Sieve likelihood ratio statistics and Wilks phenomenon*

Jianqing Fan
Department of Statistics, University of California, Los Angeles, CA 90095 and
Department of Statistics, University of North Carolina, Chapel Hill, NC 27599-3260

Chuming Zhang
Department of Statistics, University of North Carolina, Chapel Hill, NC 27599

Jian Zhang
Institute of Systems Science, Academia Sinica, Beijing 100080 and
EURANDOM, P.O. Box 513, 5600MB Eindhoven

July 15, 1999

Abstract

Maximum likelihood ratio theory contributes tremendous success to parametric inferences, due to
the fundamental theory of Wilks (1938). Yet, there is no general applicable approach for nonparametric
inferences based on function estimation. Maximum likelihood ratio test statistics in general may not exist
in nonparametric function estimation setting. Even if they exist, they are hard to find and can not be
optimal as shown in this paper. In this paper, we introduce the sieve likelihood statistics to overcome the
drawbacks of nonparametric maximum likelihood ratio statistics. New Wilks’ phenomenon is unveiled.
We demonstrate that the sieve likelihood statistics are asymptotically distribution free and follow χ^2-
distributions under null hypotheses for a number of useful hypotheses and a variety of useful models
including Gaussian white noise models, nonparametric regression models, varying coefficient models and
generalized varying coefficient models. We further demonstrate that sieve likelihood ratio statistics are
asymptotically optimal in the sense that they achieve optimal rates of convergence given by Ingster
(1993). They can even be adaptively optimal in the sense of Spokoiny (1996) by using a simple choice of
adaptive smoothing parameter. Our work indicates that the sieve likelihood ratio statistics are indeed
general and powerful for nonparametric inferences based on function estimation.

Key words and Phrases: Asymptotic null distribution, Gaussian white noise models, nonparametric test,
optimal rates, power function, sieve likelihood, Wilks’ theorem.

* Fan’s research was partially supported by NSF grant DMS-980414 and a grant from University of California at Los Angeles.
J. Zhang’s research is partially supported by the National Natural Science Foundation of China and a grant from the research
programme in EURANDOM, Netherlands. This research was partially conducted while J. Zhang was visiting Department of
Statistics, University of California at Los Angeles. He is grateful to Professor Wing-Hung Wong’s support.
1 Introduction

1.1 Background

One of the most celebrated methods in statistics is maximum likelihood ratio tests. They form a useful principle that is generally applicable to most parametric hypothesis testing problems. An important fundamental property that contributes significantly to the success of the maximum likelihood ratio tests is that their asymptotic null distributions are independent of nuisance parameters. This property will be referred to as the Wilks phenomenon throughout this paper. A few questions arise naturally how such a useful principle can be extended to infinite dimensional problems, whether the Wilks type of results continue to hold and if the resulting procedures possess some optimal properties.

An effort of extending the scope of the likelihood ratio tests to nonparametric settings is the empirical likelihood due to Owen (1988). This extends the scope of applications to a class of nonparametric functionals. These functionals are usually so smooth that they can be estimated at root-n rate. See also Owen (1990), Hall and Owen (1993), Chen and Qin (1993), Li, Hollander, McKeague and Yang (1996) for applications of the empirical likelihood. Further extension of the empirical likelihood, called the random-sieve likelihood, can be found in Shen, Shi and Wong (1999). The random-sieve likelihood method allows one to deal with the situations that the stochastic errors and observable variables are not necessarily one-to-one. Nevertheless, it can not be directly applied to nonparametric function estimation setting. Zhang and Gijbels (1999) incorporated the idea of local modeling into the framework of empirical likelihood and proposed an approximate empirical likelihood, called sieve empirical likelihood. The sieve empirical likelihood can efficiently handle nonparametric function estimation setting even with inhomogeneous error.

Nonparametric modeling techniques have been rapidly developed due to the availability of modern computing power that permits statisticians exploring possible nonlinear relationship. This raises many important inference questions such as if a parametric family adequately fits a data set. Take for instance additive models (Hastie and Tibshirani 1990)

\[Y = m_1(X_1) + \cdots + m_p(X_p) + \varepsilon \]

(1.1)

or varying coefficient models (Cleveland, Grosse and Shyu 1992)

\[Y = a_1(U)X_1 + \cdots + a_p(U)X_p + \varepsilon, \]

(1.2)

where \(U \) and \(X_1, \ldots, X_p \) are covariates. After fitting these models, one often asks if certain parametric forms such as linear models fit the data adequately. This amounts to testing if each additive component is linear in the additive model (1.1) or if the coefficient functions in (1.2) are not varying. In both cases, the null hypothesis is parametric while the alternative is nonparametric. The empirical likelihood and random sieve likelihood methods can not be applied directly to such problems. It also arises naturally if certain variables are significant in the models such as (1.1) and (1.2). This reduces to testing if certain functions in (1.1) or (1.2) are zero or not. For these cases, both null and alternative hypotheses are nonparametric. While these problems arise naturally in nonparametric modeling and appear often in model diagnostics, we do not yet have a generally acceptable method that can tackle these kinds of problems.
1.2 Sieve likelihood ratios

An intuitive approach to handle the aforementioned testing problems is based on discrepancy measures (such as the L_2 and L_∞ distances) between the estimators under null and alternative models. This is a generalization of the Kolmogorov-Smirnov and the Cramér-von Mises types of statistics. We contend that such a kind of method is not as fundamental as likelihood ratio based tests. Firstly, choices of measures and weights can be arbitrary. Take for example the problem of testing $H_0 : m_1(\cdot) = m_2(\cdot) = 0$ in model (1.1). The test statistic based on a discrepancy method is $T = c_1 \|\hat{m}_1\| + c_2 \|\hat{m}_2\|$. One has not only to choose the norm $\| \cdot \|$ but also to decide the weights c_1 and c_2. Secondly, the null distribution of the test statistic T is in general unknown and depends critically on the nuisance functions m_3, \ldots, m_p. This hampers the applicability of the discrepancy based methods.

To motivate the sieve likelihood ratio statistics, let us begin with a simple nonparametric regression model. Suppose that we have n data $\{(X_i, Y_i)\}$ sampled from the nonparametric regression model:

$$Y_i = m(X_i) + \varepsilon_i, \quad i = 1, \ldots, n,$$

(1.3)

where $\{\varepsilon_i\}$ are a sequence of i.i.d. random variables from $N(0, \sigma^2)$ and X_i has a density f with support $[0, 1]$. Suppose that the parameter space is

$$\mathcal{F}_k = \{m \in L^2[0, 1] : \int_0^1 m^{(k)}(x)^2 \, dx \leq C\},$$

(1.4)

for a given C. Consider the testing problem:

$$H_0 : m(x) = \alpha_0 + \alpha_1 x \quad \leftrightarrow \quad H_1 : m(x) \neq \alpha_0 + \alpha_1 x.$$

(1.5)

Then, the conditional log-likelihood function is

$$\ell_n(m) = -n \log(\sqrt{2\pi} \sigma) - \frac{1}{2\sigma^2} \sum_{i=1}^n (Y_i - m(X_i))^2.$$

Let $(\hat{\alpha}_0, \hat{\alpha}_1)$ be the maximum likelihood estimator (MLE) under H_0, and $\hat{m}_{MLE}(\cdot)$ be the MLE under the full model:

$$\min_{m \in \mathcal{F}_k} \sum_{i=1}^n (Y_i - m(X_i))^2, \quad \text{subject to} \quad \int_0^1 m^{(k)}(x)^2 \, dx \leq C.$$

The resulting estimator \hat{m}_{MLE} is a smoothing spline. Define the residual sum of squares RSS$_0$ and RSS$_1$ as follows:

$$\text{RSS}_0 = \sum_{i=1}^n (Y_i - \hat{\alpha}_0 - \hat{\alpha}_1 X_i)^2, \quad \text{RSS}_1 = \sum_{i=1}^n (Y_i - \hat{m}_{MLE}(X_i))^2.$$

(1.6)

Then it is easy to see that the logarithm of the conditional maximum likelihood ratio statistic for the problem (1.5) is given by

$$\lambda_n = \ell_n(\hat{m}_{MLE}) - \ell_n(H_0) = \frac{n}{2} \log \frac{\text{RSS}_0}{\text{RSS}_1} \approx \frac{n}{2} \frac{\text{RSS}_0 - \text{RSS}_1}{\text{RSS}_1}.$$

Interestingly, the maximum likelihood ratio test is not optimal due to its restrictive choice of smoothing parameters. See Section 2.2. It is not technically convenient to manipulate either. In general, MLEs (if exist) under nonparametric regression models are hard to obtain. To attenuate these difficulties, we replace the
maximum likelihood estimate under the alternative nonparametric model by any reasonable nonparametric estimate, leading to the nonparametric likelihood ratio

$$\lambda_n = \ell_n(H_1) - \ell_n(H_0),$$

(1.7)

where $\ell_n(H_1)$ is the log-likelihood with unknown regression function replaced by a reasonable nonparametric regression estimator. This relaxation extends the scope of applications and removes the impractical assumption that the constant C in (1.4) is known. Further, the smoothing parameter can now be selected to optimize the performance of the likelihood ratio test. For ease of presentation, we will call λ_n as a Sieve likelihood ratio statistic.

The above sieve likelihood method can readily be applied to other statistical models such as additive models and varying-coefficient models. One needs to compute the likelihood function under null and alternative models, using suitable nonparametric estimators.

1.3 Wilks phenomenon

We will show in Section 3 that based on the local linear estimators (Fan, 1993), the asymptotic null distribution of the sieve likelihood ratio statistic is nearly χ^2 with large degrees of freedom in the sense that

$$r \lambda_n \overset{D}{\to} \chi^2_{b_n},$$

(1.8)

for a sequence $b_n \to \infty$ and a constant r, namely, $(2b_n)^{-1/2}(r \lambda_n - b_n) \overset{D}{\to} N(0,1)$. The constant r is shown to be near 2 for several cases. The distribution $N(b_n, 2b_n)$ is nearly the same as the χ^2 distribution with degrees of freedom b_n. This is an extension of the Wilks type of phenomenon, by which, we mean that the asymptotic null distribution is independent of the nuisance parameters α_0, α_1 and σ and the nuisance density function f. With this, the advantages of the classical likelihood ratio tests are fully inherited: one makes a statistical decision by comparing likelihood under two competing classes of models and the critical value can easily be found based on the known null distribution $N(b_n, 2b_n)$ or $\chi^2_{b_n}$. Another important consequence of this result is that one does not have to derive theoretically the constants b_n and r in order to be able to use the sieve likelihood ratio test. As long as the Wilks type of results hold, one can simply simulate the null distributions and hence obtains the constants b_n and r. This is in stark contrast with other types of tests whose asymptotic null distributions depend on nuisance parameters. Another striking phenomenon is that the Wilks type of results hold in the nonparametric setting even though the estimators under alternative models are not MLE. This is not true for parametric likelihood ratio tests.

The above Wilks phenomenon holds by no coincidence. It is not monopolized by the nonparametric model (1.3). We conjecture that it is valid for a large class of nonparametric models, including additive models (1.1). To demonstrate its versatility, we consider the varying-coefficient models (1.2) and the testing problem $H_0 : a_1(\cdot) = 0$. Let $a^2_2(\cdot), \ldots, a^2_p(\cdot)$ be nonparametric estimators based on the local linear method under the null hypothesis and let $\ell_n(H_0)$ be the resulting likelihood. Analogously, the sieve likelihood under H_1 can be formed. If one wishes to test if X_1 is significant, the sieve likelihood ratio test statistic is simply given by (1.7). We will show in Section 3 that the asymptotic null distribution is independent of the nuisance parameters and nearly χ^2-distributed. The result is striking because the null hypothesis involves many nuisance functions $a^2_2(\cdot), \ldots, a^2_p(\cdot)$ and the density of U. This lends further support of the sieve likelihood ratio method.
The above Wills' phenomenon holds also for testing homogeneity of the coefficient functions in model (1.2), namely, for testing if the coefficient functions are really varying. See Section 4.

1.4 Optimality

Apart from the nice Wilks phenomenon it inherits, the sieve likelihood method is asymptotically optimal in the sense that it achieves optimal rates for nonparametric hypothesis testing according to the formulation of Ingster (1993) and Spokoiny (1996). We first develop the theory under the Gaussian white noise model in Section 2. This model admits simpler structure and hence allows one to develop deeper theory. Nevertheless, this model is equivalent to the nonparametric regression model shown by Brown and Low (1996) and to the nonparametric density estimation model by Nussbaum (1996). Therefore, our minimax results and their understanding can be translated to the nonparametric regression and density estimation settings. We also develop an adaptive version of the sieve likelihood ratio test, called the adaptive Neyman test by Fan (1996), and show that the adaptive Neyman test achieves minimax optimal rates adaptively. Thus, the sieve likelihood method is not only intuitive to use, but also powerful to apply.

The above optimality results can be extended to nonparametric regression and the varying coefficients models. The former is a specific case of the varying coefficient models with \(p = 1 \) and \(X_1 = 1 \). Thus, we develop the results under the latter multivariate models in Section 3. We show that under the varying coefficient models, the sieve likelihood method achieves the optimal minimax rate for hypothesis testing. This lends further support for the use of the sieve likelihood method.

1.5 Related literature

Recently, there are many collective efforts on hypothesis testing in nonparametric regression models. Most of them focus on one dimensional nonparametric regression models. For an overview and references, see the recent book by Hart (1997).

An early paper on nonparametric hypothesis testing is Bickel and Rosenblatt (1973) where the asymptotic null distributions were derived. Azzalini, Bowman and Härdle (1989) and Azzalini and Bowman (1993) introduced to use F-type of test statistic for testing parametric models. Bickel and Ritov (1992) proposed a few new nonparametric testing techniques. Härdle and Mammen (1993) studied nonparametric test based on an \(L_2 \)-distance. Various recent testing procedures are motivated by the seminal work of Neyman (1937). Most of them focus on selecting the smoothing parameters of the Neyman test and studying their properties of the resulting procedures. See for example Eubank and Hart (1992), Eubank and LaRiccia (1992), Inglot, Kallenberg and Ledwina (1997), Kallenberg and Ledwina (1994), Kuchibhatla and Hart (1996), among others. Fan (1996) proposed simple and powerful methods for constructing tests based on Neyman's truncation and wavelet thresholding. It was shown in Spokoiny (1996) that wavelet thresholding tests are nearly adaptively minimax. The asymptotic optimality of data-driven Neyman's tests was also studied by Inglot and Ledwina (1996).

Hypothesis testing for multivariate regression problems is difficult due to the curse of dimensionality. In bivariate regression, Aerts et al. (1998) constructed tests based on orthogonal series. Fan and Huang (1998) proposed various testing techniques based on the adaptive Neyman test for various alternative models in multiple regression setting. These problems become conceptually simple by using our sieve likelihood method.
1.6 Outline of the paper

We first develop the sieve likelihood ratio test theory under the Gaussian white noise model in Section 2. While this model is equivalent to a nonparametric regression model, it is not very convenient to translate the null distribution results and estimation procedures to the nonparametric regression model. Thus, we develop in Section 3 the Wilks type of results for the varying-coefficient model (1.2) and the nonparametric regression model (1.3). Local linear estimators are used to construct the sieve likelihood ratio test. We demonstrate the Wilks type of results in Section 4 for model diagnostics. In particular, we show that the Wilks type of results hold for testing homogeneity and for testing significance of a few variables. We also demonstrate that the sieve likelihood ratio tests are asymptotically optimal in the sense that they achieve optimal rates for nonparametric hypothesis testing. The results are also extended to generalized varying coefficient models in Section 5. The merits of the sieve likelihood method and its various applications are discussed in Section 6. Technical proofs are outlined in Section 7.

2 Maximum likelihood ratio tests in Gaussian white noise model

Suppose that we have observed the process $Y(t)$ from the following Gaussian white noise model

$$dY(t) = \phi(t)dt + n^{-1/2}dW(t), \quad t \in (0,1)$$

(2.1)

where ϕ is an unknown function and $W(t)$ is the Wiener process. This ideal model is equivalent to models in density estimation and nonparametric regression (Nussbaum 1996 and Brown and Low 1996) with n being sample size. The minimax results under model (2.1) can be translated to these models for bounded loss functions.

By using an orthonormal series (e.g. the Fourier series), model (2.1) is equivalent to the following white noise model:

$$Y_i = \theta_i + n^{-1/2}\varepsilon_i, \quad \varepsilon_i \sim \text{i.i.d. } N(0,1), \quad i = 1,2,\ldots$$

(2.2)

where Y_i, θ_i and ε_i are the i-th Fourier coefficients of $Y(t), \phi(t)$ and $W(t)$, respectively. For simplicity, we consider testing the simple hypothesis:

$$H_0 : \theta_1 = \theta_2 = \cdots = 0,$$

(2.3)

namely, testing $H_0 : \phi \equiv 0$ under model (2.1).

2.1 Neyman test

Consider the class of functions, which are so smooth that the energy in high frequency components is zero, namely

$$\mathcal{F} = \{ \theta : \theta_{m+1} = \theta_{m+2} = \cdots = 0 \},$$

for some given m. Then twice the log-likelihood ratio test statistic is

$$T_N = \sum_{i=1}^{m} nY_i^2.$$

(2.4)

Under the null hypothesis, this test has a χ^2 distribution with degrees of freedom m. Hence, $T_N \sim AN(m, 2m)$. The Wilks type of results hold trivially for this simple problem even when m tends to ∞.

6
By tuning the parameter \(m \), the adaptive Neyman test can be regarded as a sieve likelihood ratio test. We will study the power of this test in Section 2.4.

2.2 Maximum likelihood ratio tests for Sobolev classes

We now consider the parameter space \(\mathcal{F}_h = \{ \theta : \sum_{j=1}^\infty \hat{J}_j^2 \theta_j^2 \leq 1 \} \). By the Parseval identity, this set in the frequency domain is equivalent to the Sobolev class of functions \(\{ \phi : \| \phi^{(k)} \| \leq c \} \) for some constant \(c \). For this specific class of parameter spaces, we can derive explicitly the asymptotic null distribution of the maximum likelihood ratio statistic. The asymptotic distribution is not exactly \(\chi^2 \). Hence, the traditional Wilks theorem does not hold for infinite dimensional problems. This is why we need an enlarged view of the Wilks phenomenon.

It can easily be shown that the maximum likelihood estimator under the parameter space \(\mathcal{F}_h \) is given by

\[
\hat{\theta}_j = (1 + \hat{\xi} \hat{J}_j^2)^{-1} y_j,
\]

where \(\hat{\xi} \) is the Lagrange multiplier, satisfying the equation \(\sum_{j=1}^\infty \hat{J}_j^2 \hat{\theta}_j = 1 \). The function \(F(\xi) = \sum_{j=1}^\infty \hat{J}_j^2 (1 + \xi \hat{J}_j^2)^{-1} y_j^2 \) is a decreasing function of \(\xi \) in \([0, \infty) \), satisfying \(F(0) = \infty \) and \(F(\infty) = 0 \), almost surely. Thus, the solution \(F(\hat{\xi}) = 1 \) exists and is unique almost surely. The asymptotic expression of \(\hat{\xi} \) depends on unknown \(\theta \) and is hard to obtain. However, for deriving the asymptotic null distribution of the maximum likelihood ratio test, we need only an explicit asymptotic expression of \(\hat{\xi} \) under the null hypothesis (2.3).

Lemma 2.1 Under the null hypothesis (2.3),

\[
\hat{\xi} = n^{-2k/(2k+1)} \left\{ \int_0^\infty \frac{y^{2k}}{(1 + y)^{2k+1}} dy \right\}^{2k/(2k+1)} \{ 1 + o_p(1) \}.
\]

The maximum likelihood ratio statistic for the problem (2.3) is given by

\[
\lambda^*_n = -\sum_{j=1}^\infty \left(1 - \frac{\hat{J}_j^2 \hat{\xi}^2}{(1 + \hat{J}_j^2 \hat{\xi})^2} \right) Y_j^2.
\]

In Section 7 we show the following result.

Theorem 1 Under the null hypothesis (2.3), the normalized maximum likelihood ratio test statistic has the asymptotic \(\chi^2 \) distribution with degree of freedom \(a_n \): \(r_k \lambda^*_n \sim \chi^2_{a_n} \), where

\[
r_k = \frac{4k + 2}{2k - 1}, \quad a_n = \frac{(2k + 1)^2}{4k^2 \sin \left(\frac{\pi}{2k} \right)} \left(2k/(2k+1) \right) n^{1/(2k+1)}.
\]

It is clear from Theorem 1 that the classical Wilks type of results do not hold for infinite dimensional problems because \(r_k \neq 2 \). However, an extended version holds: asymptotic null distributions are independent of nuisance parameters and nearly \(\chi^2 \)-distributed. Table 1 gives numerical values for constant \(r_k \) and degrees of freedom \(a_n \).

Surprisingly, the maximum likelihood ratio test can not achieve the optimal rate for hypothesis testing (see Theorem 2 below). This is due to the fact the smoothing parameter \(\hat{\xi} \) determined by \(\sum_{j=1}^\infty \hat{J}_j^2 \hat{\theta}_j = 1 \) is too restrictive. This is why we need sieve likelihood ratio tests which allow one the flexibility of choosing smoothing parameters.
Table 1: Constants r_k (r'_k in Theorem 3) and degrees of freedom in Theorem 1

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>r_k</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>6.0000</td>
<td>3.3333</td>
<td>2.8000</td>
<td>2.5714</td>
<td>2.4444</td>
<td></td>
</tr>
<tr>
<td>$a_n, n = 50$</td>
<td>28.2245</td>
<td>6.5381</td>
<td>3.8381</td>
<td>2.8800</td>
<td>2.4012</td>
</tr>
<tr>
<td>$a_n, n = 200$</td>
<td>44.8036</td>
<td>8.6270</td>
<td>4.6787</td>
<td>3.3596</td>
<td>2.7237</td>
</tr>
<tr>
<td>$a_n, n = 800$</td>
<td>71.1212</td>
<td>11.3834</td>
<td>5.7034</td>
<td>3.9190</td>
<td>3.0895</td>
</tr>
<tr>
<td>r'_k</td>
<td>3.6923</td>
<td>2.5600</td>
<td>2.3351</td>
<td>2.2391</td>
<td>2.1858</td>
</tr>
</tbody>
</table>

Theorem 2 There exists a $\theta \in \mathcal{F}_k$ satisfying $\|\theta\| = n^{-(k+d)/(2k+1)}$ with $d > 1/8$ such that the power function of the maximum likelihood ratio test at the point θ is bounded by α, namely,

$$\limsup P\{r_k \lambda_n > a_n + z_\alpha (2a_n)^{1/2} | \theta \} \leq \alpha,$$

where z_α is the upper α quantile of the standard normal distribution.

Thus, the maximum likelihood ratio test λ_n^* can detect alternatives with a rate no faster than $n^{-(k+d)/(2k+1)}$. When $k > 1/4$, by taking d sufficiently close to $1/8$, the rate $n^{-(k+d)/(2k+1)}$ is slower than the optimal rate $n^{-2/(4k+1)}$ given in Ingster (1993).

2.3 Sieve likelihood ratio tests

As demonstrated in Section 2.2, maximum likelihood ratio tests are not optimal due to restrictive choice of smoothing parameters. Sieve likelihood tests remove this restrictive requirement and allow one to tune the smoothing parameter. For testing problem (2.3), we take the sieve likelihood ratio test as

$$\lambda_n = \frac{n}{2} \sum_{j=1}^{\infty} \left(1 - \frac{j^{4k} \xi_n^2}{(1 + j^{2k} \xi_n)^2} \right) Y_j^2,$$

with $\xi_n = cn^{-4k/(4k+1)}$ for some $c > 0$. This ameliorated procedure achieves the optimal rate of convergence for hypothesis testing, which is stated as follows.

Theorem 3 Under the null hypothesis (2.3), $r'_k \lambda_n \overset{a.s.}{\sim} \chi^2_{a'_n}$, where

$$r'_k = \frac{2k+1}{2k-1} \cdot \frac{48k^2}{24k^2 + 14k + 1},$$

$$a'_n = \frac{(2k+1)^2}{2k-1} \cdot \frac{24k^2 c^{-1/(2k)}}{24k^2 + 14k + 1} \left[\frac{\pi}{4k^2 \sin(\pi/p)} \right] n^{2/(4k+1)}.$$

Furthermore, for any sequence $c_n \to \infty$, the power function of the sieve likelihood ratio test is asymptotically one:

$$\inf_{\theta \in \mathcal{F}_n} P\{r'_k \lambda_n > a'_n + z_\alpha (2a'_n)^{1/2} | \theta \} \to 1.$$

2.4 Adaptive minimax optimality

The maximum likelihood ratio statistic (2.5) and the sieve likelihood statistic (2.6) depend critically on the value of k. Can we construct an adaptive version that achieves adaptively the optimal rates of convergence? The answer is affirmative and the construction is simple.
Based on power considerations, Fan (1996) proposed the following adaptive version of the sieve likelihood ratio statistic (2.4):

$$T_{AN}^{*} = \max_{1 \leq m \leq n} \sum_{i=1}^{m} \frac{(nY_{i}^{2} - 1)}{\sqrt{2m}}. \quad (2.7)$$

He called the testing procedure as the adaptive Neyman test. Note that the adaptive Neyman test is simply the maximum of the normalized likelihood ratio statistic (2.4). It does not depend on the degree of smoothness k. Following Fan (1996), we normalize the test statistic as

$$T_{AN} = \sqrt{2 \log \log n} T_{AN}^{*} - \{2 \log \log n + 0.5 \log \log \log n - 0.5 \log(4\pi)\}.$$

Then, under the null hypothesis (2.3), we have

$$P(T_{AN} < x) \rightarrow \exp(-\exp(-x)), \quad \text{as } n \rightarrow \infty.$$

Thus, the critical region

$$T_{AN} > -\log\{-\log(1 - \alpha)\}$$

has asymptotic significance level α. The power of the adaptive Neyman test is given as follows. A similar version was presented in Fan and Huang (1998).

Theorem 4 The adaptive Neyman test can detect adaptively the alternatives with rates

$$\delta_{n} = n^{-2k/(4k+1)}(\log \log n)^{k/(4k+1)}$$

when the parameter space is \mathcal{F}_{k} with unknown k. More precisely, for any sequence $c_{n} \to \infty$, the power function

$$\inf_{\|\theta\| \geq c_{n}\delta_{n}} P[T_{AN} > -\log\{-\log(1 - \alpha)\} | \theta] \to 1.$$

The rate given in Theorem 4 is adaptively optimal in the sense that no testing procedure can detect adaptively the alternative with a rate faster than δ_{n}, according to Spokoiny (1996). Hence, the sieve likelihood ratio based test achieves this adaptive optimality.

Remark 2.1 By choosing the parameter $m = O(n^{2/(4k+1)})$ when the parameter space is \mathcal{F}_{k}, the Neyman test can also detect alternatives with the optimal rate $O(n^{-2k/(4k+1)})$. This follows from the proof of Theorem 4. By choosing m to maximize (2.7), we obtain an adaptive version of the Neyman test, which is independent of the degree of smoothness k. This test achieves the adaptive optimal rate because the maximum of the partial sum process in (2.7) grows very slowly. This is why we pay only a price of order $(\log \log n)$ to achieve the adaptive minimax rate.

3 Sieve likelihood ratio tests in varying coefficient models

In this section we develop asymptotic theory on the sieve likelihood ratio statistics and derive the optimal minimax rates of the corresponding tests under model (1.2). Wilks phenomenon is unveiled in this general setting.

Suppose $\{(Y_{i}, X_{i}, U_{i})\}_{i=1}^{n}$ are a random sample from the varying-coefficient model (1.2). Namely,

$$Y = A(U)^{T}X + \varepsilon, \quad \varepsilon \sim N(0, \sigma^{2}),$$

where $A(U)$ is a matrix.
with \(\mathbf{X} = (X_1, \ldots, X_p)^\top, U = (U_1, \ldots, U_q)^\top,\) and \(A(U) = (a_1(U), \ldots, a_p(U))^\top.\) For simplicity, we consider only \(q = 1.\) Extensions to the multi-dimensional case are similar. Consider the simple null hypothesis testing problem:

\[
H_0 : A = A_0, \quad \iff \quad H_1 : A \neq A_0, \quad (3.1)
\]

We use the local linear approach to construct a sieve likelihood ratio statistic.

For each given \(u_0,\) let \(\beta(u_0) = (A'_*, hB)^\top\) where \(A_*\) and \(B\) are vectors of \(p\)-dimensions. Then, the local log-likelihood at the given point \(u_0\) is given by

\[
l(\beta(u_0)) = -n \log(\sqrt{2\pi}\sigma) - \frac{1}{2\sigma^2} \sum_{i=1}^n (Y_i - \beta(u_0)^\top \mathbf{Z}_i)^2 K_h(U_i - u_0),
\]

where \(\mathbf{Z}_i = (\mathbf{X}_i^\top, (u_i - u_0)/h \mathbf{X}_i^\top)^\top\) and \(K_h(\cdot) = K(\cdot/h)/h\) with \(K\) being a symmetric probability density function and \(h\) a bandwidth. Then, the local maximum likelihood estimator, denoted by \(\hat{\beta}(u_0),\) is defined as \(\text{arg} \max \, l(\beta(u_0)).\) The corresponding estimator of \(A(u_0)\) is denoted by \(\hat{A}(u_0).\) Using this nonparametric estimator, the likelihood under model (1.2) is

\[-n \log(\sqrt{2\pi}\sigma) - \text{RSS}_1/(2\sigma^2),\]

where \(\text{RSS}_1 = \sum_{k=1}^n (Y_k - \hat{A}(U_k)^\top \mathbf{X}_k)^2.\) Maximizing over the parameter \(\sigma^2\) leads to the sieve likelihood under model (1.2):

\[
\ell_n(H_1) = -(n/2) \log(2\pi/n) - (n/2) \log(\text{RSS}_1) - n/2.
\]

Similarly, the maximum likelihood under \(H_0\) can be expressed as

\[
\ell_n(H_0) = -(n/2) \log(2\pi/n) - (n/2) \log(\text{RSS}_0) - n/2,
\]

where \(\text{RSS}_0 = \sum_{k=1}^n (Y_k - A_0(U_k)^\top \mathbf{X}_k)^2.\) Now, the sieve likelihood ratio statistic is

\[
\lambda_n(A_0) = \left[\ell_n(H_1) - \ell_n(H_0)\right] = \frac{n}{2} \log \frac{\text{RSS}_0}{\text{RSS}_1} \cong \frac{n}{2} \frac{\text{RSS}_0 - \text{RSS}_1}{\text{RSS}_1}. \quad (3.2)
\]

The above approach can be extended to the composite null hypothesis testing problem:

\[
H_0 : A \in \mathcal{A}_0, \quad \iff \quad H_1 : A \notin \mathcal{A}_0 \quad (3.3)
\]

where \(\mathcal{A}_0\) is a set of functions. As before, we can use the sieve estimator to construct the log-likelihood \(\ell_n(H_1)\) for \(H_1.\) Assume that we can use MLE or some sieve estimators to build the log-likelihood \(\ell_n(H_0).\) Let \(A'_0\) denote the true value of the parameter \(A.\) Then the sieve likelihood ratio \(\lambda_n(A_0)\) for the testing problem (3.3) can be decomposed as

\[
\lambda_n(A_0) = \lambda_n(A'_0) - \lambda_n^*(A'_0), \quad (3.4)
\]

where \(\lambda_n(A'_0) = \ell_n(H_1) - \ell_n(H'_0)\) is the sieve likelihood ratio for the hypothesis testing problem

\[
H'_0 : A = A'_0, \quad \iff \quad H'_1 : A \neq A'_0
\]

and \(\lambda_n^*(A'_0) = \ell_n(H_0) - \ell_n(H'_0)\) is the likelihood ratio for another hypothesis testing problem

\[
H'_0 : A = A'_0, \quad \iff \quad H'_1 : A \in A_0.
\]
The above two hypothesis problems are fabricated because A'_0 is unknown. Therefore the sieve likelihood ratio for the composite null hypothesis can be decomposed into two sieve likelihood ratios for two fabricated simple null hypothesis problems. The asymptotic theory for composite null hypothesis can be easily derived by those for the above fabricated simple null hypotheses (see the proofs of Theorems 6 and 9). Thus, we focus first on the simple null hypothesis testing problem (3.2). In order to include the above fabricated testing problems, we assume that A_0 is unknown. We should point out that when A_0 is known, the testing problem (3.2) is equivalent to the problem $H_0: A = 0$ by a simple transform. So without loss of generality, A_0 can be assumed zero in this case.

3.1 Asymptotic null distribution

To derive the asymptotic distribution of $\lambda_n(A_0)$ under H_0, we need the following conditions.

Condition (A)

(A1) The marginal density $f(u)$ of U is Lipschitz continuous and bounded away from 0. U has a bounded support Ω.

(A2) $A(u)$ has the continuous second derivative.

(A3) The function $K(t)$ is symmetric and bounded. Further, the functions $t^3 K(t)$ and $t^3 K'(t)$ are bounded and $\int t^4 K(t) dt < \infty$.

(A4) $E|\varepsilon|^4 < \infty$.

(A5) X is bounded. The $p \times p$ matrix $E(XX' | U = u)$ is invertible for each $u \in \Omega$. $(E(XX' | U = u))^{-1}$ and $E(XX' \sigma^2(X, U) | U = u)$ are both Lipschitz continuous.

These conditions are imposed to facilitate the technical arguments. They are not weakest possible. In particular, (A5) in Condition (A) can be relaxed by using the method in Lemma 7.4 in Zhang and Gijbels (1999). For example, we can replace (A5) by the assumption that $E \exp(c_0||X||) < \infty$ for some constant c_0. The following results continue to hold.

Note that in the above conditions, the normality of ε is not needed. Define

$$\Gamma(u) = E[XX' | U = u] f(u), \quad w_0 = \int \int t^2(s + t)^2 K(t)K(s + t) dt ds.$$

Let $\varepsilon_i = Y_i - A_0(U)^\top X_i$. Set

$$R_{n10} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \varepsilon_i A_0(U_i)^\top X_i \int t^2 K(t) dt (1 + O(h) + O(n^{-1/2})),$$

$$R_{n20} = \frac{1}{2} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \varepsilon_i X_i \Gamma(U_i)^{-1} A_0(U_i)^\top E(X_i | U_i) w_0,$$

$$R_{n30} = \frac{1}{8} EA_0(U)^\top XX' A_0(U) w_0 (1 + O(n^{-1/2})),$$

$$\mu_n = \frac{p||\Omega||}{h} (K(0) - \frac{1}{2} \int K^2(t) dt),$$

$$\sigma_n^2 = \frac{2p||\Omega||}{h} \int (K(t) - \frac{1}{2} K * K(t))^2 dt,$$

$$d_{1n} = \sigma_n^{-2} \{n h^4 R_{n30} - n^{1/2} h^2 (R_{n10} - R_{n20})\} = O_p(n h^4 + n^{1/2} h^2),$$

11
where $K * K$ denotes the convolution of K. Note that both R_{10} and R_{20} are asymptotically normal and hence are stochastically bounded.

We now describe our generalized Wilks type of theorem as follows:

Theorem 5 Suppose Condition (A) holds. Then, under H_0, as $h \to 0$, $n h^{3/2} \to \infty$,

$$\sigma_n^{-1}(\lambda_n(A_0) - \mu_n + d_{1n}) \xrightarrow{c} N(0, 1).$$

Furthermore, if A_0 is linear or $n h^{9/2} \to 0$, then as $n h^{3/2} \to \infty$, $r_K \lambda_n(A_0) \sim \chi^2_{r_K \mu_n}$, where

$$r_K = \frac{K(0) - \frac{1}{2} \int K^2(t) dt}{\int (K(t) - \frac{1}{2}K * K(t))^2 dt}.$$

Remark 3.1 As pointed out before, when A_0 is known, the testing problem (3.2) is equivalent to the problem $H_0 : A = 0 \quad \leftrightarrow \quad H_1 : A \neq 0$ by a simple transform. Hence, the condition in the second part of the theorem always holds and so does the Wilk's phenomenon. Further, when $n h^5 \to 0$, $d_{1n} = o(\mu_n)$, namely the term d_{1n} is of secondary nature. In this relaxed sense, even if A_0 is unknown, the Wilk phenomenon is valid when the condition $n h^{9/2} \to 0$ is relaxed as $n h^5 \to 0$.

Remark 3.2 The degree of freedom in the asymptotic distribution depends on $p|\Omega|/h$. This can intuitively be understood as follows. If one partitions the support of U into intervals of length h and uses piecewise constant functions to model the functions in A, then we have total number of parameters $p|\Omega|/h$ under model (1.2). In this view, local linear fits can also be regarded as sieve approximation to nonparametric functions with effective number of parameters $r_K \mu_n$.

Remark 3.3 If local polynomial estimators of degree v instead of the local linear estimators are used to construct the above sieve likelihood ratio, then the result holds when K is replaced by its equivalent kernel induced by the local polynomial fitting (Fan and Gijbels, 1996). In this case, the second part of Theorem 5 is replaced by the condition that either A_0 is a polynomial of degree v or $n h^{(4v+5)/2} \to 0$.

Remark 3.4 Suppose Condition (A) holds and the second term in (3.4) is $o_p(h^{-1/2})$ (for example, in testing a parametric model, under some regularity conditions this term equals $O_p(1)$). Then it follows directly from Theorem 5 that under the null hypothesis (3.3) the result in Theorem 5 continues to hold.

We now consider the more challenging and more interesting case where null hypotheses depend on many nuisance functions. Nevertheless, we will show that asymptotic null distributions are independent of the nuisance functions. Write

$$A_0(u) = \begin{pmatrix} A_{10}(u) \\ A_{20}(u) \end{pmatrix}, \quad A(u) = \begin{pmatrix} A_1(u) \\ A_2(u) \end{pmatrix}, \quad X_k = \begin{pmatrix} X^{(1)}_k \\ X^{(2)}_k \end{pmatrix}, \quad Z_k = \begin{pmatrix} Z^{(1)}_k \\ Z^{(2)}_k \end{pmatrix},$$

where $A_{10}(u)$, $A_1(u)$, $X^{(1)}_k$ and $Z^{(1)}_k$ are $p_1 (< p)$ dimensional. Consider the testing problem

$$H_{0u} : A_1 = A_{10} \quad \leftrightarrow \quad H_{1u} : A_1 \neq A_{10}$$

with $A_2(\cdot)$ completely unknown. For the same purpose mentioned above, (3.5) allows to be a putative hypothesis problem in which A_{10} is unknown but the true underlying functions. Following the same derivations, the logarithm of the sieve likelihood ratio statistic is given by

$$\lambda_{nu}(A_{10}) = \lambda_n(A_0) - \lambda_{nu}(A_{20}|A_{10})$$
with \(\lambda_n(A_0) \) the full likelihood ratio defined in (3.2) and

\[
\lambda_{n2}(A_{20}|A_{10}) = \frac{n}{2} \log \frac{\text{RSS}_0}{\text{RSS}_2}
\]

where

\[
\text{RSS}_2 = \sum_{k=1}^{n} (Y_k - A_{10}(U_k)') \mathbf{X}_k^{(1)} - \tilde{A}_2(U_k)' \mathbf{X}_k^{(2)})^2.
\]

Here \(\tilde{A}_2(U_k)' \) is the local linear estimator at \(U_k \) when \(A_{10} \) is given.

Recall that \(\Gamma(u) = E[\mathbf{X}\mathbf{X}'|U = u] f(u) \). Write

\[
\Gamma = \begin{pmatrix} \Gamma_{11} & \Gamma_{12} \\ \Gamma_{21} & \Gamma_{22} \end{pmatrix}, \quad \text{and} \quad \Gamma_{11,2} = \Gamma_{11} - \Gamma_{12} \Gamma_{22}^{-1} \Gamma_{21},
\]

where \(\Gamma_{11}, \Gamma_{12}, \Gamma_{21}, \Gamma_{22} \) are \(p_1 \times p_1 \), \(p_1 \times p_2 \), \(p_2 \times p_1 \) and \(p_2 \times p_2 \) matrices and \(p_2 = p - p_1 \). Define \(\mu_{nu} \) and \(\sigma_{nu} \)

the same as \(\mu_n \) and \(\sigma_n \) except replacing \(p \) by \(p_1 \). Similarly, define \(d_{nu} \) by replacing \(\mathbf{X} \) and \(\Gamma \) respectively by \(\mathbf{X}^{(1)} - \Gamma_{12} \Gamma_{22} \mathbf{X}^{(2)} \) and \(\Gamma_{11,2} \) in the definition of \(d_{in} \).

Theorem 6 Suppose Condition (A) holds. Then, under \(H_{0u} \) in (3.5), as \(nh^{3/2} \to \infty \) and \(h \to 0 \), we have

\[
\sigma_n^{-1}(\lambda_{nu}(A_0) - \mu_{nu} + d_{nu}) \overset{L}{\to} N(0,1). \]

In addition, if \(A_0 \) is linear or \(nh^{3/2} \to 0 \), then

\[
r_K \lambda_{nu}(A_0) \overset{g}{\to} \chi^2_{(K \mu_{nu})}.
\]

Theorem 6 provides convincing evidence that the Wilks type of phenomenon holds for nonparametric sieve likelihood ratio tests with composite hypotheses.

3.2 Power approximations and minimax rates

We now consider the power of sieve likelihood ratio tests based on local linear fits. For simplicity of our discussion, we focus only on the simple null hypothesis (3.1). As noted in Remark 3.1, one can assume without loss of generality that \(A_0 = 0 \). But, we don’t take this option because we want to examine the impact of biases on sieve likelihood ratio tests. This has implications to the case of composite hypothesis (3.5) because the biases inherited in that problem are genuine.

When \(A_0 \) is linear, the bias term in Theorem 5 will be zero. When \(A_0 \) is not linear, we will assume that \(h_n = o(n^{-1/5}) \) so that the second term in the definition of \(d_{in} \) is of smaller order than \(\sigma_n \). As to be seen in Theorem 8, the optimal choice of \(h \) for the testing problem (3.1) is \(h = o(n^{-2/9}) \), which satisfies the condition \(h = o(n^{-1/5}) \). Under these assumptions, if \(nh^{3/2} \to 0 \), by Theorem 5, an approximate level \(\alpha \) test based on the sieve likelihood ratio statistic is

\[
\psi \equiv \psi_n = I \{ \lambda_n(A_0) - \mu_n + \hat{v}_n \geq z_\alpha \sigma_n \},
\]

where with \(\hat{\sigma}^2 = \text{RSS}_1/n

\[
\hat{v}_n = \frac{1}{8} n h^4 \hat{\sigma}^{-2} E A_0^T(U)' \mathbf{X} \mathbf{X}' A_0^T(U) \int \int t^2(s+t)^2 K(t)K(s+t) dt ds.
\]
The power of the test under the contiguous alternative of form

\[H_{1_n} : A(u) = A_0(u) + G_n(u), \]

can be approximated by using the following theorem, where \(G_n(u) = (g_{1n}(u), \ldots, g_{pn}(u))' \) is a vector-valued function.

Theorem 7 Suppose that Condition (A) hold and that \(A_0 \) is linear or \(nh^5 \rightarrow 0 \). If

\[nhEG_n'(U)XX'G_n(U) \rightarrow C(G) \quad \text{and} \quad E(G_n'(U)XX'G_n(U)e^2) = O((nh)^{-3/2}), \]

for some constant \(C(G) \), then under \(H_{1_n} \)

\[(\lambda_n(A_0) - \mu_n + \hat{\mu}_n + v_{2n} - d_{2n})/\sigma_n \xrightarrow{\mathcal{L}} N(0, 1), \]

where

\[d_{2n} = \frac{n}{2}EG_n'(U)XX'G_n(U), \]

\[\sigma_n^* = \sqrt{\sigma_n^2 + n\sigma_n^{-2}EG_n'(U)XX'G_n(U)}, \]

\[v_{2n} = \frac{nh^4}{8\sigma^2}EG_n'(U)'XX'G_n''(U) \int \int t^2(s+t)^2K(t)K(s+t)dtds. \]

Theorem 7 can be extended readily to sieve likelihood ratio tests based on local polynomial estimators of degree \(v \) and to the case with nuisance parameter functions. It allows functions \(G_n \) of forms not only \(g_n(u) = (nh)^{-1/2}g(u) \), but also \(g_n(u) = a_n^{-2}g(a_nu) \) with \(a_n = (nh)^{-1/5} \). The former function has a second derivative tending to zero, which is restrictive in nonparametric applications. The latter function has also a bounded second derivative, which does not always tend to zero, when \(g \) is twice differentiable. This is still not the hardest alternative function to be tested. A harder alternative can be constructed as follows. Let \(\{u_j\} \) be a grid of points with distance \(a_n^{-1} \) apart and \(g \) be a twice differentiable function with support \([0, 1]\). Then, Theorem 7 also allows functions of form \(g_n(u) = a_n^{-2}\sum_j g(a_n(u - u_j)) \) with \(a_n = (nh)^{-1/4} \).

We now turn to studying the optimal property of the sieve likelihood ratio test. We first consider the class of functions \(G_n \), satisfying the following regularity conditions:

\[\text{var}(G_n'(U)XX'G_n(U)) \leq M(EG_n'(U)XX'G_n(U))^2, \]

\[nEG_n'(U)'XX'G_n(U) > M_n \rightarrow \infty, \]

\[EG_n''(U)'XX'G_n''(U) \leq M, \] \hspace{1cm} (3.6)

for some constants \(M > 0 \) and \(M_n \rightarrow \infty \). For a given \(\rho > 0 \), let

\[G_n(\rho) = \{ G_n \in G_n : EG_n'(U)XX'G_n(U) \geq \rho^2 \}. \]

Then the maximum of the probabilities of type II errors is given by

\[\beta(\alpha, \rho) = \sup_{G_n \in G_n(\rho)} \beta(\alpha, G_n), \]

where \(\beta(\alpha, G_n) = P(\phi = 0 | A = A_0 + G_n) \) is the probability of type II error at the alternative \(A = A_0 + G_n \). The minmax rate of \(\phi \) is defined as the smallest \(\rho_n \) such that

14
(i) for every $\rho > \rho_n$, $\alpha > 0$, and for any $\beta > 0$, there exists a constant c such that $\beta(\alpha, c \rho) \leq \beta + o(1)$;

(ii) for any sequence $\rho^*_n = o(\rho_n)$, there exist $\alpha > 0$, $\beta > 0$ such that for any $c > 0$, $P(\phi = 1 | A = A_0) = \alpha + o(1)$ and $\lim \inf \beta(\alpha, c \rho^*_n) > \beta$.

It measures how close the alternatives that can be detected by the sieve likelihood ratio test ϕ_h. The rate depends on the bandwidth h. To stress its dependence, we write it as $\rho_n(h)$.

Theorem 8 Under Condition (A), the sieve likelihood can detect alternatives with rate $\rho_n(h) = n^{-4/9}$ when $h = c_n n^{-2/9}$ for some constant c_n.

Remark 3.5 When $p = 1$ and $X \equiv 1$, the varying-coefficient model becomes an ordinary nonparametric regression model. In this case, Lepski and Spokoiny (1995) proved the optimal rate for testing H_0 is $n^{-4/9}$. Thus the sieve likelihood ratio test is optimal in the sense that it achieves the optimal rate of convergence. Similarly, we can show the sieve likelihood ratio test, constructed by using local polynomial of order v, can detect alternatives with rate $n^{-2(v+1)/(4v+5)}$, uniformly in the class of functions satisfying

$$E[\tilde{G}^{(v+1)}(U)^2 X]^2 < M,$$

for some $M < \infty$. The corresponding optimal bandwidth is $c_n n^{-2/(4v+5)}$ for some constant c_n.

Remark 3.6 In the proof of Theorem 8, we in fact show that the bandwidth $h = c_n n^{-2/9}$ is optimal, optimizing the rate of $\rho_n(h)$, subject to the following constraints:

(a) $h \to 0$ and $nh^{3/2} \to \infty$, if A_0 is linear.

(b) $nh \to \infty$ and $nh^5 \to 0$, if A_0 is non-linear with continuous second derivatives.

4 Model diagnostics

In this section, we demonstrate how the sieve likelihood ratio tests can be applied to check the goodness-of-fit for a family of parametric models. This kind of problems occur very often in practice. Our results apply readily to this kind of problems. We also note that the Wilks phenomenon continue to hold under general heteroscedastic regression models.

4.1 Testing linearity

Consider the nonparametric regression model (1.3) and the testing problem

$$H_0 : m(x) = \alpha_0 + \alpha_1 x \quad \leftrightarrow \quad H_1 : m(x) \neq \alpha_0 + \alpha_1 x,$$

where α_0 and α_1 are unknown parameters. Following the same derivations as in Section 3, sieve likelihood ratio tests based on local linear fits are given by

$$\lambda_n = [\ell_n(H_1) - \ell_n(H_0)] = \frac{n}{2} \log \frac{\text{RSS}_0}{\text{RSS}_1},$$

where $\text{RSS}_0 = \sum_{i=1}^{n} (Y_i - \hat{\alpha}_0 - \hat{\alpha}_1 X_i)^2$ and $\text{RSS}_1 = \sum_{i=1}^{n} (Y_i - \hat{\alpha}_0 - \hat{\alpha}_1 X_i - \hat{\beta}_h(X_i))^2$. By using Remark 3.4, one can easily see that Wilks type of results hold under the null hypothesis:

$$r_k \lambda_n \sim \chi^2_{r_k c_k \log n / h}, \quad (4.1)$$
where \(\Omega \) denotes the support of \(X \), and

\[
c_K = K(0) - 2^{-1} \|K\|_2^2.
\]

Note that when \(K(0) = \max K(x) \), we have \(K(0) \geq \|K\|_2^2, c_K \geq 2^{-1}K(0) \) and whence \(r_K > 0 \).

To help one determine the degree of freedom in (4.1), the values of \(r_K \) and \(c_K \) are tabulated in Table 2 for a few commonly-used kernels. Among them, the Epanechnikov kernel has the closest \(r_K \) to 2.

<table>
<thead>
<tr>
<th>Kernel</th>
<th>Uniform</th>
<th>Epanechnikov</th>
<th>Biweight</th>
<th>Triweight</th>
<th>Gaussian</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_K)</td>
<td>1.2632</td>
<td>2.1522</td>
<td>2.3172</td>
<td>2.3829</td>
<td>2.5375</td>
</tr>
<tr>
<td>(c_K)</td>
<td>0.2500</td>
<td>0.4500</td>
<td>0.5804</td>
<td>0.6858</td>
<td>0.7377</td>
</tr>
</tbody>
</table>

Two inter-relationships concerning the degrees of freedom will be exposed. If we define a “smoothing matrix” \(H \) based on local linear estimates just as a projection matrix \(P \) in the linear regression model, then under \(H_0 \), \(\text{RSS}_0 - \text{RSS}_1 = \varepsilon'(H^r + H - H^rH - P)\varepsilon \). Denoting the bracket matrix as \(A \), we have \(\text{tr}(A) \approx 2c_K|\Omega|/h \) following the proof of Theorem 5. Thus, \(\text{tr}(A) \) is approximately the degree of freedom only when \(r_K \approx 2 \). The second one is to note that \(K(0) \geq K * K(0) = \|K\|_2^2 \) implies approximately \(\text{tr}(H^rH) \leq \text{tr}(H) \leq 2\text{tr}(H) - \text{tr}(H^rH) \), a property holding exactly for \(H \) based on smoothing splines in fixed designs [Hastie and Tibshirani (1990), section 3.5].

Remark 4.1 When one wishes to test parametric families other than the linear model such as \(H_0 : m(x) = m(x, \theta) \), then one can apply sieve likelihood ratio tests to the residuals \(\{Y_i - m(X_i, \hat{\theta})\} \), where \(m(X_i, \hat{\theta}) \) is a fitted value under the null hypothesis. The Wilks type of result (4.1) continues to hold.

Remark 4.2 For more general regression model (1.3), where we assume only \(E(\varepsilon |X = x) = 0 \) and \(E(\varepsilon^2 |X = x) = \sigma^2(x) \), one can use the weighted residual sum of squares:

\[
\text{RSS}_0 = \sum_{i=1}^{n} (Y_i - \hat{\alpha}_0 - \hat{\alpha}_1X_i)^2 w(X_i), \quad \text{RSS}_1 = \sum_{i=1}^{n} (Y_i - \hat{m}_k(X_i))^2 w(X_i).
\]

If the weight function \(w(\cdot) \) is continuous with a compact support contained in \(\{x : f(x) > 0\} \), then we can show that under \(H_0 \), a generalized version of (4.1):

\[
r'_K \lambda_n \sim \chi^2_{\alpha_n},
\]

where

\[
r'_K = r_K \left[E\sigma^2(X)w(X)\right] \left[\int \sigma^2(x)w(x)dx\right]^{-1},
\]

\[
a'_n = r_K c_K h^{-1} \left[\int \sigma^2(x)w(x)dx\right]^{2} \left[\int \sigma^4(x)w^2(x)dx\right]^{-1}.
\]

When \(\sigma^2(x) = v(x)\sigma^2 \) for a known function \(v(x) \), the sieve likelihood ratio test corresponds to using \(w(x) = v(x)^{-1} \). In this case, the Wilks type of result (4.1) continues to hold.
4.2 Testing homogeneity

Consider the varying-coefficient model defined in Section 3. A natural question arises in practice is if these
coefficient functions are really varying. This amounts to testing the following problem:

$$H_0 : a_i(U) = \theta_1, \ldots, a_p(U) = \theta_p.$$

If the error distribution is homogeneous normal, then sieve likelihood test based on local linear fits is given
by (3.2) with $RSS_0 = \sum_{i=1}^n (Y_i - \hat{\theta}^T X_i)^2$ where $\hat{\theta}$ is the least-square estimate under the null hypothesis.

To examine the property of the sieve likelihood ratio statistic (3.2) under the general heteroscedastic
model, we now only assume that

$$E(\varepsilon | X = x, U = u) = 0, \quad E(\varepsilon^2 | X = x, U = u) = \sigma^2(x, u),$$

with a continuous function $\sigma^2(x, u)$. Strictly speaking, the statistic (3.2) is no longer a sieve likelihood ratio
test under this heteroscedastic model. The sieve likelihood ratio test in this heteroscedastic case should
involve weighted residual sum of squares when $\sigma^2(x, u) = \sigma^2 v(x, u)$ for a given v. See Remark 4.2. Let

$$\Gamma^*(u) = E[X X^T \sigma^2(X, U) | U = u] f(u).$$

Then, we have the following result.

Theorem 9 Assume Condition (A). Then under H_0, as $h \to 0$, $nh^{3/2} \to \infty$,

$$r''_K \lambda_n \overset{d}{\sim} \chi^2_{d''},$$

where

$$r''_K = r_K[E \sigma^2(X, U)] \int_{\Omega} tr(\Gamma^*(u) \Gamma(u)^{-1}) du \left[\int_{\Omega} tr(\Gamma^*(u) \Gamma(u)^{-1})^2 du \right]^{-1},$$

$$a''_n = r_K c_K h^{-1} \left[\int_{\Omega} tr(\Gamma^*(u) \Gamma(u)^{-1}) du \right]^2 \left[\int_{\Omega} tr(\Gamma^*(u) \Gamma(u)^{-1})^2 du \right]^{-1}.$$

It is clear that when $\sigma^2(x, u) = \sigma^2$, Theorem 9 reduces to Theorem 5 and (3.2) is a sieve likelihood
statistic. Hence the Wilks type of result continues to hold for testing homogeneity. It can also be shown
that the Wilks phenomenon is still valid for the sieve likelihood ratio in the heteroscedastic model with
$\sigma^2(x, u) = \sigma^2 v(x, u)$, bearing in mind that sieve likelihood ratio statistics are now based on weighted residual
sum of squares.

5 Extensions

The Wilks type of results hold not only for the various problems that we have studied. They should be valid
for nearly all regular nonparametric testing problems. In this section, we mention various possible extensions
to indicate their versatility.
5.1 Generalized varying coefficient models

The inferences on generalized varying coefficient models have been empirically studied by Hastie and Tibshirani (1993) and Cai, Fan and Li (1998). The results in the previous sections can be directly extended to this setting.

Consider a generalized varying-coefficient model with the following log-likelihood function

\[l\{g^{-1}(\eta(x, u)), y\} = g_0(g^{-1}(\eta(x, u)))y - b(g_0(g^{-1}(\eta(x, u)))) \]

where \(\eta(x, u) = g(m(x, u)) = A(u)^T x \), \(g \) is called a link function and \(g_0 = b' \) is the canonical link. Poisson regression and logistic regression are two prototype examples.

Define

\[
\begin{align*}
 l(g^{-1}(s), y) &= g_0(g^{-1}(s))y - b(g_0(g^{-1}(s))), \\
 q_1(s, y) &= \frac{\partial l(g^{-1}(s), y)}{\partial s} = \frac{g_0'(s)}{g'(s)}(y - b'(s)), \\
 q_2(s, y) &= \frac{\partial^2 l(g^{-1}(s), y)}{\partial s^2} = \frac{g_0''(s)}{g''(s)}(y - g^{-1}(s)) - \frac{g_0'(s)}{g'(s)}^2, \\
 q_3(s, y) &= \frac{\partial^3 l(g^{-1}(s), y)}{\partial s^3} = \frac{g_0'''(s)}{g'''(s)}(y - g^{-1}(s)) - 2\frac{g_0''(s)}{g''(s)} - \frac{g_0''(s)}{g''(s)}.
 \end{align*}
\]

In particular, when \(g = g_0 \) is the canonical link, we have

\[q_2(s, y) = -b''(s), \quad q_3(s, y) = -b'''(s). \]

As in Section 3, we can define a local linear estimator \(\hat{A} \) for \(A \). Lemma 7.5 yields the following asymptotic representation for \(\hat{A} : \)

\[\hat{A}(u_0) - A(u_0) = r_n^2 \Gamma(u_0)^{-1} \sum_{i=1}^n \varepsilon_i X_i K((U_i - u_0)/h)(1 + o_p(1)) + H_n(u_0)(1 + o_p(1)), \]

where

\[
\begin{align*}
 \Gamma(u_0)^{-1} &= -E[q_2(A^T(u_0)X, Y)XX^T|U = u_0]f(u_0), \\
 \varepsilon_i &= q_1(A(U_i)^T X_i, Y_i), \\
 H_n(u_0) &= r_n^2 \Gamma(u_0)^{-1} \sum_{i=1}^n [q_1(A(U_i)^T X_i, Y_i) - q_1(A(U_i)^T X_i, Y_i)]X_i K((U_i - u_0)/h)(1 + o_p(1)).
\end{align*}
\]

The sieve likelihood ratio for testing the null hypothesis \(H_0 : A = A_0 \) is defined as

\[\lambda_{n_0}(A_0) = -\sum_{i=1}^n [l\{g^{-1}(A(U_i)^T X_i), Y_i\} - l\{g^{-1}(A(U_i)^T X_i), Y_i\}]. \]

The following technical conditions are needed:

Condition (B)

\((B1) \quad E|q_1(A(U)^T X, Y)|^4 < \infty. \)

\((B2) \quad E[q_2(A(U)^T X, Y)|X = x, U = u] \) and \(E[q_2(A(U)^T X)XX^T|U = u] \) are both Lipschitz continuous.
(B3) The function \(q_2(s, y) < 0 \) for \(s \in R \) and \(y \) in the range of the response variable. For some function \(q_i(y), s_i \in C, i = 1, 2 \), \(|q_2(s_1, y) - q_2(s_2, y)| \leq q_i(y)|s_1 - s_2| \). Further, for some constant \(\xi > 2 \),

\[
E \{ \sup_{u_0} |q_2(\theta(u_0, X, U), Y)| \| XX^\top \| \}^\xi < \infty, \quad Eq_i(y)\|X\|^2 < \infty.
\]

Set

\[
R_{n10g} = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \varepsilon_i A_0^\top(U_i)^\top X_i \int t^2 K(t) dt (1 + O(h) + O(n^{-1/2})),
\]

\[
R_{n20g} = -\frac{1}{2} \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \varepsilon_i X_i^\top \Gamma^{-1}(U_i) A_0^\top(U_i)^\top E(q_2(A_0^\top(X)X|X)|U_i) w_0,
\]

\[
R_{n30g} = -\frac{1}{8} E A_0^\top(U)^\top q_2(A_0(U)^\top X, Y) XX^\top A_0^\top(U) w_0 (1 + O(n^{-1/2})),
\]

where \(w_0 = \int \int t^2 (s + t^2) K(t) K(s + t) dt ds \). Note that both \(R_{n10g} \) and \(R_{n20g} \) are asymptotic normal and hence stochastically bounded. Let \(d_{1ng} = nh^4 R_{n30g} - n^{1/2} h^2 (R_{n10g} - R_{n20g}) \). Then, \(d_{1ng} = nh^4 R_{n30g} (1 + o_p(1)) \) if \(n^{1/2} h^2 \to \infty \). The following theorem shows that Wilks type of results continue to hold for generalized varying coefficient models.

Theorem 10 Under Conditions (A1) - (A3) and (B1) - (B3), as \(h \to 0 \) and \(nh^{3/2} \to \infty \), we have the following asymptotic null distribution:

\[
\sigma_n^{-1}(\lambda_{ng}(A_0) - \mu_n + d_{1ng}) \overset{D}{\to} N(0, 1).
\]

Furthermore, if \(A \) is linear or \(nh^{3/2} \to 0 \), then as \(nh \to \infty \), \(r_K \lambda_{ng}(A_0) \overset{a}{\sim} \chi^2_{r_K \mu_n} \), where \(\mu_n \) and \(r_K \) are given in Theorem 5.

Extensions of the other theorems and the remarks in Section 3 are similar. In particular the optimal minimax rate and the optimal bandwidth are the same as those in Section 3. The sieve likelihood ratio tests can be employed to check the inhomogeneity of the coefficient functions and significance of variables in the generalized varying-coefficient models. The related theorems in Section 4 hold true after some mild modifications. The details are omitted.

5.2 Additive models

Consider the additive model (1.1) and the following problem

\[
H_0 : m_1 \equiv 0 \iff H_1 : m_1 \neq 0
\]

with \(m_2, \cdots, m_p \) are completely unknown. One can use the local linear estimators proposed in Fan, Härdle and Mammen (1998) or other methods to build sieve likelihood ratio tests. The results in the previous sections can be extended to this case. A rigorous justification of the statement is beyond the scope of this paper.

5.3 Empirical likelihoods

As pointed out in the introduction, neither Owen’s empirical likelihood nor its extension, random sieve likelihood [Shen, Shi and Wong (1999)] can be directly used to make inference on a nonparametric regression model.
function. However, the idea of sieve empirical likelihood [Zhang and Gijbels (1999)] can be effective in this situation. In a forthcoming manuscript, Fan, Liu and Zhang (1999) have developed the corresponding theory. The advantages of sieve empirical likelihood ratios include that no parametric models are needed for stochastic errors and that it is optimal in some sense and adapts automatically for inhomogeneous stochastic errors. The main disadvantage is that it requires intensive computation.

6 Discussion

6.1 Other tests

There are many nonparametric tests designed for certain specific problems. Most of them are in univariate nonparametric regression setting. See Section 1.5 for an overview of the literature. While they can be powerful for their problems where the tests were designed, extensions of these tests to multivariate setting can pose some challenges. Further, these tests are usually not distribution free, when null hypotheses involve nuisance functions. This would hamper their applicability.

Nonparametric maximum likelihood ratio tests are a natural alternative. Usually, they do usually exist. If they do, they are hard to find. Further, as shown in Section 2.2, they are not optimal. For this reason, they can not be a generic and powerful method.

6.2 Conclusions

The sieve likelihood method is widely applicable. It applies not only to univariate setting, but also to multivariate nonparametric problems. It is ready to use because of the Wilks phenomenon. It is powerful since it achieves optimal rates of convergence. It can also be adaptively minimax when tuning parameters are properly tuned (Section 2.4). The tuning method for local polynomial based sieve likelihood ratio test can be surprisingly simple. Motivated by the adaptive Neyman test constructed in Fan (1996), when the null hypothesis is linear, an adaptive construction of the sieve likelihood would naturally be

\[T_{ASL}^* = \max_{h \in [n^{-\alpha}, n^{-1}]} \frac{r(h)\lambda_n(h) - d(h)}{\sqrt{2l(h)}}, \text{ for some } a, b > 0, \quad (6.1) \]

where \(r(h) \) is the normalizing constant, \(\lambda_n(h) \) is the sieve likelihood ratio test and \(d(h) \) is the degrees of freedom. Therefore, the sieve likelihood is a very useful principle for all nonparametric hypothesis testing problems.

While we have observed the Wilks phenomenon and demonstrated it for a few useful cases, it is impossible for us to verify the phenomenon for all nonparametric hypothesis testing problems. The Wilks phenomenon needs to be checked for other problems that have not been covered in this paper. More work is needed in this direction.

7 Proofs

Proof of Lemma 2.1. For each given \(\xi_n,c = cn^{-2k/(2k+1)} \) \((c > 0)\), under the null hypothesis (2.3), by using the mean-variance decomposition, we have

\[F(\xi_{n,c}) = n^{-1} \sum j^{2k}(1 + j^{2k} \xi_{n,c})^{-2} + O_p \left[n^{-1} \left\{ \sum j^{4k}(1 + j^{2k} \xi_{n,c})^{-4} \right\}^{1/2} \right]. \quad (7.1) \]
Note that \(g_n(x) = \frac{e^{2k}}{(1 + e^{2k}x^2)^{\frac{3}{2}}} \) is increasing for \(0 \leq x \leq \xi^{-1/(2k)} \) and decreasing for \(x \geq \xi^{-1/(2k)} \). By using the unimodality of \(g_n \) and approximating discrete sums by their corresponding integrals, one can show that
\[
n^{-1} \sum_j j^{2k}(1 + j^{2k} \xi_{n, c})^{-2} = c^{-2/(2k+1)} \int_0^\infty \frac{y^{2k}}{1 + y^{2k}} dy + O(n^{-1/(2k+1)}). \tag{7.2}
\]

Using the same arguments as those obtaining (7.2), we have
\[
n^{-1} \{ \sum j^{4k}(1 + j^{2k} \xi_{n, c})^{-4} \}^{1/2} = O[n^{-1/(2(2k+1))}].
\]

This together with (7.1) and (7.2) yield
\[
F(\xi_{n, c}) = (c_0/c)^{(2k+1)/2} + O_p(n^{-1/(2(2k+1))}),
\tag{7.3}
\]
where \(c_0 = (\int_0^\infty y^{2k}(1 + y^{2k})^{-2} dy)^{2k/(2k+1)} \).

For any \(\varepsilon > 0 \), since the function \(F(x) \) is strictly decreasing,
\[
P(|y^{2k/(2k+1)}(\hat{\xi} - \xi_{n, c})| > \varepsilon) = P(F(\hat{\xi}) < F(\xi_{n, c} + \varepsilon)) + P(F(\hat{\xi}) > F(\xi_{n, c} - \varepsilon)) = o(1),
\]
which implies \(\hat{\xi} - \xi_{n, c} = o_p(n^{-2k/(2k+1)}) \). This completes the proof.

Proof of Theorem 1. Define the \(j \)-th coefficients in \(F(\xi) \) and \(\lambda^*_n \) as
\[
F(j; \xi) = \frac{j^{2k}}{(1 + j^{2k} \xi)^2}, \quad \lambda(j; \xi) = \frac{1 + j^{2k} \xi}{(1 + j^{2k} \xi)^2}.
\]

Then
\[
F'(j; \xi) = -\frac{2j^{4k}}{(1 + j^{2k} \xi)^3}, \quad \lambda'(j; \xi) = -\frac{2j^{4k} \xi}{(1 + j^{2k} \xi)^3} = \xi F'(j; \xi).
\tag{7.4}
\]

Let \(c_0 \) be defined the same as in Lemma 2.1. For any \(\eta_{n,j} \) between \(\hat{\xi} \) and \(\xi_{n, c} \), it can easily be shown that
\[
|F'(j; \eta_{n,j}) - F'(j; \xi_{n,c})| = |F'(j; \xi_{n,c})| o_p(1)
\tag{7.5}
\]
uniformly in \(j = 1, 2, \ldots \) and that for any \(\zeta_{n,j} \) between \(\hat{\xi} \) and \(\xi_{n, c} \),
\[
|\lambda'(j; \zeta_{n,j}) - \lambda'(j; \xi_{n,c})| = |\lambda'(j; \xi_{n,c})| o_p(1),
\tag{7.6}
\]
uniformly in \(j = 1, 2, \ldots \).

Let \(\lambda_n(\xi) = \frac{1}{2} \sum_{j=1}^\infty \frac{1 + 2j^{2k} \xi}{(1 + j^{2k} \xi)^2} \). By using Taylor’s expansion together with (7.4), (7.5) and (7.6), under the null hypothesis (2.3),
\[
\lambda_n = \frac{1}{2} \sum_{j=1}^\infty \left[\lambda(j; \xi_{n,c}) + (\hat{\xi} - \xi_{n,c}) \lambda'(j; \xi_{n,c}) \right] \epsilon_j^2
\]
\[
= \lambda_n(\xi_{n,c}) + [F(\hat{\xi}) - F(\xi_{n,c})] \frac{1}{2} \sum_{j=1}^\infty \lambda'(j; \xi_{n,c}) \epsilon_j^2 (1 + o_p(1))
\]
\[
= \lambda_n(\xi_{n,c}) + [1 - F(\xi_{n,c})] \frac{1}{2} \xi_{n,c} + o_p(n^{1/(2(2k+1))} + o_p(n^{1/(2(2k+1))}).
\tag{7.7}
\]
Define \(\lambda_{n,1} = \frac{1}{2} \sum_{j=1}^{\infty} \{1 + j^{2k} \xi_{n,c_0} \}^{-1} \xi_j^2 \) in (7.7) and \(V_n = \frac{1}{2} \sum_{j=1}^{n} \{1 + j^{2k} \xi_{n,c_0} \}^{-1} \xi_j^2 \), we have

\[
\frac{\max_{1 \leq j \leq n} \{1 + j^{2k} \xi_{n,c_0} \}^{-1}}{\sqrt{\sum_{j=1}^{n} \{1 + j^{2k} \xi_{n,c_0} \}^{-2}}} \leq \{ \sum_{j=1}^{n} \{1 + j^{2k} \xi_{n,c_0} \}^{-2} \}^{-1/2} = O(\xi_{n,c_0}^{-2}) \to 0,
\]

which implies that \(\frac{V_n - E(V_n)}{\sqrt{\text{Var}(V_n)}} \xrightarrow{L} N(0,1) \) by Lemma 2.1 of Huber (1973). Note that

\[
\text{var}(\lambda_{n,1} - V_n) \leq \frac{1}{2} \int_{0}^{\infty} \frac{dx}{x^2} \leq \frac{1}{2} \int_{0}^{\infty} \frac{dx}{x^{2k+1}} = O(\xi_{n,c_0}^{-2} n^{-(4k-1)}).
\]

Hence

\[
\frac{\text{var}(\lambda_{n,1} - V_n)}{\text{var}(\lambda_{n,1})} = O(\xi_{n,c_0}^{-2} n^{-(4k-1)}) \to 0.
\]

This implies that

\[
\frac{\lambda_{n,1} - E(\lambda_{n,1})}{\sqrt{\text{var}(\lambda_{n,1})}} \xrightarrow{L} N(0,1)
\]

[by Theorem 3.2.15 of Randles and Wolfe (1979)], where

\[
E(\lambda_{n,1}) = 2^{-1} \xi_{n,c_0}^{-1/(2k)} \int_{0}^{\infty} \frac{dy}{(1 + y^{2k})} + O(1), \quad \text{var}(\lambda_{n,1}) = 2^{-1} \xi_{n,c_0}^{-1/(2k)} \int_{0}^{\infty} \frac{dy}{(1 + y^{2k})^2} + O(1).
\]

This together with (7.7) yield

\[
\lambda_{n,1}^* = 2^{-1} \xi_{n,c_0}^{-1/(2k)} n^{1/(2k+1) + \frac{1}{2}} \int_{0}^{\infty} \frac{1 + 2y^{2k}}{(1 + y^{2k})^2} \frac{dy}{(1 + y^{2k})^2} \xrightarrow{L} N(0,1).
\]

Namely, \(r_k \lambda_{n,1}^* \sim \chi_n^2 \), where

\[
r_k = 2 \int_{0}^{\infty} \frac{1 + 2y^{2k}}{(1 + y^{2k})^2} \frac{dy}{(1 + y^{2k})^2} \left(\int_{0}^{\infty} \frac{1}{(1 + y^{2k})^2} \frac{dy}{(1 + y^{2k})^2} \right)^{-1},
\]

\[
a_n = 2^{-1} r_k c_0^{-1/(2k)} \int_{0}^{\infty} \frac{1 + 2y^{2k}}{(1 + y^{2k})^2} \frac{dy}{(1 + y^{2k})^2} n^{1/(2k+1)}.
\]

Finally, by using

\[
\int_{0}^{\infty} \frac{dy}{(1 + y^{2k})} = \frac{2k \sin(\frac{\pi}{2k})}{\pi}, \quad \int_{0}^{\infty} \frac{dy}{(1 + y^{2k})^2} = \frac{(2k - 1)}{4k^2 \sin(\frac{\pi}{2k})},
\]

\[
\int_{0}^{\infty} \frac{dy}{(1 + y^{2k})^3} = \frac{(2k - 1)(4k - 1)}{16k^3 \sin(\frac{\pi}{2k})}, \quad \int_{0}^{\infty} \frac{dy}{(1 + y^{2k})^4} = \frac{(2k - 1)(4k - 1)(6k - 1)}{96k^4 \sin(\frac{\pi}{2k})},
\]

we obtain

\[
r_k = \frac{4k + 2}{2k - 1}, \quad a_n = \frac{(2k + 1)^2}{2k - 1} \left[\frac{\pi}{4k^2 \sin(\frac{\pi}{2k})} \right]^{2k/(2k+1)} n^{1/(2k+1)}.
\]

This completes the proof.

Proof of Theorem 2. Take \(j_{n}^{-k} = n^{-(k+\theta)/(2k+1)} \). Let \(\theta \) be a vector whose \(j_{n} \)-th position is \(j_{n}^{-k} \) and the rest are zero. Then, \(\theta \in F_k \) and \(\|\theta\| = n^{-(k+\theta)/(2k+1)} \). For \(\xi_{n,c} = cn^{-2k/(2k+1)} \), we have

\[
\frac{1}{2} \sum_{j=1}^{\infty} \{1 + j^{2k} \xi_{n,c} \}^{-1} \xi_j^2 = cn^{2d/(2k+1)}.
\]
Under this specific alternative, by using model (2.2), we have for $d > 1/8$

$$F(\xi_{n,c}|H_0) + \frac{j_n^{2k}}{(1 + j_n^{2k}\xi_{n,c})^2}(2j_n^{-k}n^{-1/2}\varepsilon_{jn} + j_n^{-2k}) = F(\xi_{n,c}|H_0) + o_p(n^{-1/(2(k+1))}),$$

where $F(\xi_{n,c}|H_0) = n^{-1}\sum_{j=1}^{\infty} \frac{\hat{\beta}_j}{(1 + j_n^{2k}\xi_{n,c})^2}$. By the arguments as those in the proof of Lemma 2.1, one can see that

$$\hat{\xi} = \xi_{n,c}(1 + o_p(1)),$$

where $\hat{\xi}$ solves $F(\hat{\xi}) = 1$.

Next, consider the likelihood ratio statistic λ_n^* under the alternative hypothesis. Let

$$\lambda_{n,0} = \frac{1}{2} \sum_j \left(1 - \frac{j_n^{4k}\hat{\xi}_j^2}{(1 + j_n^{2k}\hat{\xi}_j)^2}\right) \varepsilon_j^2.$$

Then for $d > 1/8$,

$$\lambda_n^* = \lambda_{n,0} + \frac{n}{2} \left(1 - \frac{j_n^{4k}\hat{\xi}_j^2}{(1 + j_n^{2k}\hat{\xi}_j)^2}\right) (2j_n^{-k}n^{-1/2}\varepsilon_{jn} + j_n^{-2k}) = \lambda_{n,0} + o_p(n^{1/(2(k+1))}).$$

By similar proof of Theorem 1, $r_k\lambda_{n,0} \sim \chi^2_{a_n}$, which entails that

$$P\{r_k\lambda_n^* > a_n + z_\alpha(2a_n)^{1/2} | \theta\} = \alpha + o(1).$$

This finishes the proof.

Proof of Theorem 3. This first part of result follows directly from the central limit theory using similar arguments to those in the proof of Theorem 1 for $\lambda_{n,1}$. We now establish the power of the test. Under the alternative hypothesis,

$$E(r_k^* \lambda_n | \theta) = a_n' + O(1) + r_k' \sum_{j=1}^{\infty} \left(1 - \frac{j_n^{4k}\hat{\xi}_j^2}{(1 + j_n^{2k}\hat{\xi}_j)^2}\right) n\theta_j^2/2$$

and

$$\text{var}(r_k^* \lambda_n | \theta) = 2a_n' + b_n' + O(1),$$

where $b_n' = r_n' \sum_{j=1}^{\infty} \left(1 - \frac{j_n^{4k}\hat{\xi}_j^2}{(1 + j_n^{2k}\hat{\xi}_j)^2}\right)^2 n\theta_j^2$. Thus, it follows from the Chebychev's inequality that

$$P(r_k^* \lambda_n > a_n' + z_\alpha(2a_n')^{1/2} | \theta)$$

$$= P\left\{ r_k^* \lambda_n - \frac{n}{\text{var}(r_k^* \lambda_n | \theta)} \text{var}(r_k^* \lambda_n | \theta)^{1/2} \geq (2a_n' + b_n')^{-1/2} \{a_n' + z_\alpha(2a_n')^{1/2} - r_k^* E(\lambda_n | \theta) \} \right\}$$

$$\geq 1 - a_n'^{-2},$$

if $(2a_n' + b_n')^{-1/2} \{a_n' + z_\alpha(2a_n')^{1/2} - r_k^* E(\lambda_n | \theta) \} \leq -d_n$ for some $d_n > 0$. Thus, Theorem 3 holds, if we show that

$$\inf_{\theta \in \Theta_n: \|\theta\| \geq \varepsilon_n n^{-1/(4k+1)}} \sum_{j=1}^{\infty} \left(1 - \frac{j_n^{4k}\hat{\xi}_j^2}{(1 + j_n^{2k}\hat{\xi}_j)^2}\right) n\theta_j^2 \rightarrow \infty, \quad (7.8)$$

23
and

\[
\inf_{\theta \in \mathcal{F}_k : \|\theta\|^2 \geq c_n n^{-2k/(4k+1)} } b_{n^{-1/2}}^\prime \sum_{j=1}^\infty \left(1 - \frac{j^{4k} \xi_n^2}{(1 + j^{2k} \xi_n)^2} \right) n \theta_j^2 \to \infty. \tag{7.9}
\]

Note that for each \(\theta \in \mathcal{F}_k \),

\[
\sum_{j=1}^\infty \left(1 - \frac{j^{4k} \xi_n^2}{(1 + j^{2k} \xi_n)^2} \right) \theta_j^2 \geq c_n^2 n^{-4k/(4k+1)} - \xi_n \max_{x \geq 0} \frac{x}{(1 + x)^2} \sum_{j=1}^\infty j^{2k} \theta_j^2 \geq c_n^2 n^{-4k/(4k+1)}/2. \tag{7.10}
\]

Hence, (7.8) holds.

To show (7.9), we note that \(\left(1 - \frac{j^{4k} \xi_n^2}{(1 + j^{2k} \xi_n)^2} \right) \in (0, 1) \). It follows from (7.10) that

\[
b_{n^{-1/2}}^\prime \sum_{j=1}^\infty \left(1 - \frac{j^{4k} \xi_n^2}{(1 + j^{2k} \xi_n)^2} \right) n \theta_j^2 \geq r_k^-1 n^{1/2} \left(\sum_{j=1}^\infty \left(1 - \frac{j^{4k} \xi_n^2}{(1 + j^{2k} \xi_n)^2} \right) \theta_j^2 \right)^{1/2} \geq r_k^-1 n^{1/2} c_n n^{-2k/(4k+1)}/2,
\]

which tends to \(\infty \). This completes the proof.

Proof of Theorem 4. For any given \(m \), when \(n \) is sufficiently large, we have

\[
P[T_{AN} > - \log \{- \log(1 - \alpha)\}|\theta] \geq P[T_{AN} > 2(\log \log n)^{1/2}] \geq P\{ \sum_{j=1}^m (n \theta_j^2 - 1)/\sqrt{2m n} \geq 2(\log \log n)^{1/2} \}. \tag{7.11}
\]

Note that the sequence of random variables

\[
\{ \sum_{j=1}^m (n \theta_j^2 - 1)/\sqrt{2m n} \sum_{j=1}^m \theta_j^2 \}\}
\]

have means zero and variance one. By normalizing the random variables in (7.11), one can easily see that the power of the adaptive Neyman test is at least

\[
P \left\{ \sum_{j=1}^m (n \theta_j^2 - 1)/\sqrt{2m n} \sum_{j=1}^m \theta_j^2 \right\}/(2m + 4n \sum_{j=1}^m \theta_j^2)^{1/2} \geq \left\{ 2 \sqrt{2m \log \log n - n \sum_{j=1}^m \theta_j^2 } \right\}/(2m + 4n \sum_{j=1}^m \theta_j^2)^{1/2} \}.
\]

Thus Theorem 4 holds via Chebychev inequality if we show that

\[
\inf_{\theta \in \mathcal{F}_k : \|\theta\|^2 \geq c_n n^{-2k}} \{ n \sum_{j=1}^m \theta_j^2 - 2 \sqrt{2m \log \log n} \} \to \infty, \tag{7.12}
\]

and

\[
\inf_{\theta \in \mathcal{F}_k : \|\theta\|^2 \geq c_n n^{-2k}} \{ n \sum_{j=1}^m \theta_j^2 - 2 \sqrt{2m \log \log n} \} \to \infty \tag{7.13}
\]

for some choice of \(m \).

Note that for any \(\theta \in \mathcal{F}_k \),

\[
\sum_{j=m+1}^\infty \theta_j^2 \leq m^{-2k} \sum_{j=m+1}^\infty j^{2k} \theta_j^2 \leq m^{-2k}.
\]

\[24\]
Thus,
\[m^{-1/2} \sum_{j=1}^{m} \theta_j^2 \geq m^{-1/2} (c_n \delta_n)^2 - m^{-2k-1/2}. \]

Maximizing the above expression with respect to \(m \) leads to the choice of \(m = O((c_n \delta_n)^{-1/k}) \), we have
\[m^{-1/2} \sum_{j=1}^{m} \theta_j^2 \geq O\{c_n^{4k+1}/(2k) n^{-1} (\log \log n)^{1/2}\}, \tag{7.14} \]
and
\[n \sum_{j=1}^{m} \theta_j^2 \geq n((c_n \delta_n)^2 - m^{-2k}) = O\{nc_n^{4k}/(4k+1) (\log \log n)^{2k/(4k+1)}\}. \tag{7.15} \]

Since \(c_n \to \infty \), the conclusion (7.12) holds from (7.14). And (7.13) follows from
\[(n \sum_{j=1}^{m} \theta_j^2)^{-1/2} \left\{ n \sum_{j=1}^{m} \theta_j^2 - 2\sqrt{2m \log \log n} \right\} = (n \sum_{j=1}^{m} \theta_j^2)^{1/2} (1 + o(1)) \]
and (7.15). This completes the proof.

The following four lemmas are used in the proofs for the theorems in Sections 3, 4, and 5.

Lemma 7.1 Suppose the matrix \(\Psi = (\psi_{ij})_{i,j=1}^{n} \) is symmetric, \(w_1, \ldots, w_n \) are independent random variables, with \(1 \sim 4 \)th moments \(\text{E}w_i = 0, \text{E}w_i^2 = u_2(i), \text{E}w_i^3 = u_3(i), \text{E}w_i^4 = u_4(i) \). Let \(W = (w_1, \ldots, w_n)^T \). Then
\[E(W^T \Psi W)^2 = \sum_{i=1}^{n} \psi_{ii}^2 u_4(i) - 3 u_2^2(i) + \left[\sum_{i=1}^{n} \psi_{ii} u_2(i) \right]^2 + 2 \sum_{i,j=1}^{n} \psi_{ij}^2 u_2(i) u_2(j). \]

Proof. Easy.

Let \(r_n = 1/\sqrt{n\delta} \). Denote by
\[\alpha_n(u_0) = r_n^2 \Gamma(u_0)^{-1} \sum_{i=1}^{n} \varepsilon_i X_i K((U_i - u_0)/h), \tag{7.16} \]
\[R_n(u_0) = r_n^2 \sum_{i=1}^{n} \Gamma(u_0)^{-1} (A(U_i)^T X_i - \beta(u_0)^T Z_i) X_i K((U_i - u_0)/h), \tag{7.17} \]
\[R_{n1} = \sum_{k=1}^{n} \varepsilon_k R_n(U_k)^T X_k, \]
\[R_{n2} = \sum_{k=1}^{n} \alpha_n(U_k)^T X_k X_k^T R_n(U_k), \]
\[R_{n3} = \frac{1}{2} \sum_{k=1}^{n} R_n(U_k)^T X_k X_k^T R_n(U_k). \]
Lemma 7.2 Under Condition (A), as $h \to 0$, $nh \to \infty$,

$$R_{n1} = n^{1/2}h^2 R_{n10} + O(n^{-1/2}h),$$
$$R_{n2} = n^{1/2}h^2 R_{n20} + O(n^{-1/2}h),$$
$$R_{n3} = nh^4 R_{n30} + O(h^3).$$

Furthermore, $(n^{1/2}h^2)^{-1}R_{n1} = O_p(1)$, $(n^{1/2}h^2)^{-1}R_{n2} = O_p(1)$ and $(nh^4)^{-1}R_{n3} = O_p(1)$. $O_p(1)$ is uniform in $G_n \in \mathcal{G}_n$ in the following sense: For any $\delta > 0$, there exists $M > 0$ such that

$$\sup_{G_n \in \mathcal{G}_n} P(|O_p(1)| > M) \leq \delta.$$

Proof. It follows from some direct but tedious calculations.

Using Lemma 7.5, we can easily show the following Lemma.

Lemma 7.3 Let \hat{A} be the local linear estimator defined in Section 3. Then, under Condition (A), uniformly for $u_0 \in \Omega$,

$$\hat{A}(u_0) - A(u_0) = (\alpha_n(u_0) + R_n(u_0))(1 + o_p(1))$$

where $\alpha_n(u_0)$ and $R_n(u_0)$ are defined in (7.16) and (7.17).

Denote by

$$T_n = r_n^2 \sum_{k,i} \varepsilon_k \varepsilon_i \Lambda_i \Gamma(U_k)^{-1} X_k K((U_i - U_k)/h),$$
$$S_n = r_n^4 \sum_{i,j} \varepsilon_i \varepsilon_j \Lambda_i \sum_{k=1}^{n} \Gamma(U_k)^{-1} X_k X_i \Lambda_k \Gamma(U_k)^{-1} K((U_i - U_k)/h) X_j.$$

Lemma 7.4 Under Condition (A), as $h \to 0$, $nh^{3/2} \to \infty$,

$$T_n = \frac{1}{h}p K(0)\sigma^2 E f(U)^{-1} + \frac{1}{n} \sum_{k \neq i} \varepsilon_k \varepsilon_i \Lambda_i \Gamma(U_k)^{-1} X_k K_h(U_k - U_i) + o_p(h^{-1/2}),$$
$$S_n = \frac{1}{h}p \sigma^2 Ef^{-1}(U) \int K^2(t)dt + \frac{2}{nh} \sum_{i < j} \varepsilon_i \varepsilon_j \Lambda_i \sum_{k=1}^{n} \Gamma(U_k)^{-1} X_k X_i \Lambda_k \Gamma(U_k)^{-1} K((U_i - U_j)/h) X_j + o_p(h^{-1/2}),$$

with $K_h(\cdot) = K(\cdot/h)/h$.

Proof. The first equality is obvious. Here we focus on the second one. We use the following decomposition: $S_n = S_{n1} + S_{n2}$ with

$$S_{n1} = \frac{1}{(nh)^2} \sum_{i=1}^{n} \varepsilon_i^2 \Lambda_i \sum_{k=1}^{n} \Gamma(U_k)^{-1} X_k X_i \Lambda_k \Gamma(U_k)^{-1} K^2((U_i - U_k)/h) X_i$$
$$S_{n2} = \frac{1}{n^2} \sum_{i \neq j} \varepsilon_i \varepsilon_j \Lambda_i \sum_{k=1}^{n} \Gamma(U_k)^{-1} X_k X_i \Lambda_k \Gamma(U_k)^{-1} K_h(U_k - U_i) K_h(U_k - U_j) X_j.$$
It is easy to see that as $h \to 0$,

\[S_{n1} = o_p(h^{-1/2}) + O_p(n^{-3/2}h^{-2}) + V_n(1 + o(1)) + O_p\left(\frac{1}{nh^2}\right) \tag{7.18} \]

where

\[V_n = \frac{2}{n(n-1)} \sum_{1 \leq i < k \leq n} \sigma^2(X_i \Gamma(U_k)^{-1}X_k X_i \Gamma(U_k)^{-1}X_i + X_i \Gamma(U_k)^{-1}X_u X_i \Gamma(U_k)^{-1}X_k)K_k^2(U_k - U_i). \]

Using Hoeffding's decomposition for the variance of U-statistics [see, e.g., Koroljuk and Borovskich (1994)] and the following equalities

\[E X_i \Gamma(U_2)^{-1} X_i X_i \Gamma(U_2)^{-1}X_i X_i \Gamma(U_2)^{-1}X_i = \frac{1}{h}pE f^{-1}(U) \int K^2(t) dt (1 + o(h)); \]

\[E X_i \Gamma(U_1)^{-1} X_i X_i \Gamma(U_1)^{-1}X_i X_i \Gamma(U_1)^{-1}X_i = \frac{1}{h}pE f^{-1}(U) \int K^2(t) dt (1 + o(h)), \]

we obtain

\[\text{var}(V_n) = O\left(\frac{1}{n}\right) \sigma^2_n \]

with

\[\sigma^2_n \leq E \{E[(X_i \Gamma(U_2)^{-1} X_i X_i \Gamma(U_2)^{-1}X_i + X_i \Gamma(U_1)^{-1}X_i X_i \Gamma(U_1)^{-1}X_i X_i \Gamma(U_1)^{-1}X_i)K_k^2(U_k - U_i)|X_i, U_i]\}^2 \]

\[= O(h^{-2}). \]

Thus, $V_n = EV_n + o_p(h^{-1/2})$ as $nh \to \infty$ and $h \to 0$. This gives that

\[S_{n1} = \frac{1}{h}pE f^{-1}(U) \int K^2(t) dt + o_p(h^{-1/2}). \tag{7.19} \]

We now deal with the term S_{n2}. Decompose $S_{n2} = S_{n21} + S_{n22}$ with

\[S_{n21} = \frac{2}{n} \sum_{1 \leq i < j \leq n} \varepsilon_i \varepsilon_j \frac{1}{n} \sum_{k \neq i,j} \{\Gamma(U_k)^{-1} X_i \Gamma(U_k)^{-1}X_k \Gamma(U_k)^{-1}X_k K_k(U_k - U_i)K_k(U_k - U_j)\} \]

\[S_{n22} = K(0) \frac{1}{n^2 h} \sum_{i \neq j} \varepsilon_i \varepsilon_j \{X_i \Gamma(U_k)^{-1} X_i \Gamma(U_k)^{-1}X_i + X_i \Gamma(U_k)^{-1}X_i X_i \Gamma(U_k)^{-1}X_i \} K_k(U_k - U_j). \]

It can easily be shown that

\[\text{var}(S_{n22}) = O(1/n^2 h^2) = o(1/h) \]

which implies

\[S_{n22} = o_p(h^{-1/2}). \tag{7.20} \]

Let

\[Q_{ijk} = \Gamma^{-1}(U_k) X_i X_i \Gamma(U_k)^{-1}K_k(U_k - U_i)K_k(U_k - U_j). \]

Note that

\[E[X_i \frac{1}{n} \sum_{k \neq i,j} (Q_{ijk} - E(Q_{ijk}|(U_i, U_j))))X_j] \]

\[\leq \text{tr}\left\{n^{-2} \sum_{k \neq i,j} E(Q_{ijk} X_i X_i Q_{ijk} X_i X_i)\right\} \]

\[= O(1/(nh^2)). \]
which leads to
\[S_{n21} = \frac{2(n-2)}{n^2} \sum_{1 \leq i,j \leq n} \varepsilon_i \varepsilon_j X_i^T E(Q_{ij|h} | (U_i, U_j)) X_j + o_p(h^{-1/2}). \] (7.21)
Combining (7.18) \sim (7.21), we complete the proof.

Proof of Theorem 5. Note that
\[
\frac{\text{RSS}_1}{n} = \sigma^2 (1 + O_p(n^{-1/2}) + O_p(h^{-1})).
\]
Then it follows from the definition that
\[
-\lambda_n(A_0) \sigma^2 = -r_n^2 \sum_{k=1}^{n} \varepsilon_k \left(\sum_{i=1}^{n} \varepsilon_i X_1^i \Gamma(U_k)^{-1} \right) X_k K((U_i - u_0)/h)
+ \frac{1}{2} r_n^4 \sum_{k=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \varepsilon_i \varepsilon_j X_i^j \Gamma(U_k)^{-1} X_k X_j \Gamma(U_k)^{-1} K((U_i - U_k)/h) K((U_j - U_k)/h)
- R_{n1} + R_{n2} + R_{n3} + O_p \left(\frac{1}{nh^2} \right).
\]
Applying Lemmas 7.2, 7.3 and 7.4, we get
\[
-\lambda_n(A_0) = -\mu_n + d_{1n} - W(n) h^{-1/2} / 2 + o_p(h^{-1/2})
\]
where
\[
W(n) = \frac{\sqrt{h}}{n \sigma^2} \sum_{j \neq l} \varepsilon_j \varepsilon_l [2K_h(U_j - U_l) - K_h * K_h(U_j - U_l)] X_j^i \Gamma(U_l)^{-1} X_i.
\]
It remains to show that
\[
W(n) \overset{L}{\rightarrow} N(0, v)
\]
with \(v = 2 \| 2K - K * K \|_{p}^2 EF^{-1}(U) \).

Define \(W_{jl} = \frac{\sqrt{h}}{n} b_n(j,l) \varepsilon_j \varepsilon_l / \sigma^2 \) (\(j < l\)), where \(b_n(j,l)\) is written in a symmetric form
\[
b_n(j,l) = a_1(j,l) + a_2(j,l) - a_3(j,l) - a_4(j,l),
\]
with
\[
a_1(j,l) = 2K_h(U_j - U_l) X_j^i \Gamma(U_l)^{-1} X_i, \quad a_2(j,l) = a_1(l,j),
a_3(j,l) = K_h * K_h(U_j - U_l) X_j^i \Gamma(U_l)^{-1} X_i, \quad a_4(j,l) = a_3(l,j).
\]
Then \(W(n) = \sum_{j<l} W_{jl}\). To apply Proposition 3.2 in de Jong (1987), we need to check:

1. \(W(n)\) is clean [see de Jong (1987) for the definition];
2. \(\text{var}(W(n)) \rightarrow v\);
3. \(G_I\) is of smaller order than \(\text{var}(W(n))\);
4. \(G_{II}\) is of smaller order than \(\text{var}(W(n))\);
(5) G_{IV} is of smaller order than $\text{var}(W(n))$,

where

$$G_I = \sum_{1 \leq i < j \leq n} EW_{ij}^4,$$

$$G_{II} = \sum_{1 \leq i < j < k \leq n} (EW_{ij}^2 W_{ik}^2 + EW_{jk}^2 W_{jk}^2 + EW_{ik}^2 W_{jk}^2),$$

$$G_{IV} = \sum_{1 \leq i < j < k < l \leq n} (EW_{ij} W_{ik} W_{jk} W_{kl} + EW_{ij} W_{il} W_{kl} + EW_{ik} W_{il} W_{jl} + EW_{ik} W_{jl} W_{kl} W_{jl}).$$

We now check each of the following conditions. Condition (1) follows directly from the definition.

To prove (2), we note that

$$\text{var}(W(n)) = \sum_{j < l} EW_{jl}^2.$$

Denote $K(t, m) = K * \cdots * K(t)$ as the m-th convolution of $K(\cdot)$ at t for $m = 1, 2, \cdots$. It can be shown by straightforward calculations that

$$Ea_1^2(j, l) \varepsilon_j^2 \varepsilon_l^2 = \frac{4\sigma^4}{h} K(0, 2) p Ef^{-1}(U)(1 + O(h)),$$

$$Ea_1(j, l) a_0(j, l) \varepsilon_j^2 \varepsilon_l^2 = \frac{2\sigma^4}{h} K(0, 3) p Ef^{-1}(U)(1 + O(h)),$$

$$Ea_2^2(j, l) \varepsilon_j^2 \varepsilon_l^2 = \frac{\sigma^4}{h} K(0, 4) p Ef^{-1}(U)(1 + O(h)).$$

Thus, it follows that

$$EW_{12}^2 \varepsilon_j^2 \varepsilon_l^2 = \frac{\sigma^4}{h} [16K(0, 2) - 16K(0, 3) + 4K(0, 4)] p Ef^{-1}(U)(1 + O(h))$$

which entails

$$v = 2 \int [2K(x) - K * K(x)]^2 \, dx \, p Ef^{-1}(U).$$

Condition (3) is proved by noting that

$$E[a_1(1, 2) \varepsilon_j^2]^4 = O(h^{-3}), \quad E[a_0(1, 2) \varepsilon_j^2]^4 = O(h^{-2}),$$

which implies that $EW_{12}^4 \varepsilon_j^2 = \frac{\sigma^4}{h} O(h^{-3}) = O(n^{-4}h^{-1})$. Hence $G_I = O(n^{-2}h^{-1}) = o(1)$.

Condition (4) is proved by the following calculation:

$$EW_{12}^2 W_{13}^2 = O(EW_{12}^2) = O(n^{-4}h^{-1}),$$

which implies that $G_{II} = O(1/(nh)) = o(1)$.

To prove (5), it suffices to calculate the term $EW_{12} W_{23} W_{34} W_{41}$. By straightforward calculations,

$$Ea_1(1, 2) a_1(2, 3) a_1(3, 4) a_1(4, 1) \varepsilon_j^2 \varepsilon_l^2 \varepsilon_3^2 \varepsilon_4^2 = O(h^{-1}),$$

$$Ea_1(1, 2) a_1(2, 3) a_0(3, 4) a_0(4, 1) \varepsilon_j^2 \varepsilon_l^2 \varepsilon_3^2 \varepsilon_4^2 = O(h^{-1}),$$

$$Ea_1(1, 2) a_1(2, 3) a_3(3, 4) a_0(4, 1) \varepsilon_j^2 \varepsilon_l^2 \varepsilon_3^2 \varepsilon_4^2 = O(h^{-1}),$$

$$Ea_1(1, 2) a_0(2, 3) a_3(3, 4) a_0(4, 1) \varepsilon_j^2 \varepsilon_l^2 \varepsilon_3^2 \varepsilon_4^2 = O(h^{-1}),$$

$$Ea_3(1, 2) a_3(2, 3) a_3(3, 4) a_0(4, 1) \varepsilon_j^2 \varepsilon_l^2 \varepsilon_3^2 \varepsilon_4^2 = O(h^{-1}),$$

$$Ea_3(1, 2) a_3(2, 3) a_3(3, 4) a_0(4, 1) \varepsilon_j^2 \varepsilon_l^2 \varepsilon_3^2 \varepsilon_4^2 = O(h^{-1}),$$

29
and similarly for the other terms. So

\[EW_{12} W_{23} W_{34} W_{41} = n^{-4} h^2 O(h^{-1}) = O(n^{-4} h) \]

which yields

\[G_{1V} = O(h) = o(1). \]

The proof is completed.

Proof of Theorem 6. Analogously to the arguments for \(\bar{A} \), we get

\[
(\bar{A}_2(u_0) - A_2(u_0)) = r_n^2 \bar{\Gamma}_{22}^{-1}(u_0) \sum_{k=1}^{n} \{ \bar{Y}_k - A_1(U_k)^\text{T} \bar{X}_k^{(1)} + \bar{y}_2(u_0, \bar{X}_k^{(2)}, U_k) \bar{X}_k^{(2)} K((U_k - u_0)/h)(1 + o_p(1)) \}
\]

where \(\bar{y}_2(u_0, \bar{X}_k^{(2)}, U_k) = A_2(u_0)^\text{T} \bar{X}_k^{(2)} + A'_2(u_0)^\text{T} \bar{X}_k^{(2)} (U_k - u_0) \). Note that

\[\lambda_{n,2}(A_{10}) = \lambda_n(A_0) - \lambda_{n,2}(A_{20}|A_{10}) \]

Similarly to the proof of Theorem 5, under \(H_{Gn} \), we have

\[
\lambda_{n,2}(A_{20}|A_{10}) \sigma^2 = r_n^2 \sum_{k=1}^{n} \sum_{i=1}^{n} \varepsilon_i K((U_i - U_k)/h) \bar{X}_i^{(2)} \bar{\Gamma}_{22}^{-1}(U_k) \bar{X}_k^{(2)} \varepsilon_k
\]

\[
- \frac{1}{2} r_n^4 \sum_{k=1}^{n} \sum_{i=1}^{n} \varepsilon_i K((U_i - U_k)/h) \bar{X}_i^{(2)} \bar{\Gamma}_{22}^{-1}(U_k) \bar{X}_k^{(2)} K((U_k - u_0)/h) + o_p(h^{-1/2}) - d_{1n},
\]

where \(d_{1n} \) is defined by replacing \(X \) and \(\Gamma \) by \(X^{(2)} \) and \(\Gamma_{22} \) in \(d_{1n} \).

Observe that

\[
\bar{X}_i^{(1)^\text{T}} \Gamma(U_k)^{-1} \bar{X}_k = \begin{pmatrix} \bar{X}_i^{(1)^\text{T}} \bar{X}_k^{(2)} \\ \bar{X}_i^{(1)^\text{T}} \bar{\Gamma}_{22}^{-1}(U_k) \bar{X}_k^{(2)} \end{pmatrix}
\]

\[
\times \begin{pmatrix} \Gamma_{11}^{-1}(U_k) \\ -\Gamma_{12}^{-1}(U_k) \Gamma_{21}(U_k) \Gamma_{12}^{-1}(U_k) \\ -\Gamma_{22}^{-1}(U_k) \Gamma_{21}(U_k) \Gamma_{12}^{-1}(U_k) \end{pmatrix}
\]

\[
= \begin{pmatrix} \bar{X}_i^{(1)^\text{T}} - \bar{X}_i^{(2)^\text{T}} \Gamma_{22}^{-1}(U_k) \Gamma_{21}(U_k) \Gamma_{12}^{-1}(U_k) \bar{X}_k^{(1)} - \Gamma_{12}(U_k) \Gamma_{22}^{-1}(U_k) \bar{X}_k^{(2)} \\ \bar{X}_i^{(2)^\text{T}} \Gamma_{22}^{-1}(U_k) \bar{X}_k^{(2)} \end{pmatrix}
\]

Consequently,

\[
-\lambda_{n,2}(A_{10}) \sigma^2 = -r_n^2 \sum_{k=1}^{n} \varepsilon_k \bar{X}_i^{(1)^\text{T}} \Gamma(U_k)^{-1} \bar{X}_k K((U_i - U_k)/h) + o_p(h^{-1/2})
\]

\[
+ \frac{r_n^4}{2} \sum_{i,j} \varepsilon_i \varepsilon_j \bar{X}_i^{(1)^\text{T}} \left(\sum_{k=1}^{n} \Gamma(U_k)^{-1} \bar{X}_k \bar{X}_k^{(2)^\text{T}} \Gamma_2^{-1}(U_k) K((U_i - U_k)/h) \right)
\]

\[
\times K((U_j - U_k)/h) |X_j| + r_n^2 \sum_{k=1}^{n} \varepsilon_k \varepsilon_i \bar{X}_i^{(2)^\text{T}} \Gamma_{22}^{-1}(U_k) \bar{X}_k^{(2)^\text{T}} K((U_i - U_k)/h)
\]

\[
- \frac{r_n^4}{2} \sum_{i,j} \varepsilon_i \varepsilon_j \bar{X}_i^{(2)^\text{T}} \left(\sum_{k=1}^{n} \Gamma_{22}^{-1}(U_k) \bar{X}_k^{(2)^\text{T}} \Gamma_{22}^{-1}(U_k) K((U_i - U_k)/h) \right)
\]

\[= 30 \]
\[X = \sum_{k} \sum_{i} \varepsilon_k \varepsilon_i (X_i^{(1)} - \Gamma_{12}(U_k) \Gamma_{12}^{-1}(U_k) X_i^{(2)}) \Gamma_{11,2}^{-1}(U_k) \]
\[\Gamma_{11,2}(U_k)(X_i^{(1)} - \Gamma_{12}(U_k) \Gamma_{12}^{-1}(U_k) X_i^{(2)}) \Gamma_{11,2}^{-1}(U_k) \]
\[\times K((U_i - U_k)/h) + o_p(h^{-1/2}) \]
\[+ \sum_{k \neq i} \sum_{j} \varepsilon_i \varepsilon_j \sum_{k=1}^{n} (X_i^{(1)} - \Gamma_{12}(U_k) \Gamma_{12}^{-1}(U_k) X_i^{(2)}) \Gamma_{11,2}^{-1}(U_k) \]
\[\times X_k^{(1)} - \Gamma_{12}(U_k) \Gamma_{12}^{-1}(U_k) X_k^{(2)} \Gamma_{12}^{-1}(U_k) X_j^{(2)} \Gamma_{11,2}^{-1}(U_k) \]
\[\times K((U_i - U_k)/h) + o_p(h^{-1/2}) \]
\[+ R_{n4} + R_{n5} + o_p(h^{-1/2}) + d_{1n} - d_{1n*} \]

where

\[R_{n4} = \frac{1}{2} \sum_{i,j} \varepsilon_i \varepsilon_j \sum_{k=1}^{n} (X_i^{(1)} - \Gamma_{12}(U_k) \Gamma_{12}^{-1}(U_k) X_i^{(2)}) \Gamma_{11,2}^{-1}(U_k) \]
\[\times X_k^{(1)} - \Gamma_{12}(U_k) \Gamma_{12}^{-1}(U_k) X_k^{(2)} \Gamma_{12}^{-1}(U_k) X_j^{(2)} \Gamma_{11,2}^{-1}(U_k) \]
\[\times K((U_i - U_k)/h) + o_p(h^{-1/2}) \]
\[R_{n5} = \frac{1}{2} \sum_{i,j} \varepsilon_i \varepsilon_j \sum_{k=1}^{n} (X_i^{(1)} - \Gamma_{12}(U_k) \Gamma_{12}^{-1}(U_k) X_i^{(2)}) \Gamma_{11,2}^{-1}(U_k) \]
\[\times X_k^{(1)} - \Gamma_{12}(U_k) \Gamma_{12}^{-1}(U_k) X_k^{(2)} \Gamma_{12}^{-1}(U_k) X_j^{(2)} \Gamma_{11,2}^{-1}(U_k) \]
\[\times K((U_i - U_k)/h) + o_p(h^{-1/2}) \]

A simple calculation shows that as \(nh^{3/2} \rightarrow \infty \),
\[ER_{n4}^2 = O\left(\frac{1}{n^2 h^2} \right) = o(h^{-1}) \]
which yields \(R_{n4} = o_p(h^{-1/2}) \). Similarly, we can show \(R_{n5} = o_p(h^{-1/2}) \). Therefore,

\[-\lambda_n(A_{10}) = -\mu_n + v_n + \nu_2n - d_{2n} - \frac{W(n)h^{-1/2}}{2} + \sum_{k=1}^{n} c_n G_n^*(U_k) X_k \varepsilon_k / \sigma^2 + o_p(h^{-1/2}) \]

Proof of Theorem 7. Under \(H_{n1} \) and Condition (B), applying Theorem 5, we have

\[-\lambda_n(A_0) = -\mu_n + v_n + \nu_2n - d_{2n} - \frac{W(n)h^{-1/2}}{2} + \sum_{k=1}^{n} c_n G_n^*(U_k) X_k \varepsilon_k / \sigma^2 + o_p(h^{-1/2}) \]
where \(W(n) \) is defined in the proof of Theorem 5. The rest of the proof is similar to the proof of Theorem 5. The details are omitted. The proof is completed.

Proof of Theorem 8. For brevity, we only present case I in Remark 3.5. To begin with, we note that under \(H_{1n} : A = A_0 + G_n \) and under Condition (C), it follows from the Chebychev inequality that uniformly for \(h \to 0, nh^{3/2} \to \infty, \)

\[
-\lambda_n(A_0)\sigma^2 = -(\mu_n + W(n)h^{-1/2}/2)\sigma^2 + o_p(1)h^{-1/2} - \sum_{k=1}^{n} G_n(u_k)^\top X_k \varepsilon_k
\]

\[
-\frac{1}{2}\sum_{k=1}^{n}[G_n^\top(U_k)X_kX_k^\top G_n(U_k) - EG_n^\top(U)XX^\top G_n(U)]
\]

\[
-\frac{n}{2}EG_n^\top(U)XX^\top G_n(U) - R_{n1} + R_{n2} + R_{n3} + o_p(h^{-1/2})
\]

\[
= -\mu_n\sigma^2 - \sigma^2 W(n)h^{-1/2}/2 - \sqrt{nEG_n^\top(U)XX^\top G_n(U)}O_p(1)
\]

\[
-\frac{n}{2}EG_n^\top(U)XX^\top G_n(U)(1 + o_p(1)) - R_{n1} + R_{n2} + R_{n3},
\]

where \(\mu_n, W(n), R_{ni}, i = 1, 2, 3 \) are defined in the proof of Theorem 5 and its associated lemmas, and \(o_p(1) \) and \(O_p(1) \) are uniform in \(G_n \in G_n \) in a sense similar to that in Lemma 7.2. Thus,

\[
\beta(\alpha, G_n) = P\{\sigma_n^{-1}(-\lambda_n(A_0) + \mu_n) \geq c(\alpha)\}
\]

\[
= P\{\sigma_n^{-1}[-W(n)h^{-1/2}/2 - (R_{n1} - R_{n2} - R_{n3}) + \frac{n}{2}EG_n^\top(U)XX^\top G_n(U)(1 + o_p(1))]/\sigma^2 \geq c(\alpha)\}
\]

\[
= P_{1n} + P_{2n}
\]

with

\[
P_{1n} = P\{\sigma_n^{-1}[-W(n)h^{-1/2}/2 + n^{1/2}h^{5/2}b_{1n} + nh^{9/2}b_{2n} - nh^{1/2}b_{3n} \geq c(\alpha),
\]

\[
|b_{1n}| \leq M, |b_{2n}| \leq M \},
\]

\[
P_{2n} = P\{\sigma_n^{-1}[-W(n)h^{-1/2}/2 + n^{1/2}h^{5/2}b_{1n} + nh^{9/2}b_{2n} - nh^{1/2}b_{3n} \geq c(\alpha),
\]

\[
|b_{1n}| > M, |b_{2n}| > M \}.
\]

and

\[
b_{1n} = (n^{1/2}h^{5/2}\sigma_n\sigma^2)^{-1}(-R_{n1} + R_{n2}),
\]

\[
b_{2n} = (nh^{9/2}\sigma_n\sigma^2)^{-1}R_{n3},
\]

\[
b_{3n} = (n^{1/2}\sigma_n\sigma^2)^{-1}\frac{1}{2}EG_n^\top(U)XX^\top G_n(U)(1 + o_p(1))
\]

When \(h \leq c_0^{-1/2}n^{-1/4}, \) we have

\[
n^{1/2}h^{5/2} \geq c_0 nh^{3/2}, \quad n^{1/2}h^{5/2} \to 0, \quad nh^{9/2} \to 0.
\]

Thus for \(h \to 0 \) and \(nh \to \infty, \) it follows from Lemma 7.2 that \(\beta(\alpha, p) \to 0 \) only when \(nh^{1/2}\rho^2 \to -\infty. \) It implies that \(\rho_n^2 = n^{-1}h^{-1/2} \) and the possible minimum value of \(\rho_n \) in this setting is \(n^{-7/16}. \) When \(nh^4 \to \infty, \)

32
for any $\delta > 0$, applying Lemma 7.2, we find a constant $M > 0$ such that $P_{2n} \leq \delta/2$ uniformly in $G_n \in \mathcal{G}_n$. Then

$$\beta(\alpha, \rho) \leq \delta/2 + P_{1n}.$$

Note that $\sup_{G_n(\rho)} P_{1n} \to 0$ only when $B(h) = nh^{3/2}M - nh^{-1/2}\rho^2 \to -\infty$. $B(h)$ attains the minimum value $-\frac{h}{\rho}(9M)^{-1/8}n\rho^{8/4}$ at $h = (\rho^2/(9M))^{1/4}$. Now it is easily shown that in this setting the corresponding minimum value of ρ_n is $n^{-4/9}$ with $h = c_n n^{-2/9}$ for some constant c_\ast. This completes the proof.

Proof of Theorem 9. Let c denote a generic constant. Then, under H_0,

$$\text{RSS}_0 - \text{RSS}_1 = \sum_{i=1}^{n} (Y_i - \hat{\theta}^*X_i)^2 - \sum_{i=1}^{n} (Y_i - \hat{A}(U_i)^*X_i)^2$$

$$= -\varepsilon^T P_{X_0} \varepsilon - \frac{1}{n} \sum_{i=1}^{n} (A(U_i) - \hat{A}(U_i))^T X_i (A(U_i) - \hat{A}(U_i))^T X_i - 2\sum_{i=1}^{n} \varepsilon_i (A(U_i) - \hat{A}(U_i))^T X_i$$

$$= -D_1 - D_2,$$

where X_D is the design matrix with the i-th row X^T_i $(i = 1, \cdots, n)$ and P_{X_D} is the projection matrix of X_D. The proof will be completed by showing the following four steps.

1. $D_1 = O_p(1)$,
2. $-\sqrt{n}D_2 = \frac{D_1}{\sqrt{n}} + W(n) + o_p(1)$,
3. $W(n) = \frac{\sqrt{n}}{n} \sum_{j \neq i} \varepsilon_j \varepsilon_i [2K_h(U_j - U_i) - K_h * K_h(U_j - U_i)] X_i^T \Gamma(U_i)^{-1} X_i \xrightarrow{P} N(0, V)$,
4. $\text{RSS}_1/n = E\sigma^2(X, U) + O_p\left(\frac{1}{\sqrt{n}}\right) + O_p\left(\frac{1}{n^\frac{3}{2}}\right)$,

with

$$D_1 = \left[2K(0) - K * K(0)\right] \int_{\Omega} \text{tr}(\Gamma^*(u)\Gamma(u)^{-1})du - \frac{1}{nh}K^2(0)E[(X^T \Gamma(U)^{-1} X)^2] \sigma^2(X, U),$$

$$V = 2\left[2K(x) - K * K(x)\right] dx \int_{\Omega} \text{tr}(\Gamma^*(u)\Gamma(u)^{-1})^2 du.$$

It follows from Lemma 7.3 that

$$E[(\varepsilon^T P_{X_0} \varepsilon)^2 | (X_1, U_1), \cdots, (X_n, U_n)] \leq \sum_{i=1}^{n} \left[P_{X_0} (i, i) \right]^2 + \sum_{i=1}^{n} \left[P_{X_0} (i, i) \right]^2$$

$$= c \text{tr}(P_{X_0}^2) + c \left[\text{tr}(P_{X_0}) \right]^2 = p(p+1)c,$$

which implies (1). The proofs of (2) and (3) are the same as the proof of Theorem 5. The details are omitted. The last step follows from $\text{RSS}_1 = \sum_{i=1}^{n} \varepsilon_i^2 + D_2$. Using the inequality $\frac{x}{1+x} \leq \log(1+x) \leq x$ for $x > -1$, we have

$$\lambda_n = \frac{n}{2} \left[\frac{\text{RSS}_0 - \text{RSS}_1}{\text{RSS}_1} + O_p(n^{-2}h^{-2}) \right] = \frac{n}{2} \left[\frac{\text{RSS}_0 - \text{RSS}_1}{\text{RSS}_1} + O_p(n^{-1}h^{-2}) \right].$$

This completes the proof.
Before proving Theorem 10, we introduce the following lemma.

Lemma 7.5 Under Condition (A1)–(A3) and (B1)–(B3), we have

$$
\hat{A}(u_0) - A(u_0) = r_n^2 \bar{\Gamma}(u_0)^{-1} \sum_{i=1}^{n} q_i(A(U_i)^\tau X_i,Y_i)\mathbf{X}_iK((U_i - u_0)/h)(1 + o_p(1)) + H_n(u_0),
$$

where

$$
H_n(u_0) = r_n^2 \bar{\Gamma}(u_0)^{-1} \sum_{i=1}^{n} [q_i(\beta(\theta)^\tau Z_i,Y_i) - q_i(A(U_i)^\tau X_i,Y_i)]\mathbf{X}_iK((U_i - u_0)/h)(1 + o_p(1)).
$$

Proof. Let \(\tilde{\gamma}(u_0,U_i,X_i) = \beta(\theta)^\tau Z_i \) and \(\beta^* = r_n^{-1} \beta \). For any compact set \(C, \beta^* \in C \),

$$
l(\beta^*) = h \sum_{i=1}^{n} [l\{g^{-1}(\tilde{\gamma}(u_0,U_i,X_i) + r_n^{-1} \beta^* Z_i),Y_i\} - l\{g^{-1}(\eta_i(u_0,U_i,X_i),Y_i\}]K_h(U_i - u_0)
$$

$$
= hr_n \sum_{i=1}^{n} q_i(\eta_i(u_0,U_i,X_i),Y_i)\beta^* Z_i K_h(U_i - u_0)
$$

$$
+ \frac{h^2}{2} \sum_{i=1}^{n} q_i(\eta_i(u_0,U_i,X_i),Y_i)\beta^* Z_i^2 K_h(U_i - u_0).
$$

In the following we shall prove

$$
hr_n^2/2 \sum_{i=1}^{n} q_i(\eta_i(u_0,U_i,X_i),Y_i)\beta^* Z_i^2 K_h(U_i - u_0) = -\text{diag}(\bar{\Gamma}(u_0)^{-1}) \int t^2 K(t)dt\bar{\Gamma}(u_0) + o_p(1).
$$

Consider the empirical process indexed by \(\mathcal{F} = \{ F_n : u_0 \in D, \| \alpha \| \leq 1 \} \) where

$$
F_n(u_0,\alpha) = q_2(\tilde{\gamma}(u_0,U,X) + \alpha \tau Z,Y) \begin{pmatrix} XX^\tau & (U - u_0)/hXX^\tau \end{pmatrix} \begin{pmatrix} (U - u_0)/hXX^\tau \end{pmatrix}
$$

$$
K_h(U - u_0).
$$

Under the conditions (A2), (A4) and (B2), it is easy to show that for some function \(c(X,U,Y) \),

$$
|F_n(u_1,\alpha_1) - F_n(u_2,\alpha_2)| \leq c(X,U,Y) h^{-3} (\| \alpha_1 - \alpha_2 \| + |u_1 - u_2|)
$$

with \(EC(X,U,Y) < \infty \). Following the same arguments as those in Lemma 7.4 (Zhang and Gijbels, 1999), we obtain that when \(h n^{(\xi - 2)/\xi} = O(1) \),

$$
hr_n^2/2 \sum_{i=1}^{n} q_i(\eta_i(u_0,U_i,X_i),Y_i)\beta^* Z_i^2 K_h(U_i - u_0)
$$

$$
= \begin{pmatrix} 1 & \int t K(t)dt \int t^2 K(t)dt \end{pmatrix} \bar{\Gamma}(u_0)
$$

uniformly for \(\| \beta^* \| \leq r_0 \) and \(u_0 \) in a compact set, where \(r_0 > 0 \) is any fixed constant.

Let

$$
W_n(u_0) = \sum_{i=1}^{n} q_i(\eta_i(u_0,U_i,X_i),Y_i)Z_i K((U_i - u_0)/h),
$$

$$
\Delta = - \begin{pmatrix} 1 & \int t K(t)dt \int t^2 K(t)dt \end{pmatrix} \bar{\Gamma}(U).
$$

34
Then (7.22) and (7.23) imply that
\[l(\beta^*) = \beta^{*\prime} W_n(u_0) - \frac{1}{2} \beta^{*\prime} \Delta \beta^*(1 + o_p(1)) \]
uniformly for \(u_0 \) in a compact set. Similar to Carroll, Fan, Gijbels and Wand (1997), we have
\[\sup_{u \in \Omega} |\tilde{\beta}(u) - \Delta^{-1} W_n(u)| \to 0 \]
in probability. This completes the proof.

Proof of Theorem 10. Let \(\varepsilon_i = q_i(A_0(U_i)^\prime X_i, Y_i) \). Using the Taylor expansion of \(\lambda_{ng}(A_0) \) and Lemma 7.5, we obtain
\[
\lambda_{ng}(A_0) = -\sum_{i=1}^{n} \varepsilon_i (\hat{A}(U_i) - A_0(U_i))^\prime X_i \\
-\frac{1}{2} \sum_{i=1}^{n} q_2(A_0(U_i)^\prime X_i) (\hat{A}(U_i) - A_0(U_i))^\prime X_i X_i^\prime (\hat{A}(U_i) - A_0(U_i))(1 + o_p(1))
\]
\[
= -\frac{r_n^2}{2} \sum_{k=1}^{n} \sum_{i=1}^{n} \varepsilon_k \varepsilon_i X_i^\prime \hat{\Gamma}(u_k)^{-1} X_k - R_{n1g}
\\
-\frac{r_n^4}{2} \sum_{k=1}^{n} \sum_{i,j} q_2(A_0(U_k)^\prime X_k, Y_k) \varepsilon_i \varepsilon_j \hat{\Gamma}(U_k)^{-1} X_k X_k^\prime \hat{\Gamma}(U_k)^{-1} X_j K((U_i - U_k)/h)
\\
\times K((U_j - U_k)/h) + R_{n2g} + R_{n3g},
\]
where
\[R_{n1g} = \frac{r_n^2}{2} \sum_{k=1}^{n} \varepsilon_k H_n(U_k) X_k, \]
\[R_{n2g} = -\frac{r_n^4}{2} \sum_{k=1}^{n} \sum_{i=1}^{n} \varepsilon_i X_i^\prime \hat{\Gamma}(U_k)^{-1} X_k X_k^\prime H_n(U_k), \]
\[R_{n3g} = -\frac{r_n^4}{2} \sum_{k=1}^{n} q_2(A_0(U_k)^\prime X_k, Y_k) H_n(U_k)^\prime X_k X_k^\prime H_n(U_k). \]
The remaining proof is almost the same as that of Theorem 5 if we invoke the following equalities:
\[E[\varepsilon_i |(X_i, U_i)] = 0, \quad E[\varepsilon_i^2 |(X_i, U_i)] = -E[q_2(A_0(U_i)^\prime X_i, Y_i)] |(X_i, U_i)]. \]
The proof is completed.

References

