometrical series, which admit a well-known closed form
summation

X∞
n¼1

e−jkz;rsncζ−n ¼ ζrs
ζ − ζrs

;
X∞
n¼1

e−jkz;rsncζn ¼ ζ
1=ζrs − ζ ;

ðA5Þ

with ζrs ¼ expð−jkzrscÞ. Finally, Eq. (18) is obtained.

APPENDIX B
Traditionally, A�ðζÞ is defined as

A�ðζÞ ¼ exp

�
−

1
2πj

I
C�

lnAðξÞ
ξ − ζ dξ

�
; ðB1Þ

where Cþ (C−) denotes a counterclockwise (clockwise) path
on the unit circle that is suitably deformed to leave outside
(inside) the pole at ξ ¼ ζ if jζj ≤ 1 (jζj ≥ 1). Note that A� fac-
torize both poles and zeros of A, which are all singularities of
lnAðζÞ. In [11], where the reader is referred for more details,
an alternative definition

AþðζÞ ¼ exp

8<
:−

1
2πj

I
C

1
2

�
1þ ξ

ζ

	
lnAðξÞ − lnAðζÞ
ξ − ζ dξ

9=
; ðB2Þ

is proposed, which is more suitable for numerical integration
since the integration path is on the unit circle independent of
the location of ζ, as the pole singularity is removed. As a mat-
ter of fact, the integrand in Eq. (B2) is intended to be analy-
tically continued to its limit value d

dζ lnAðζÞ þ 1
2ζAðζÞ at ξ ¼ ζ.

Furthermore, Eq. (B2) automatically imposes A−ðζÞ ¼
Aþð1=ζÞ when Að1=ζÞ ¼ AðζÞ by properly setting an arbitrary
multiplication constant in the factorization Eq. (19).

APPENDIX C
In this Appendix, the advanced Z transform of the layer
Green’s function (7) is derived. An extension of Eq. (A1),
to also deal with functions defined continuously between
sampling points z ¼ nc, is defined as [24]

Glayer
xx ðζ;x; y;ΔzÞ ¼

X∞
n¼−∞

Glayer
xx ðrÞζ−n; ðC1Þ

with r ¼ xx̂þ yŷþ ðncþΔzÞẑ, where c is the sampling period
along z and Δz ∈ ½0; cÞ denotes the “delay parameter,” which
corresponds to a displacement of the observation point within
the periodic cell. By inserting in Eq. (C1), the continuous
plane wave spectrum representation of Eq (7) [28,29] (only
the xx component of the dyad is here considered for
simplicity),

Glayer
xx ðrÞ ¼ 1

2πabϵ
Xþ∞

r;s¼−∞

Z þ∞

−∞

k2 − k2x;r
k2z;rs − k2z

e−jðkx;rxþky;sxþkzzÞdkz;

ðC2Þ

and by using the Poisson summation formulaP∞
n¼−∞ðζejkzcÞ−n ¼ P∞

t¼−∞ δ½kz − ðj ln ζ þ 2πtÞ=c�, Eq. (27) is
readily obtained.

Analogous to Eq. (A2), Eq. (C1) can be inverted by using

Glayer
xx ðrÞ ¼ 1

2πj

I
C
Glayer

xx ðζ;x; y;ΔzÞζn−1dζ: ðC3Þ

Note that Eq. (C3) can be calculated via the Cauchy theorem
as the series of the residues at the poles either inside the unit
circle C (i.e., at ζrs) or outside it (i.e., at 1=ζrs), whether n ≥ 0
or n < 0, thus obtaining the Floquet wave expansion Eq. (8).
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