Title
On the Robustness of Unit Root Tests in the Presence of Double Unit Roots

Permalink
https://escholarship.org/uc/item/2k0780sh

Authors
Haldrup, Niels, Prof.
Lildholdt, Peter

Publication Date
2000-06-08
ON THE ROBUSTNESS OF UNIT ROOT TESTS IN THE PRESENCE OF
DOUBLE UNIT ROOTS

BY

NIELS HALDRUP

AND

PETER LILDHOLDT

DISCUSSION PAPER 2000-13
JUNE 2000
On the robustness of unit root tests in the presence of double unit roots

NIELS HALDRUP & PETER LILDHOLDT
DEPARTMENT OF ECONOMICS, UNIVERSITY OF AARHUS, AND
CENTRE FOR DYNAMIC MODELLING IN ECONOMICS.

ABSTRACT. We examine some of the consequences on commonly used unit root tests when the underlying series is integrated of order two rather than of order one. It turns out that standard augmented Dickey-Fuller type of tests for a single unit root have excessive density in the explosive region of the distribution. The lower (stationary) tail, however, will be virtually unaffected in the presence of double unit roots. On the other hand, the Phillips-Perron class of semi-parametric tests is shown to diverge to plus infinity asymptotically and thus favoring the explosive alternative. Numerical simulations are used to demonstrate the analytical results and some of the implications in finite samples.

KEYWORDS: Unit root tests, Dickey-Fuller test, Phillips-Perron test, I(1) versus I(2).

JEL CLASSIFICATION: C12, C14, C22.

1. INTRODUCTION

It seems to be well recognized that most economic time series have properties that mimic those characterizing unit root (integrated) processes. For the majority of time series a characterization in terms of integration of order one, I(1), seems appropriate. However, some variables like prices, wages, money balances, stock-variables etc., appear to be smoother than normally observed for variables integrated of order one; such series are potentially integrated of order 2 whereby double differencing is needed to render the series stationary. The differenced series are therefore I(1); for instance, if the series are log-transformed, the growth rates will be integrated of order one. By now, there is a growing literature focusing on the complications implied by double unit roots. This literature is not only concerned with univariate testing for I(2), (Hasza and Fuller (1979), Dickey and Pantula (1987), Sen and Dickey (1987), Shin and Kim (1999), and Haldrup (1994a)), but it also focuses on the rather complex dynamic interactions occurring in I(2) cointegrated models (compare Johansen (1995, 1997), Kitamura (1995), Choi, Park, and Yu (1997), and Haldrup (1994b)). In Haldrup (1998) recent advances in the theoretical and empirical literature on I(2) are reviewed.
In the present paper, our attention is directed towards univariate testing for the order of integration, and there is mainly one particular problem we want to study. This concerns the behavior of standard univariate tests for a single unit root when double unit roots appear to be present in the data generating process. There are some problems in connection with unit root tests and the possibility of additional unit roots. The null hypothesis in conventional unit root testing typically looks like \(H_0 : \alpha_1 = 1 \) in the model \(y_t = \alpha_1 y_{t-1} + v_t \) where \(\alpha_1 \) is the autoregressive root at frequency zero and \(v_t \) is a general (possibly autocorrelated) process. Usually a single unit root is assumed under the null. However, it is known from the work of Dickey and Pantula (1987) and Pantula (1989), that the null-distribution of traditional augmented Dickey-Fuller tests will be affected in the presence of two unit roots, and hence their suggestion is to test for I(2) against I(1) rather than following the opposite procedure of testing I(1) prior to testing for I(2). This recommended sequence of testing will lead to similar test statistics and hence will have a size that can be controlled by choice of the significance level. (Dolado and Marmol (1997) study this testing sequence when the underlying series is fractionally integrated. However, fractional integration is beyond the assumptions of the present study where integer orders of integration are assumed).

Notwithstanding, in many applied papers researchers follow the opposite route or examine only the level of the series, simply ignoring that I(2)-ness might be a possibility. Our paper examines in more detail analytically as well as numerically, the likely consequences of following this reverse route of testing. In so doing, we extend the analysis of Dickey and Pantula (1987). Since at least one unit root will be present when the series is either I(1) or I(2), the potential problem is that of similarity with respect to a nuisance parameter, that is, the question of whether an additional unit root is present or absent under the null. It turns out that, regardless of which deterministic components are included in the auxiliary regression, the augmented Dickey-Fuller tests will tend to reject the null at a fraction very close to the nominal significance level when the I(1) critical values are used and the test is one-sided against the stationary alternative. However, the distribution mass is concentrated much more heavily in the upper tail compared to the Dickey-Fuller I(1)-distribution. As a consequence, when testing against the explosive alternative the Dickey-Fuller test will tend to reject a unit root too often in favor of explosiveness. The implications for the Phillips-Perron class of semi-parametric tests appear to be even more dramatic. We show that the semi-parametric test based on the Dickey-Fuller \(t \)-statistic asymptotically will have positive support and will tend to plus infinity as the sample size grows. Hence, by allowing an explosive alternative, the test will always reject the unit root hypothesis in the limit in favor of explosive behavior.

The paper proceeds as follows. In sections 2 and 3 the data generating mechanism is described and some summary results on the behavior of test statistics in the pres-
ence of a single unit root are provided. Next, in section 4, the properties of the test statistics are derived under the maintained assumption of double unit roots and the implied analytical findings are examined numerically. Finally, section 5 concludes. All proofs can be found in a technical appendix.

2. THE DATA Generating MECHANISM
As a starting point, consider the data generating mechanism

\[(1 - \alpha_1 L)(1 - \alpha_2 L)y_t = u_t \quad t = 1, 2, ..., T \tag{1}\]

where initially the sequence \(\{u_t\}\) is assumed to be i.i.d. \((0, \sigma_u^2)\). Slackening of this simplifying requirement will be made where appropriate. In particular, we may require \(u_t\) to follow the general regularity conditions of Phillips (1987), Assumption 2.1. The equation (1) can also be extended to allow for deterministic components like a constant and a trend in the data generating process. However, because such a generalization will have no implications for our findings, we exclude this possibility to simplify the presentation.

The above autoregressive model has been analyzed under a number of different settings and in particular the presence of unit roots has attracted much attention. When \(\alpha_1 = 1\) and \(|\alpha_2| < 1\), \(y_t\) is integrated of order one whilst \(\alpha_1 = \alpha_2 = 1\) implies the presence of double unit roots, I(2). We want to focus on the behavior of test statistics which are designed to test for a single unit root in order to see how these statistics behave (under the null) in the presence of an additional unit root.

In the subsequent sections we will first summarize (for the matter of reference) some well-known properties of Dickey-Fuller and Phillips-Perron tests when a single unit root is present; next we will examine the two classes of tests in the presence of double unit roots.

3.1. Dickey-Fuller tests. As a benchmark, assume that \(\alpha_2 = 0\) and \(\alpha_1 = 1\), that is, \(y_t\) follows a random walk. For this situation a number of authors (White (1958), Fuller (1976), Dickey and Fuller (1979), and Phillips (1987)) have reported the limiting distributions of the normalized least squares estimator, \(T(\hat{\alpha}_1 - 1)\), and the \(t\)–statistic of \(H_0 : \alpha_1 = 1\) based on the regression

\[\Delta y_t = (\hat{\alpha}_1 - 1) y_{t-1} + \tilde{u}_t. \tag{2}\]

The \(t\)–statistic for \(\hat{\alpha}_1\) is defined as

\[t_{\alpha_1} = (\hat{\alpha}_1 - 1)/[s_u(\sum_{t=1}^{T} y_{t-1}^2)^{-1/2}]\]

where \(s_u^2 = T^{-1} \sum_{t=1}^{T} \tilde{u}_t^2\). In practical situations we would also like to include deterministic components in the auxiliary regression which for the most relevant cases would then read:

\[\Delta y_t = \tilde{\beta}_0 + (\hat{\alpha}_1 - 1) y_{t-1} + \tilde{u}_t. \tag{3}\]

\[\Delta y_t = \bar{\beta}_0 + \bar{\beta}_1 t + (\bar{\alpha}_1 - 1) y_{t-1} + \bar{u}_t. \tag{4}\]
Under the above conditions the following distribution results will apply for the regression model (2):

\[T(\hat{\alpha}_1 - 1) \Rightarrow \left(\int_0^1 W(r) dW(r) \right) \left(\int_0^1 W(r)^2 d(r) \right)^{-1} \] \hspace{1cm} (5)

\[t_{\alpha_1} \Rightarrow \left(\int_0^1 W(r) dW(r) \right) \left(\int_0^1 W(r)^2 d(r) \right)^{-1/2} \] \hspace{1cm} (6)

where \(W(r) \) is a standard Brownian motion on \(C[0,1] \), i.e. the space of continuous functions on the unit interval, and ”\(\Rightarrow \)” signifies weak convergence (in distribution). The distributions (5) and (6) are known as the Dickey-Fuller distributions.

For the regressions (3) and (4) the asymptotic distributions take a similar form, however, in place of \(W(r) \), the Brownian motion expressions should be replaced by appropriately demeaned and detrended Brownian motions. In particular,

\[W_i(r) = W(r) - f_i(r) \left(\int_0^1 f_i(s) f_i(s)' ds \right)^{-1} \int_0^1 f_i(s) W(s) ds \quad \text{(for } i = 0, 1) \] \hspace{1cm} (7)

where for the case with a constant in the model \(i = 0 \), and \(f_0(r) = 1 \), whilst for the trend case \(i = 1 \) and \(f_1(r) = (1, r)' \).

When slackening the i.i.d. assumption about \(u_t \), Phillips (1987) and Phillips and Perron (1988) showed that under rather weak regularity conditions, the relevant distributions become

\[T(\hat{\alpha}_1 - 1) \Rightarrow \left(\int_0^1 W(r) dW(r) + \lambda \right) \left(\int_0^1 W(r)^2 d(r) \right)^{-1} \] \hspace{1cm} (8)

\[t_{\alpha_1} \Rightarrow \frac{\sigma}{\sigma_u} \left(\int_0^1 W(r) dW(r) + \lambda \right) \left(\int_0^1 W(r)^2 d(r) \right)^{-1/2} \] \hspace{1cm} (9)

with \(\lambda = (\sigma^2 - \sigma_u^2)/2\sigma_u^2 \), \(\sigma_u^2 = \lim_{T \to \infty} T^{-1} E \left[\sum_{t=1}^T u_t^2 \right] \), \(\sigma^2 = \lim_{T \to \infty} T^{-1} E [S_T^2] \) (the long-run variance), and \(S_T = \sum_{t=1}^T u_t \). It can be easily seen that when \(\sigma^2 = \sigma_u^2 \), which applies for martingale difference sequences, for instance, then the resulting distributions are (5) and (6). The generalization to the case with constant and trend follows naturally given (7).

The situation with \(\sigma^2 \neq \sigma_u^2 \) is naturally of interest in practice because the limiting distributions will then depend upon nuisance parameters. However, in the case where \(y_t \) follows an AR\((p)\) process, estimation of a \(p \)th order autoregression will remove the influence of the nuisance parameters such that the distribution results (5) and (6) will hold, and even in the case where MA terms are present, it is sufficient to let the order of the autoregression, \(k \), grow with the sample size according to \(k = o(T^{1/3}) \), see Said and Dickey (1984). Hence, by this approach the nuisance parameter problem is solved in a fully parametric way.
3.2. Phillips-Perron tests. Phillips (1987) and Phillips and Perron (1988) have suggested a semiparametric way of adjusting the above statistics. In particular, they suggest the statistics Z_α and Z_t, which are constructed from the regression (2):

$$Z_\alpha = T(\hat{\alpha}_1 - 1) - \frac{1}{2}(s^2 - s_u^2)(T^{-2} \sum_{t=1}^{T} y_{t-1})^{-1}$$
(10)

$$Z_t = (s_u/s)\hat{\alpha}_1 - \frac{1}{2s}(s^2 - s_u^2)(T^{-2} \sum_{t=1}^{T} y_{t-1}^2)^{-1/2}$$
(11)

where s_u^2 and s^2 are consistent estimates of the population equivalents σ_u^2 and σ^2. The asymptotic distributions of the above statistics are again given in (5) and (6) with the appropriate redefinitions for the cases with deterministic components. However, it should be noted that for the latter situations y_t needs to be replaced by the appropriately demeaned and detrended series in the regression (2) as well as in the expressions (10) and (11).

Estimates of the long-run variance σ^2 and σ_u^2 can be obtained in various ways. It is commonplace to use the variance estimator

$$s_u^2 = \hat{\sigma}_u^2 = \frac{1}{T} \sum_{t=1}^{T} \hat{\sigma}_t^2$$
(12)

whereas a number of choices exist with respect to the estimator of σ^2, see e.g. Andrews (1991) and Newey and West (1994). The one we will be using here is a kernel estimator based on the sample autocovariances and can be written as

$$s^2 = \hat{\sigma}^2 = \frac{1}{T} \sum_{t=1}^{T} \hat{\sigma}_t^2 + \frac{2}{T} \sum_{\tau=1}^{T} \omega_{\tau T} \sum_{t=\tau+1}^{T} \hat{\sigma}_t \hat{\sigma}_{t-\tau}.$$
(13)

In the present context we will use the Bartlett kernel which is the one Phillips (1987) used in his original paper defining the Z_α and Z_t statistics. This is given as $\omega_{\tau T} = 1 - \tau/(l + 1)$ where l defines the bandwidth parameter which should increase with T at an appropriate rate to ensure consistency. Of course, other kernels could be equally interesting to examine, see e.g. Andrews (1991), and Perron and Ng (1996). However, as argued by Newey and West (1994), the choice of bandwidth parameter appears to be more important than the actual choice of kernel.

4. Behavior of the test-statistics when double unit roots exist.

4.1. Augmented Dickey-Fuller tests. Notice that we can rearrange the equation (1) to yield

$$\Delta y_t = (\alpha_1 + \alpha_2 - \alpha_1 \alpha_2 - 1)y_{t-1} + \alpha_1 \alpha_2 \Delta y_{t-1} + u_t.$$
(14)
Inspired by this representation we can focus on the various augmented Dickey-Fuller regressions

\begin{align*}
\Delta y_t &= (\bar{\alpha} - 1) y_{t-1} + \bar{\gamma} \Delta y_{t-1} + \bar{\mu}_t \tag{15} \\
\Delta y_t &= \tilde{\beta}_0 + (\bar{\alpha} - 1) y_{t-1} + \bar{\gamma} \Delta y_{t-1} + \tilde{\mu}_t \tag{16} \\
\Delta y_t &= \bar{\beta}_0 + \bar{\beta}_1 t + (\bar{\alpha} - 1) y_{t-1} + \bar{\gamma} \Delta y_{t-1} + \bar{\mu}_t. \tag{17}
\end{align*}

Observe that both when a single and double unit roots are present, \((\alpha - 1) = \alpha_1 + \alpha_2 - \alpha_1 \alpha_2 - 1 = 0\). Assume now that \(\alpha_1 = \alpha_2 = 1\) and \(u_t\) is a non i.i.d. sequence which is stationary. In this situation one of the authors, Haldrup (1994a), shows that based upon the regression (15) for instance, the statistics will have the following distributions:

\begin{align}
T^2(\bar{\alpha} - 1) &\Rightarrow D^{-1} \left\{ \left(\int_0^1 W(r) dW(r) \right) \left(\int_0^1 W(r)^2 dr \right) \right. \\
&\left. - \frac{1}{2} \left(\int_0^1 W(r) dW(r) + \lambda \right) W(1)^2 \right\} \\
t_\alpha &\Rightarrow \frac{\sigma}{\sigma_u} D^{-1/2} \left\{ \left(\int_0^1 W(r) dW(r) \right) \left(\int_0^1 W(r)^2 dr \right)^{1/2} \right. \\
&\left. - \frac{1}{2} \left(\int_0^1 W(r) dW(r) + \lambda \right) \left(\int_0^1 W(r)^2 dr \right)^{-1/2} W(1)^2 \right\} \tag{19}
\end{align}

with \(D = \left(\int_0^1 W(r)^2 dr \right) \left(\int_0^1 W(r)^2 dr \right) - \frac{1}{4} W(1)^4\). In the above expressions we use the notation

\[
\bar{W}(r) = \int_0^r W(s) ds.
\]

The distributions for the detrending cases (16) and (17) follow naturally by use of (7) and the definition (20) which also applies to the appropriately corrected Brownian motions \(W_0(r)\) and \(W_1(r)\). Again, the influence from nuisance parameters can be removed by increasing, (at an appropriate rate in \(T\), the number of lags of the differenced series in the auxiliary augmented Dickey-Fuller regression.

Obviously, the distribution of the usual Dickey-Fuller \(t_\alpha\) — statistic as displayed in (19) will be different from the I(1) Dickey-Fuller distribution (9) and similarly for the demeaning and detrending counterparts. Hence the rejection probability of a test for a single unit root, which is based on the augmented Dickey-Fuller regression (using I(1) critical values), is likely to be different from the significance level in the presence of an additional unit root. One might coin this possibility "size-distortion" although it appears to be a slightly misleading notion given that standard unit root tests are designed to test for a single unit root and do not encompass double unit roots in the maintained hypothesis. Hence the proper notion is that of robustness of the tests.
with respect to the possible presence of an additional unit root. Since a unit root will always be present under the null, even when the series is I(2), we will nevertheless in some cases refer to the size of the tests (with the reservations just given).

Dickey and Pantula (1987) conducted a small scale Monte Carlo experiment to study the potential problems described above. For a sample of 50 observations they found that the unit root null was rejected in favor of the stationary alternative in slightly more than 5% of the cases at a nominal 5% level. More specifically, the actual rejection frequencies ranged from 5.5% to 7.7% depending upon the value of a stationary root that was also allowed in the data generating process. However, because the influence of stationary roots will be absent asymptotically, the observed differences in the rejection frequencies made by Dickey and Pantula can be attributed to small sample distortions of the test. The finding that the rejection probability exceeds the nominal size for this one-sided alternative is, of course, a very surprising result because one would require that a test for a single unit root would clearly indicate non-stationarity rather than stationarity when indeed two unit roots are present. In Table 1, we have extended Dickey and Pantula’s study and examine for various sample sizes the rejection frequencies against both a stationary one-sided and an explosive one-sided alternative. Also, we allow for deterministics in the auxiliary regression. The experimental design is chosen such that it corresponds to the data generating mechanism (14) with $\alpha_1 = \alpha_2 = 1$ and $u_t \sim \text{n.i.d.}(0,1)$; the statistic of interest is the Dickey-Fuller t-ratio, t_α, associated with each of the regressions (15) through (17).

Table 1 about here

The simulations demonstrate that, the size distortions from using the Dickey-Fuller lower tail critical values are very minor. As indicated by the Dickey-Pantula study, there is indeed a minor excessive rejection rate of the Dickey-Fuller test at the 5% level when no deterministics are included in the auxiliary regression, but this is nothing seeming to be of any practical relevance. The same applies in the model with a constant plus trend. The rejection rate when a constant (but no trend) is accounted for, is just below the 5% nominal level. Hence, Table 1 shows that the lower tail of the augmented Dickey-Fuller test statistic is virtually the same (or is only slightly affected) regardless of whether one or two unit roots exist. Note that small sample distributions can also be affected by the existence and magnitude of other stationary roots in the model.

As can also be seen from Table 1, the upper tail is somewhat differently affected with a larger concentration of density leading to fairly big size distortions when testing against the explosive alternative. This reflects the fact that in finite samples
at least, I(2) processes have properties that mimic those of explosive processes. The explanation why the rejection frequencies in the upper tail appear to be smaller when a trend is included in the auxiliary regression (compared to the case with only a constant) may be due to the trend effectively diminishing the stochastically trending I(2) component.

In Figure 1 the above results are visualized for the three cases depending upon the treatment of deterministic components. The asymptotic density function \((T = 500) \) of \(t_\alpha \) is displayed for the case of both a single and double unit roots. Hence the relevant limiting distributions correspond to (9) and (19) (and their demeaning/detrending equivalents) for \(\lambda = 0 \). As seen, the upper tail is definitely affected by the presence of double unit roots, whereas the lower tail hardly changes. Hence, as long as one tests against a one-sided stationary alternative, the risky consequences of testing I(1) prior to testing for I(2) are rather limited which is opposed to the general conception. It does not change the fact, however, that a proper testing procedure where the size of the test can be controlled against both stationary and explosive alternatives is the one where I(2) is tested against I(1) rather than taking the reverse route, c.f. the suggestions of Dickey and Pantula (1987) and Pantula (1989).

\[\text{Figure 1 about here} \]

4.2. **Phillips-Perron Tests.** As we shall now see, the Phillips-Perron class of tests appears to behave much differently compared to the augmented Dickey-Fuller tests. Observe that these statistics, (defined in (10) and (11)) are based on the regression (2) and the associated least squares coefficient and its \(t \)-ratio for a zero coefficient null. It can be shown that when \(\alpha_1 = \alpha_2 = 1 \), the following limiting results will apply, see also Dickey and Pantula (1987) and Nabeya and Perron (1994):

Theorem 1. For the regression model \(\Delta y_k = (\hat{\alpha}_1 - 1) y_{k-1} + \hat{\mu} \) with the data generating mechanism \(\Delta^2 y_k = u_t \) where \(u_t \) satisfies the general conditions of Phillips (1987), (Assumption 2.1), then for \(T \to \infty \)

\[
T(\hat{\alpha}_1 - 1) \Rightarrow \frac{1}{2} \left(\int_0^1 W(r)^2 dr \right)^{-1} W(1)^2
\]

\[
T^{-1/2} \hat{\alpha} \Rightarrow \frac{1}{2} \left(\int_0^1 V(r)^2 dr \right)^{-1/2} \left(\int_0^1 W(r)^2 dr \right)^{-1/2} W(1)^2
\]

where \(V(r) = \left\{ W(r) - \frac{1}{2} \left(\int_0^1 W(r)^2 dr \right)^{-1} W(1)^2 W(r) \right\} \).
As for the augmented Dickey-Fuller tests, when the regression is extended by constant and trend as in (3) and (4), then the underlying asymptotic distributions can be written in terms of the demeaned and detrended Brownian motions, and hence the expressions will be qualitatively similar. As opposed to the limiting results (8) and (9), the above statistics will have no nuisance parameters appearing in the limiting distributions. This is of no practical relevance, however, because it is obvious that the regression model (2) (as well as (3) and (4)) are inadequate in the present situation as the residual \(\hat{u}_t \) will be highly serially correlated; in fact, \(\hat{u}_t \) will be integrated of order one and hence the various statistics will suffer from a standard spurious regressions problem, see Phillips (1986). This is why \(\hat{\alpha}_1 - 1 = O_p(T^{-1}) \), rather than \(O_p(T^{-2}) \) as in (18), and it is also the spurious regression phenomenon that makes \(t_{\alpha_1} \) have a non-degenerate asymptotic distribution. Nevertheless, in ignoring the possibility of I(2), the Phillips-Perron tests are constructed from the quantities \(t_{\alpha_1} \) and \(T(\hat{\alpha}_1 - 1) \). In Gonzalo and Lee (1998) (section 4.3, page 138-140) a similar kind of problem with misspecified dynamics is analyzed within a multivariate context using I(2) variables.

Note that we cannot use the result (21) as a general way of solving nuisance parameter problems. One might think that by taking the cumulative sum of an I(1) series, hence becoming I(2), one could use (21) as the relevant nuisance parameter free distribution under the null hypothesis. However, such a 'test' is inconsistent since under the alternative \(T(\hat{\alpha}_1 - 1) \) will be bounded as well, c.f. (8).

As a benchmark, assume that \(\sigma^2 \) and \(\sigma_u^2 \) are known figures that we need not estimate; hence the adjustment of the statistics given in (10) and (11) becomes rather trivial. Because \(T^{-2} \sum_{t=1}^{T} y_{t-1}^2 = O_p(T^2) \) it can be seen that asymptotically the influence from the adjustment terms will vanish. Therefore, the limiting results in (21) and (22) will apply to (10) and (11) (apart from a scaling parameter of the latter distribution). Observe that since the limiting distributions have only positive support, asymptotically the test statistics will never reject the unit root null in favor of the stationary alternative. In the limit, because \(t_{\alpha_1} \rightarrow +\infty \), a single unit root will always be rejected in favor of the explosive alternative even though a unit root is known to exist under the null.

Let us now examine how the Phillips-Perron tests behave if nuisance parameters are estimated according to (12) and (13). We shall consider the two cases where either \(l \) is fixed or \(l \) increases with \(T \) in a particular way. First, assuming \(l \) to be a fixed number, the following can be shown.

Theorem 2. Under the assumptions of Theorem 1, and considering the bandwidth parameter \(l \) to be fixed, then for \(T \rightarrow \infty \)

\[
T^{-1}s_u^2 \Rightarrow \sigma^2 \left(\int_0^l V(r)^2dr \right)
\] (23)
\[
T^{-1}s^2 \Rightarrow \sigma^2(l + 1) \left(\int_0^1 V(r)^2 dr \right) \quad (24)
\]
\[
Z_\alpha = T(\hat{\alpha}_1 - 1) + \sigma_r(1) \quad (25)
\]
\[
T^{-1/2}Z_t \Rightarrow \frac{1}{2(l + 1)^{1/2}} \left(\int_0^1 V(r)^2 dr \right)^{-1/2} \left(\int_0^1 W(r)^2 dr \right)^{-1/2} W(1)^2 \quad (26)
\]

Hence, according to (25) and (26), the qualitative results obtained, compared to when \(\sigma^2\) and \(\sigma_u^2\) are known, will continue to hold. However, because it is required that \(l \to \infty\) at a controlled rate as \(T \to \infty\) for the estimators \(s^2\) and \(s_u^2\) to be consistent (in the I(1) case) we need to focus on the behavior of the statistics for \(l \to \infty\). In the original application of the above statistics to I(1) series, consistency requires that \(l = o(T^{1/4})\), see Phillips (1987). But in the present situation weaker requirements are needed to obtain non-degenerate distributions.

Theorem 3. Under the assumptions of Theorem 1, and requiring that \(l \to \infty\) such that \(\frac{l}{T} \to 0\) for \(T \to \infty\), that is, \(l = O(T^{1-\varepsilon})\) for some \(\varepsilon : 0 < \varepsilon < 1\)

\[
(Tl)^{-1}s^2 \Rightarrow \sigma^2 \left(\int_0^1 V(r)^2 dr \right) \quad (27)
\]
\[
(l/T)^{1/2}Z_t \Rightarrow \frac{1}{2} \left(\int_0^1 V(r)^2 dr \right)^{-1/2} \left(\int_0^1 W(r)^2 dr \right)^{-1/2} W(1)^2 \quad (28)
\]

As seen, asymptotically, \((l/T)^{1/2}Z_t\) will have the same limiting distribution as \(T^{-1/2}t_\alpha\) depicted in (22). In finite samples we will thus expect that, by increasing \(l\), the entire distribution is shifted less towards the explosive region than would otherwise be the case. The explanation behind the limiting result (28) is that in the expression for \(Z_t\), see (11), the second term is annihilated asymptotically because \((s^2 - s_u^2)/s\) will diverge at the rate \(l\) whilst \((T^{-2} \sum_{t=1}^T \hat{y}_t^2)_{1/2}\) will diverge at rate \(T\); the result follows by the assumption \(l/T \to 0\) for \(l, T \to \infty\). Of course, the qualitative results depicted in Theorem 3 will also apply when deterministic components are allowed in the model.

To describe the finite sample distributions, the descriptions above are inadequate as lower order terms can play a role, especially when \(l\) increases with the sample size without stating precisely the exact value of \(l\) to be chosen. As a reference case, consider the situation where \(l\) is fixed. In this case the expression for \(T^{-1/2}Z_t\) consists of two components with off-setting effects as can be seen from

\[
T^{-1/2}Z_t = \left(\frac{T^{-1/2}s_u}{T^{-1/2}s} \right) (T^{-1/2}t_\alpha) - \frac{1}{2T} \left(\frac{T^{-1}s^2 - T^{-1}s_u^2}{T^{-1/2}s} \right) (T^{-1} \sum_{t=1}^T \hat{y}_t^2)^{1/2}
\]
The first term appears to be $O_p(t^{-1/2})$ and will always have positive support. The second term is $O_p(t^{1/2}/T)$ and will have negative support. The question is which term is likely to dominate when l increases for a fixed sample. This is also a question of practical relevance because there is only little guidance in the literature concerning the actual choice of the truncation parameter in finite samples, although theoretical rules for the rate in T follows from the asymptotics.

A small scale Monte Carlo experiment has been conducted in order to examine the quantitative implications of the above theoretical results. We only focus on the case with no deterministic terms because the qualitative implications will be the same when constant and trend are allowed for. In Table 2 the finite sample distributions of the Z_l test for a range of sample sizes and choices of the truncation parameter have been calculated with a data generating mechanism given by a double unit root process. The implications that follow from the analytical results are confirmed in the simulations. That is, the divergence of Z_l towards infinity with T but at a reduced rate when l increases as well. Although the distributions have some concentration of density in the negative region for increasing values of l, the concentration is only of moderate size and the practical implications are that it is very unlikely that the Phillips-Perron test will lead to acceptance of stationarity. Rather, the test will indicate explosiveness when double unit roots exist as predicted by the asymptotic theory.

Table 2 about here

5. Conclusion

In this paper we have examined the robustness of Dickey-Fuller and Phillips-Perron tests for a unit root. In particular, we have analyzed the implications of testing for $I(1)$ when the series is really $I(2)$. This is frequently seen in empirical studies where $I(2)$-ness is ignored as a likely alternative to the $I(1)$ process. The results also have implications for following a route of testing where $I(1)$ is tested prior to testing for $I(2)$. It was found that when the underlying series is doubly integrated, it is likely to give rise to excessive rejection of the unit root null in favor of the explosive alternative because the test statistic will have a non-similar distribution caused by the extra unit root. However, as concerns the augmented Dickey-Fuller test, the lower tail remains almost identical regardless of whether a single or two unit roots are present in the series. Therefore, as long as one tests against a one-sided stationary alternative, the risky consequences of testing $I(1)$ prior to testing for $I(2)$ are rather limited which is opposed to the general conception in the literature. It remains necessary, though, to consider also the possibility of an extra unit root; both when testing against one-sided
and two sided alternatives. Otherwise one might get the wrong impression that the series is I(1) or explosive when in fact it is I(2).

Hence our recommendation is to consider seriously the possibility of I(2) in unit root testing. The preferred testing strategy is to test I(2) against I(1) prior to testing I(1) against I(0). In so doing a test with a controllable size against both a one and two-sided alternative will result.

6. Technical Appendix

Proof of results reported in section 4.

The following two lemmas will show useful throughout:

Lemma 4. Suppose that \(\{y_t\} \) is a random sequence generated according to (1) with \(\alpha_1 = \alpha_2 = 1 \) and with \(\{u_t\}_{t=1}^{\infty} \) satisfying the regularity conditions of Phillips (1987), (Assumption 2.1), then as \(T \to \infty \)

a) \(T^{-3/2} y_{[T]} \Rightarrow \sigma \int_0^1 W(s) ds \equiv \sigma W(r) \)

b) \(T^{-1/2} \Delta y_{[T]} \Rightarrow \sigma W(r) \)

c) \(T^{-4} \sum_{t=1}^T y_t^2 \Rightarrow \sigma^2 \int_0^1 W(r)^2 dr \)

d) \(T^{-2} \sum_{t=1}^T \Delta y_t^2 \Rightarrow \sigma^2 \int_0^1 W(r)^2 dr \)

e) \(T^{-3} \sum_{t=1}^T y_{t-1} \Delta y_t \Rightarrow \sigma^2 \int_0^1 W(r) W(r) dr = \frac{\sigma^2}{T} \overline{W}(1)^2 \)

Proof. The results \((a), (b), (c), (d)\), and the first limiting result in \((e)\) can be directly deduced from Lemma 2.1 of Park and Phillips (1989). The last equality sign associated with \((e)\) can be proven along the following lines:

The general conditions to ensure that \(T^{-1/2} S_{[T]} = T^{-1/2} \sum_{j=1}^d u_j \Rightarrow \sigma W(r) \) are assumed to hold, see Herrndorf (1984) and Phillips (1987). Note that since \(y_t = y_{t-1} + \Delta y_t \), squaring and summing over \(T \) will yield

\[
T^{-3} \sum_{t=1}^T y_{t-1} \Delta y_t = T^{-3} \sum_{t=1}^T (y_t^2 - y_{t-1} y_t - \Delta y_t^2) = T^{-3} \sum_{t=1}^T (y_t^2 - y_{t-1} \Delta y_t + y_{t-1}^2 - \Delta y_t^2) \\
2T^{-3} \sum_{t=1}^T y_{t-1} \Delta y_t = T^{-3} \sum_{t=1}^T (y_t^2 + y_{t-1}^2 - \Delta y_t^2) \\
T^{-3} \sum_{t=1}^T y_{t-1} \Delta y_t = \frac{1}{2} \left\{ T^{-3} y_t^2 - T^{-3} \sum_{t=1}^T \Delta y_t^2 \right\} = \frac{1}{2} \left(T^{-3} y_t^2 + o_p(1) \right) \Rightarrow \frac{\sigma^2}{2} \overline{W}(1)^2
\]

by \((a)\) and \((d)\) of Lemma 4.

Lemma 5. Under the conditions of Lemma 4

a) \(T^{-1/2} u_t \Rightarrow \sigma \left\{ W(r) - \frac{1}{2} \int_0^1 W(r)^2 dr \right\} \overline{W}(1)^2 \overline{W}(r) \equiv \sigma V(r) \)

b) \(T^{-1} \tilde{u}_t^2 = T^{-2} \sum_{t=1}^T \tilde{u}_t^2 \Rightarrow \sigma^2 \int_0^1 V(r)^2 dr \)
c) $T^{-1}s^2 \Rightarrow \sigma^2(l + 1) \left(\int_0^1 V(r)^2 \, dr \right)$ for a fixed value of l

d) $(Tl)^{-1}s^2 \Rightarrow \sigma^2 \left(\int_0^1 V(r)^2 \, dr \right)$ for $l=O(T^{1-\varepsilon})$, $0 < \varepsilon < 1$.

Proof. First we need to find the limiting distribution of $T(\hat{\alpha}_1 - 1)$. It follows straightforwardly from (c) and (e) of Lemma 4, that

$$T(\hat{\alpha}_1 - 1) \Rightarrow \frac{1}{2} \left(\int_0^1 W(r)^2 \, dr \right)^{-1} W(1)^2$$

(A1)

Now, turning to (a), the least squares residuals from (2) are given as $\hat{u}_t = \Delta y_t - (\hat{\alpha}_1 - 1)y_{t-1}$ which by appropriate scaling yields $T^{-1/2}\hat{u}_t = T^{-1/2}\Delta y_t - T(\hat{\alpha}_1 - 1)T^{-3/2}y_{t-1}$. The required result follows from the sub-results (a) and (b) of Lemma 4, and (A1).

Also, (b) follows immediately from (a).

Result (c) can be shown along the following lines:

$$T^{-1}s^2 = T^{-1}s_u^2 + 2T^{-2}\sum_{i=1}^T \left(1 - \frac{\tau}{l+1} \right) \sum_{t=\tau+1}^T \hat{u}_t \hat{u}_{t-\tau}$$

$$= T^{-1}s_u^2 + 2T^{-2}\sum_{i=1}^T \left(1 - \frac{\tau}{l+1} \right) \sum_{t=\tau+1}^T \left(\sum_{i=1}^T \Delta \hat{u}_{t-i+1} \hat{u}_{t-\tau} \right)$$

$$+ 2T^{-2}\sum_{i=1}^T \left(1 - \frac{\tau}{l+1} \right) \sum_{t=\tau+1}^T \hat{u}_t^2$$

(A2)

where we have exploited that $\hat{u}_t = \sum_{i=1}^T \Delta \hat{u}_{t-i+1} + \hat{u}_{t-\tau}$. Now, since

$$\sum_{t=\tau+1}^T \sum_{i=1}^T \Delta \hat{u}_{t-i+1} \hat{u}_{t-\tau} = O_p(T)$$

(A3)

it is seen that for fixed bandwidth l, the second term in (A2) is going to vanish asymptotically. Hence we have

$$T^{-1}s^2 = T^{-1}s_u^2 + 2\sum_{i=1}^T \left(1 - \frac{\tau}{l+1} \right) \left(T^{-2} \sum_{i=1}^T \hat{u}_t^2 \right) + o_p(1)$$

$$\Rightarrow \sigma^2 \int_0^1 V(r)^2 \, dr + 2\frac{l}{2}\sigma^2 \int_0^1 V(r)^2 \, dr$$

$$= (l + 1)\sigma^2 \int_0^1 V(r)^2 \, dr$$
This proves (c).

Turning to (d), the proofs where \(l \) increases with \(T \) can be shown along the following lines. We note that because \(\sum_{\tau=1}^{l} \left(1 - \frac{\tau}{l+1} \right) = O(l) \) and \(\frac{l}{T} = o(1) \), the second term in (A2) is \(O_p\left(\frac{l}{T} \right) \). Thus

\[
(Tl)^{-1} s^2 = (Tl)^{-1} s_u^2 + 2l^{-1}T^{-2} \sum_{\tau=1}^{l} \left(1 - \frac{\tau}{l+1} \right) \sum_{t=r+1}^{T} \left(\sum_{\tau=1}^{\tau} \Delta \hat{u}_{t-\tau} \Delta \hat{u}_{t-\tau} \right) + 2l^{-1}T^{-2} \sum_{\tau=1}^{l} \left(1 - \frac{\tau}{l+1} \right) \sum_{t=r+1}^{T} \hat{u}_{t-\tau}^2
\]

\[
= O_p\left(l^{-1} \right) + O_p\left(T^{-1} \right) + \frac{2}{l} \sum_{\tau=1}^{l} \left(1 - \frac{\tau}{l+1} \right) \left(T^{-2} \sum_{t=r+1}^{T} \hat{u}_{t-\tau}^2 \right)
\]

\[
\Rightarrow \sigma^2 \int_{0}^{1} V(r)^2 dr, \quad \text{for } l, T \to \infty \text{ and } l = O(T^{1-\varepsilon}), 0 < \varepsilon < 1
\]

Proof of Theorem 1.

The result (21) has already been shown in (A1). The limit (22) can be seen by appropriate scaling of the \(t \)-statistic defined as \(t_{\alpha} = (\hat{\alpha} - 1)/[s_u(\sum_{\tau=1}^{T} y_{t-\tau}^2)^{-1/2}] \), i.e. \(T^{-1/2} t_{\alpha} = T(\hat{\alpha} - 1)/[T^{-1/2} s_u(T-4 \sum_{t=1}^{T} y_{t-1}^2)^{-1/2}] \). The result then follows from (c) of Lemma 4, (b) of Lemma 5, and (A1).

Proof of Theorem 2.

The results (23) and (24) of Theorem 2 are already shown in Lemma 5. (25) follows as

\[
Z_\alpha = T(\hat{\alpha} - 1) - \frac{1}{2}(T^{-1} s^2 - T^{-1} s_u^2)(T^{-4} \sum_{t=1}^{T} y_{t-1}^2)^{-1} \cdot T^{-1}
\]

\[
= T(\hat{\alpha} - 1) + o_p(1)
\]

by use of Lemma 4 and Lemma 5, whereas (26) is given as

\[
T^{-1/2} Z_t = \left(\frac{T^{-1/2} s_u}{T^{-1/2} s} \right)(T^{-1/2} t_{\alpha}) - \frac{1}{2T} \left(\frac{T^{-1} s^2 - T^{-1} s_u^2}{T^{-1/2} s} \right)(T^{-4} \sum_{t=1}^{T} y_{t-1}^2)^{-1/2}
\]

\[
= \left(\frac{T^{-1/2} s_u}{T^{-1/2} s} \right)(T^{-1/2} t_{\alpha}) + o_p(1)
\]

\[
\Rightarrow \frac{1}{2(l+1)^{1/2}} \left(\int_{0}^{1} V(r)^2 dr \right)^{-1/2} \left(\int_{0}^{1} \bar{W}(r)^2 dr \right)^{-1/2} \bar{W}(1)^2
\]

Proof of Theorem 3
Appropriate normalization of (10) yields

\[
(l/T)^{1/2} Z_t = \left(\frac{T^{-1/2} s_u}{(Tl)^{-1/2} s} \right) T^{-1/2} \alpha_1 \frac{1}{2} \left(\frac{T^{-1} s^2 - T^{-1} s_u^2}{(Tl)^{-1/2} s} \right) \left(T^{-2} \sum_{t=1}^T y_{t-1}^2 \right)^{-1/2}
\]

From this expression it follows from Lemma 4 and Lemma 5 that

\[
\frac{1}{2} \left(\frac{T^{-1} s^2 - T^{-1} s_u^2}{(Tl)^{-1/2} s} \right) = O_p(l)
\]

\[
(T^{-2} \sum_{t=1}^T y_{t-1}^2)^{1/2} = O_p(T)
\]

Thus, given the assumption that \(l \) grows at a slower rate than \(T \), see also Perron and Ng (1994), section 4,

\[
(l/T)^{1/2} Z_t = \left(\frac{T^{-1/2} s_u}{(Tl)^{-1/2} s} \right) T^{-1/2} \alpha_1 + O_p(1)
\]

\[
\Rightarrow \frac{1}{2} \left(\int_0^1 V(r)^2 \, dr \right)^{-1/2} \left(\int_0^1 W(r)^2 \, dr \right)^{-1/2} W(1)^2
\]

ACKNOWLEDGMENTS

This paper was completed while the first author was visiting University of California, San Diego, in the spring of 2000. The Economics Department is gratefully acknowledged for its hospitality. We also want to thank two anonymous referees and Michael Jansson for helpful comments. The Aarhus University Research Foundation and the Danish Social Sciences Research Council is acknowledged for financial support.

REFERENCES

7. Tables and Figures

Table 1. Rejection frequencies of augmented Dickey-Fuller t–test for a single unit root when two unit roots exist. The tests are against one-sided stationary and explosive alternatives at 1, 5, and 10 % levels and for sample sizes $T = 25, 50, 100, 250,$ and 500.

<table>
<thead>
<tr>
<th></th>
<th>Stationary alternative</th>
<th></th>
<th></th>
<th>Explosive alternative</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1%</td>
<td>5%</td>
<td>10%</td>
<td>1%</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td>T</td>
<td>no deterministics</td>
<td></td>
<td></td>
<td>constant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>------------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-----------------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>25</td>
<td>.013</td>
<td>.055</td>
<td>.103</td>
<td>.025</td>
<td>.115</td>
<td>.202</td>
</tr>
<tr>
<td>50</td>
<td>.012</td>
<td>.054</td>
<td>.100</td>
<td>.032</td>
<td>.124</td>
<td>.209</td>
</tr>
<tr>
<td>100</td>
<td>.011</td>
<td>.055</td>
<td>.100</td>
<td>.036</td>
<td>.127</td>
<td>.212</td>
</tr>
<tr>
<td>250</td>
<td>.012</td>
<td>.053</td>
<td>.100</td>
<td>.037</td>
<td>.131</td>
<td>.222</td>
</tr>
<tr>
<td>500</td>
<td>.010</td>
<td>.051</td>
<td>.099</td>
<td>.039</td>
<td>.136</td>
<td>.223</td>
</tr>
<tr>
<td>-----</td>
<td>------------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-----------------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td>constant</td>
<td></td>
<td></td>
<td>constant and trend</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>------------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-----------------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>25</td>
<td>.013</td>
<td>.048</td>
<td>.086</td>
<td>.263</td>
<td>.414</td>
<td>.495</td>
</tr>
<tr>
<td>50</td>
<td>.012</td>
<td>.047</td>
<td>.085</td>
<td>.272</td>
<td>.420</td>
<td>.500</td>
</tr>
<tr>
<td>100</td>
<td>.012</td>
<td>.047</td>
<td>.085</td>
<td>.268</td>
<td>.418</td>
<td>.496</td>
</tr>
<tr>
<td>250</td>
<td>.012</td>
<td>.048</td>
<td>.086</td>
<td>.275</td>
<td>.419</td>
<td>.494</td>
</tr>
<tr>
<td>500</td>
<td>.012</td>
<td>.046</td>
<td>.086</td>
<td>.274</td>
<td>.416</td>
<td>.487</td>
</tr>
</tbody>
</table>

Note: The simulations are based on 25,000 Monte Carlo replications.
Table 2. Empirical fractiles for the Z_t test when the underlying process is generated according to $\Delta^2 y_t = \varepsilon_t$, with $\varepsilon_t \sim \text{n.i.d.}(0, 1)$, $t = 1, 2, \ldots, T$.

<table>
<thead>
<tr>
<th>T</th>
<th>l</th>
<th>1%</th>
<th>2.5%</th>
<th>5%</th>
<th>10%</th>
<th>50%</th>
<th>90%</th>
<th>95%</th>
<th>97.5%</th>
<th>99%</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0</td>
<td>-.39</td>
<td>-.28</td>
<td>-.10</td>
<td>.65</td>
<td>8.52</td>
<td>18.04</td>
<td>21.01</td>
<td>23.95</td>
<td>26.91</td>
</tr>
<tr>
<td>50</td>
<td>4</td>
<td>-.96</td>
<td>-.74</td>
<td>-.56</td>
<td>-.15</td>
<td>4.03</td>
<td>9.01</td>
<td>10.67</td>
<td>12.35</td>
<td>14.34</td>
</tr>
<tr>
<td>50</td>
<td>8</td>
<td>-1.15</td>
<td>-.95</td>
<td>-.75</td>
<td>-.42</td>
<td>3.18</td>
<td>7.41</td>
<td>8.95</td>
<td>10.48</td>
<td>12.29</td>
</tr>
<tr>
<td>50</td>
<td>12</td>
<td>-1.20</td>
<td>-1.04</td>
<td>-.87</td>
<td>-.56</td>
<td>2.83</td>
<td>6.83</td>
<td>8.42</td>
<td>10.00</td>
<td>11.91</td>
</tr>
<tr>
<td></td>
<td>DF</td>
<td>-2.62</td>
<td>-2.25</td>
<td>-1.95</td>
<td>-1.61</td>
<td>-.52</td>
<td>.91</td>
<td>1.31</td>
<td>1.66</td>
<td>2.08</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
<td>-.24</td>
<td>-.14</td>
<td>.17</td>
<td>1.19</td>
<td>12.57</td>
<td>26.64</td>
<td>30.79</td>
<td>34.68</td>
<td>38.66</td>
</tr>
<tr>
<td>100</td>
<td>4</td>
<td>-.69</td>
<td>-.49</td>
<td>-.33</td>
<td>.17</td>
<td>5.75</td>
<td>12.62</td>
<td>14.59</td>
<td>16.63</td>
<td>18.78</td>
</tr>
<tr>
<td>100</td>
<td>8</td>
<td>-.92</td>
<td>-.69</td>
<td>-.53</td>
<td>-.11</td>
<td>4.39</td>
<td>9.95</td>
<td>11.42</td>
<td>13.24</td>
<td>15.03</td>
</tr>
<tr>
<td>100</td>
<td>12</td>
<td>-1.06</td>
<td>-.84</td>
<td>-.64</td>
<td>-.29</td>
<td>3.76</td>
<td>8.63</td>
<td>10.08</td>
<td>11.79</td>
<td>13.40</td>
</tr>
<tr>
<td></td>
<td>DF</td>
<td>-2.60</td>
<td>-2.24</td>
<td>-1.95</td>
<td>-1.61</td>
<td>-.54</td>
<td>.90</td>
<td>1.29</td>
<td>1.64</td>
<td>2.03</td>
</tr>
<tr>
<td>500</td>
<td>0</td>
<td>-.07</td>
<td>.07</td>
<td>.71</td>
<td>2.86</td>
<td>28.56</td>
<td>59.98</td>
<td>69.00</td>
<td>77.17</td>
<td>87.14</td>
</tr>
<tr>
<td>500</td>
<td>4</td>
<td>-.25</td>
<td>-.16</td>
<td>.14</td>
<td>1.11</td>
<td>12.83</td>
<td>27.02</td>
<td>31.32</td>
<td>34.99</td>
<td>39.60</td>
</tr>
<tr>
<td>500</td>
<td>8</td>
<td>-.37</td>
<td>-.25</td>
<td>-.04</td>
<td>.69</td>
<td>9.60</td>
<td>20.30</td>
<td>23.59</td>
<td>26.46</td>
<td>29.80</td>
</tr>
<tr>
<td>500</td>
<td>12</td>
<td>-.47</td>
<td>-.32</td>
<td>-.15</td>
<td>.47</td>
<td>8.04</td>
<td>17.03</td>
<td>19.84</td>
<td>22.34</td>
<td>25.16</td>
</tr>
<tr>
<td></td>
<td>DF</td>
<td>-2.58</td>
<td>-2.23</td>
<td>-1.95</td>
<td>-1.62</td>
<td>-.51</td>
<td>.89</td>
<td>1.28</td>
<td>1.62</td>
<td>2.00</td>
</tr>
</tbody>
</table>

Note. "DF" indicates the Dickey-Fuller fractiles (in the presence of one unit root) for a given sample size. This is the distribution of reference by which the Z_t fractiles should be compared.
Figure 1: Asymptotic density functions of t_α in the presence of a single and double unit roots. These correspond to (9) and (19) for $\lambda = 0$. Three cases are displayed: no deterministics, constant, and constant plus trend. The plots are drawn from 250000 Monte Carlo replications and a normal density kernel was used for smoothing.