Recent Work

Title
THE CONTRIBUTION OF THE STAEBLER-WRONSKI EFFECT TO GAP-STATE ABSORPTION IN HYDROGENATED AMORPHOUS SILICON

Permalink
https://escholarship.org/uc/item/2jd3b20c

Authors
Amer, N.M.
Skumanich, A.
Jackson, W.B.

Publication Date
1982-07-01
To be presented at the 16th International Conference on the Physics of Semiconductors, Montpellier, France, September 6-10, 1982; and to be published in the Proceedings

THE CONTRIBUTION OF THE STAEBLER-WRONSKI EFFECT TO GAP-STATE ABSORPTION IN HYDROGENATED AMORPHOUS SILICON

Nabil M. Amer, Andrew Skumanich, and Warren B. Jackson

July 1982

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 6782.
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
THE CONTRIBUTION OF THE STAEBLER-WRONSKI EFFECT TO GAP-STATE ABSORPTION IN HYDROGENATED AMORPHOUS SILICON

Nabil M. Amer and Andrew Skumanich

Applied Physics and Laser Spectroscopy Group
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720
USA

and

Warren B. Jackson

Xerox Palo Alto Research Center
Palo Alto, California 94304
USA

The contribution of light-induced conductivity and luminescence changes to gap-state absorption in a-Si:H was directly measured by photothernal deflection spectroscopy. We show that sample illumination enhances gap-state absorption while annealing restores its magnitude to the original level. Furthermore, we find that doping further enhances this absorption while compensation results in the smallest observed effect. We determine the energy position of the affected states to be 1.2-1.3 eV below the conduction band and tentatively attribute the enhancement to Si dangling bonds created by breaking the Si-Si bonds.

1. INTRODUCTION

Reversible photo-induced changes in hydrogenated amorphous silicon (a-Si:H) have attracted attention recently [1-8]. The exact mechanism responsible for such an effect remains to be fully elucidated. However, it is generally accepted that illumination creates metastable defects which are annealed away by heating. An interesting question to raise is how do these photo-induced changes affect the optical absorption spectrum of the gap-states in this material. The answer provides information on the number of the states affected, and more importantly, gives the energy level at which these states reside in the gap. We have employed the technique of photothermal deflection spectroscopy [9] to investigate the contribution of these photo-induced defects to gap-state absorption.

2. EXPERIMENTAL CONSIDERATIONS

The photothermal deflection spectroscopy technique has been described elsewhere [9]. The samples used in this investigation were undoped, singly doped, and compensated films deposited by glow discharge. The illumination-annealing cycle consisted of exposing the a-Si:H films to 0.5W/cm² of unfiltered light from a Quartz Tungston-Halogen lamp. Exposure time was typically 1.5 hours. Annealing was achieved by heating the films at 175°C for 1.5 hours in vacuum and in total darkness.

3. RESULTS AND DISCUSSION

Fig. (1) shows the effect of illumination upon the optical absorption of the undoped material. It can be readily seen that exposure to light enhances gap-state absorption. Furthermore, annealing at 175°C restores the magnitude of this absorption to its original value. Little or no change is seen in the Urbach tail absorption.

![Photo-induced Ox Enhancement](image_url)

Fig. (1). The effect of illumination on the Absorption Spectrum of Undoped a-Si:H.
We have shown earlier that the magnitude of gap-state absorption in a-Si:H correlate directly to the number of spins as determined by ESR and that these states are due to silicon dangling bonds [10]. Since illumination yields a qualitatively similar absorption spectrum, with the only difference being the increase in the absorption of gap-states, then one can employ the procedure described in Ref. [10] to calculate the number of photo-induced spins, N_S, in the various samples we investigated. In Fig. (2) we plot the optically-deduced N_S as a function of doping level for singly doped and compensated materials as a function of dopant concentration. As can be seen, for singly doped material, the photo-induced spins increase in density with increasing dopant concentration. The compensated material exhibited a light-induced enhancement comparable to that measured in the undoped films.

![Diagram](image)

Fig. (2). Photo-Induced Change in Spin Density as a Function of Doping. □: Boron; O: Phosphorus; ▲: Compensated (10^{-3} P, 10^{-3} B in Vapor Phase); •: Undoped.

From our results, we deduce that illumination appears to increase the density of those states residing ± 1.2–1.3 eV below the conduction band. This conclusion holds for all of our samples, implying that the photo-induced metastable defect is probably the same for the doped and the undoped materials.

Given our earlier finding that the maximum in the density of state 1.2–1.3 eV below the conduction band is due to Si dangling bond, we are led to tentatively conclude that the observed photo-induced enhancement in gap-state absorption is caused by an increase in the number of Si dangling bonds. This conclusion is further supported by ESR and field effect data [3,7]. The model for the dangling bond generation being that illumination breaks the "weak" Si-Si bonds which is followed by the relaxation of the surrounding network.

We would like to point out, however, that the photo-induced increase in the density of states near mid-gap does not uniquely imply the creation of additional dangling bond defects. A shift in the Fermi level, without any increase in the number of gap-states, will also result in apparent increase in the number of these states. Clearly more work is needed in order to understand the origin of the photo-induced metastable gap-state.

This work was supported by the Assistant Secretary for Conservation and Solar Energy, Photovoltaic Systems Division of the U.S. Department of Energy under Contract DE-AC03-76SF00098

4. REFERENCES

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.