Title
S100A4 in esophageal cancer: Is this the one to blame?

Permalink
https://escholarship.org/uc/item/2kd0j38k

Journal
World Journal of Gastroenterology, 18(30)

ISSN
1007-9327

Author
Chai, Jianyuan

Publication Date
2012-01-01

DOI

License
CC BY 4.0

Peer reviewed
Abstract

Metastasis is the main reason for cancer-related death. S100A4 is one of the key molecules involved in this event. Several studies have shown that overexpression of S100A4 in non-metastatic cancer cells can make them become metastatic, and knockdown of S100A4 in metastatic cancer cells can curtail their invasive nature. A study by Chen et al[2] published in the *World J Gastroenterol* 18(9): 915-922, 2012 examined the role of S100A4, one of the well-known cancer metastatic markers, in esophageal squamous cell carcinoma (ESCC) in vitro and in vivo, evidence that S100A4 expression level determines the invasiveness of esophageal squamous carcinoma. Considering the fact that more than half of the cancer-related deaths are caused by malignancies derived from the digestive system, including esophagus, stomach, small intestine, colon, rectum, anus, liver, gallbladder and pancreas[1]. The main feature that makes these cancers deadly is metastasis, a process that cancer cells break off from their original location and invade other parts of the organ. The majority of skin cancers do not have this capacity; therefore, they can be easily treated before becoming life threatening. Esophageal cancer, on the other hand, is highly metastatic. Therefore, understanding the molecular mechanisms behind its metastasis is of great values for developing better treatment strategies. A study by Chen et al[3] published in the *World J Gastroenterol* 18(9): 915-922, 2012 examined the role of S100A4, one of the well-known cancer metastatic markers, in esophageal squamous cell carcinoma (ESCC) in vitro and in vivo, in animal models as well as in clinical human specimens, and clearly demonstrated a reliance of the invasiveness of esophageal cancer on this small calcium-binding protein[3].

© 2012 Baishideng. All rights reserved.

Key words: Esophageal cancer; S100A4; Metastasis

Peer reviewer: Ferruccio Bonino, MD, PhD, Professor of Gastroenterology, Director of Liver and Digestive Disease Division, Department of Internal Medicine, University of Pisa, Director of General Medicine 2 Unit University Hospital of Pisa, Via Roma 67, 56124 Pisa, Italy

INVITED COMMENTARY ON HOT ARTICLES

Cancer is the second leading cause of death in the world (18%), after heart disease (21%). Among about 18 million new cases of cancers diagnosed each year, about one third is skin cancer. However, 95% of skin cancer is either basal cell carcinoma or squamous cell carcinoma, which has a mortality of less than 0.5%. The majority of cancer-related deaths are actually caused by malignancies derived from the digestive system, including esophagus, stomach, small intestine, colon, rectum, anus, liver, gallbladder and pancreas[1]. The main feature that makes these cancers deadly is metastasis, a process that cancer cells break off from their original location and invade other parts of the organ. The majority of skin cancers do not have this capacity; therefore, they can be easily treated before becoming life threatening. Esophageal cancer, on the other hand, is highly metastatic. Therefore, understanding the molecular mechanisms behind its metastasis is of great values for developing better treatment strategies. A study by Chen et al[3] published in the *World J Gastroenterol* 18(9): 915-922, 2012 examined the role of S100A4, one of the well-known cancer metastatic markers, in esophageal squamous cell carcinoma (ESCC) in vitro and in vivo, in animal models as well as in clinical human specimens, and clearly demonstrated a reliance of the invasiveness of esophageal cancer on this small calcium-binding protein[3].

A little biography of S100A4: Short but hot

S100A4 was discovered in the mid 1980s by several laboratories independently. One of these laboratories be-
S100A4 is naturally expressed in various cell types including both cancer and normal cells, and its elevation is usually associated with cell motility. It appears that whenever cell migration is required, such as wound healing, angiogenesis and cancer metastasis, S100A4 is activated. Like other members of S100 family, S100A4 works like a calcium sensor. Upon calcium binding, S100A4 goes through a series of conformational changes, which allow the molecule to interact with its targets, such as nonmuscle myosin heavy chain (MYH II A) and liprin β1, to facilitate cell migration and extracellular matrix. A few reports showed that S100A4 knock-out mice do not display developmental abnormalities in the postnatal period, but 10% of them develop tumors at age of 10-14 months, possibly due to destabilization of the tumor suppressor p53. As S100A4 has been shown capable to bind to the C-terminal of p53 and repress its transcriptional activity. Yet, the story of S100A4 is not as straightforward as it might have been anticipated. In addition to being a cytoskeletal regulator in the cytoplasm, S100A4 has also been localized to the nucleus and extracellular matrix. How it gets there and what it does in these locations remain unclear. Nevertheless, its association with transcription factors like p53 might explain some of its roles in the nucleus. It has been postulated that S100A4 binding to the tetramerization domain of p53 favors p53 oligomerization and thereby facilitates p53 nuclear translocation. On the other hand, extracellular S100A4 has been demonstrated to stimulate MMP-13 expression in chondrocytes in a receptor for advanced glycation end products (RAGE)-dependent manner, while its inductivity on neuron growth was found to be RAGE irrelevant. More complicatedly, S100A4 has been found in association with cell death in a conflict way, it inhibits apoptosis in pancreatic cancer but promotes it in osteosarcoma cells.

Functions of S100A4: Motivation to move

Up to date, S100 family includes 25 members with common characteristics such as low molecular weight, two calcium binding sites of the helix-loop-helix ("EF-hand type") conformation, and complete solubility in ammonia sulfate at pH 7. They have been implicated in regulation of protein phosphorylation, transcription factor activation, calcium homeostasis, cytoskeleton reorganization, cell migration, cell growth and death.

S100A4 in cancers: A facilitator, not a generator

Elevation of S100A4 has been found in almost every metastatic cancer known, including breast, ovarian, prostate, urinary bladder, lung, esophageal, gastric, colon, pancreatic, liver, gallbladder and...
thyroid carcinomas\cite{59}. More direct evidence for the essential role of S100A4 in cancer metastasis perhaps comes from in vitro studies and animal models, which have shown that overexpression of S100A4 in non-metastatic tumor cells confers a metastatic phenotype, just as demonstrated in the study by Chen et al\cite{3}, as well as several others\cite{16,44}; whereas, knockdown of S100A4 in metastatic tumor cells curtails their invasive capability\cite{32,42}.

It should be pointed out though that S100A4 is not an oncogenic product. As shown by transgenic studies\cite{17,44}, mice carrying extra copies of S100A4 gene develop normally as wild-type and have no increased risk of cancer. However, when these mice mated with cancer mice, their offspring showed increased number of tumors distant from their primary location\cite{40}. Therefore, S100A4 is not a cancer generator but a metastatic facilitator.

S100A4 has been studied extensively in other cancers, especially in breast cancer. In esophageal cancer, there are about a dozen of publications so far, mostly focusing on squamous cell carcinoma. The earliest study that can be found was done by a Japanese group\cite{33}, showing an elevated expression of S100A4 protein in surgically resected ESCC, and a possible association with esophageal cancer progression. However, a later study reported an opposite result, showing that 11 out of 16 S100 family members examined, including S100A4, were down-regulated at transcriptional level in tumor tissues compared with adjacent normal tissues\cite{36}. In 2010, a Chinese research team used RNA interference technology to knock down S100A4 in metastatic esophageal tumor cells and grafted them in nude mice\cite{46}. They noticed that tumor growth was significantly inhibited by S100A4 deficiency, and E-cadherin expression was reciprocal to the level of S100A4. Unfortunately, the study had little impact because it was published in a local journal in Chinese. However, the idea of xenografting has recently advanced to a new cancer treatment strategy - the “avatar” mice. Principally, it is to take tumor tissue from a patient and graft it in nude mice to create a personalized colony of mice carrying exact that patient’s cancer, and then test every potential treatment combinations in mice before selecting the best one to treat that patient. Manuel Hidalgo, the Director of the Spanish National Cancer Research Center in Madrid, has been practicing this approach for pancreatic cancer patients over years and showed a clear advantage in drug responses\cite{36,56}, and now more and more researchers believe that this idea holds a great promise in cancer treatment in the future.

In the study by Chen et al\cite{3}, the research team cleverly used two ESCC cell lines, EC109 (highly invasive) and TE13 (non-invasive), and successfully made these cells switch characters by down-regulation of S100A4 in EC109 and up-regulation of S100A4 in TE13. They provided in vitro and in vivo evidence that the level of S100A4 determines the metastatic status of the cancer.

There are two main subtypes of esophageal cancer: ESCC and esophageal adenocarcinoma (EAC). Although nearly 95% of esophageal cancer is ESCC, EAC has been rising by 6-fold annually in Americans and now its increase rate exceeds the rate for any other type of cancers. Overexpression of S100A4 was also reported in EAC and its correlation with lymph node metastasis was found significant\cite{39}.

Although the exact molecular mechanisms how S100A4 promotes cancer metastasis still need to be further examined, based on various studies, one possible explanation could be that S100A4 binding to liprin α1 inhibits its phosphorylation\cite{58}, and thereby prevents its interaction with lipin α1. As a result, lipin α1 fails to recruit leucoketein common antigen-related (LAR) protein\cite{51}, a phosphatase, to focal adhesions. Without LAR to dephosphorylate β-catenin\cite{52}, β-catenin becomes activated to leave E-cadherin and results in the collapse of adherens junctions, allowing cells to migrate. As found in our study, the dissociation of β-catenin from E-cadherin causes E-cadherin ubiquitination and degradation\cite{53}, which might at least in part explains why S100A4 elevation is often found in association of E-cadherin loss, as shown in the study by Chen et al\cite{3}.

S100A4 in normal situation: An innocent bystander

As discussed above, S100A4 is expressed wherever cell migration is required, regardless normal or pathological situation. However, most of S100A4 studies focus on its bad side, such as cancer metastasis and organ fibrosis. Its good side has been continually overlooked. If we go back to the story that S100A4 was discovered in an experiment of serum stimulated fibroblasts, we know that S100A4 is innocent. Cells, including fibroblasts, in our body normally do not come into a direct contact with serum unless there is an injury. Therefore, when cells are suddenly exposed to serum, as the experiment done in Nathans’ lab, they naturally interpret it as a signal of a wound. Therefore, a transcriptional program for wound healing gets activated immediately to battle against injury. S100A4 is just one of the players in this battle. So is SRF, and so are many SRF-regulated genes (e.g., C-FOS, EGR-1, CCN1, CTGF, FGF10, etc)\cite{59}. All these genes contain a common regulatory element CArG box, which SRF recognizes to bind. S100A4 gene also contains such element in its promoter region\cite{19}, suggesting a possible regulation by SRF. *In vitro*, S100A4 activation has been found in various wound healings, and its contributions to tissue repair and modification are indisputable\cite{36,56}.

REFERENCES

5. Treisman R. Journey to the surface of the cell: Fos regulation
and the SRE. *EMBO J* 1995; **14**: 4905-4913

14. Chai JY, Modak C, Mouazen W, Narvaez R, Pham J. Epithelial or mesenchymal: Where to draw the line? *Biosci Trends* 2010; **4**: 130-142

24. Yammani RR, Carlson CS, Bresnick AR, Loeser RF. Increase in production of matrix metalloproteinase 13 by human articular chondrocytes due to stimulation with S100A4: Role of the receptor for advanced glycation end products. *Arthritis Rheum* 2006; **54**: 2901-2911

37. Komatsu K, Murata K, Kameyama M, Ayaki M, Mukai M, Ishiguro S, Miyoshi J, Tatsuta M, Inoue M, Nakamura H. Expression of S100A6 and S100A4 in matched samples of hu-
man colorectal mucosa, primary colorectal adenocarcinomas and liver metastases. Oncology 2002; 63: 192-200
40 Davies BR, Davies MP, Gibbs FE, Barraclough R, Rudland PS. Induction of the metastatic phenotype by transfection of a benign rat mammary epithelial cell line with the gene for p9Ka, a rat calcium-binding protein, but not with the oncogene E-ras-1. Oncogene 1993; 8: 999-1008
53 Chai J, Norga M, Modak C, Reavis KM, Mouazzen W, Pham J. CCN1 induces a reversible epithelial-mesenchymal transition in gastric epithelial cells. Lab Invest 2010; 90: 1140-1151
56 Ryan DG, Taliana L, Sun L, Wei ZG, Masur SK, Lavker RM. Involvement of S100A4 in stromal fibroblasts of the regenerating cornea. Invest Ophthalmol Vis Sci 2003; 44: 4255-4262

S- Editor Cheng JX L- Editor Ma JY E- Editor Xiong L