Lawrence Berkeley National Laboratory
Recent Work

Title
Se Isotopes as Groundwater Redox Indicators: Detecting Natural Attenuation of Se at an in Situ Recovery U Mine

Permalink
https://escholarship.org/uc/item/2kr0324w

Journal
Environmental Science and Technology, 50(20)

ISSN
0013-936X

Authors
Basu, A
Schilling, K
Brown, ST
et al.

Publication Date
2016-10-18

DOI
10.1021/acs.est.6b01464

Peer reviewed
Se Isotopes as groundwater redox indicators:
Detecting natural remediation at an in situ recovery U mine

Anirban Basu¹*, Kathrin Schilling²#, Shaun T. Brown¹-³, Thomas M. Johnson⁴, John N. Christensen⁵, Matt Hartmann⁵, Paul. W. Reimus⁶, Jeffrey M. Heikoop⁶, Giday Woldegabriel⁶, Donald J. DePaolo¹-³

¹Department of Earth and Planetary Science, University of California, Berkeley, 307 McCone Hall, Berkeley, CA, 94720, United States
²Department of Environmental Science, Policy and Management, University of California, Berkeley, 130 Mulford Hall, Berkeley, CA, 94720, United States
³Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, United States
⁴Department of Geology, University of Illinois at Urbana-Champaign, 605 E. Springfield Avenue, Champaign, Illinois, 61820, United States
⁵Uranium Resources, Inc., 6950 S. Potomac St., Suite 300, Centennial, CO, 80112, United States
⁶Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
ABSTRACT

One of the major ecological concerns associated with in situ recovery (ISR) of uranium is the environmental release of soluble, toxic Se-oxyanions generated by mining. Post-mining natural attenuation by the residual reductants in the ore body and reduced downgradient sediments should mitigate the risk of Se contamination in groundwater. In this work, we investigate the Se concentrations and Se isotope systematics of groundwater and of U ore bearing sediments from an ISR site at Rosita, TX, USA. Our results show that selenate (Se(VI)) is the dominant Se species in Rosita groundwater, and while several upgradient wells have elevated Se(VI), the majority of the ore zone and downgradient wells have little or no Se-oxyanions. In addition, the $\delta^{82}\text{Se}_{\text{VI}}$ of Rosita groundwater is generally elevated relative to the U ore up to $+6.14\%e$, with the most enriched values observed in the ore zone wells. Increasing $\delta^{82}\text{Se}$ with decreasing Se(VI) conforms to a Rayleigh-type distillation model with an ε of $-2.25\%e \pm 0.61\%e$ suggesting natural Se(VI) reduction occurring along the hydraulic gradient at the Rosita ISR site. Furthermore, our results show that Se isotopes may indicate the onset of U(VI) reduction and thus are excellent sensors for detecting and monitoring postmining natural attenuation of both Se oxyanions and U(VI) at ISR sites.
Introduction

Information about key reactions and reaction kinetics in redox-interface mineral deposits is crucial for understanding ore deposition mechanisms as well as possible remediation-restoration strategies. Reductive immobilization of Se is an important reaction that tends to concentrate Se in roll-front type ore deposits forming at redox interfaces in groundwater systems\(^1\,^2\). The similarity between the redox potential for reduction of Se oxyanions and dissolved hexavalent uranium (U(VI)) leads to co-precipitation of Se-minerals and U minerals (Figure 1). Commonly, ferroselite (FeSe\(_2\)) and pyrite are host minerals for Se in these U ore deposits\(^1\,^4\). Compared to its average crustal concentration (0.05 mg/kg), high concentrations of Se ranging from 0.5 - 500 mg/kg are reported from the roll-front deposits in Wyoming, Montana, and Utah in the United States\(^5\,^7\). These anomalously high Se concentrations have been used for uranium prospecting, particularly to characterize the location and shape of roll-front type deposits\(^8\).

The oxidative dissolution of U ore enriched with Se minerals mobilizes Se and U in the groundwater in their toxic, oxidized forms. Se in the effluent from a traditional U mining and milling operation in northern Saskatchewan, Canada, led to accumulation of toxic levels of Se in aquatic organisms\(^9\,^{10}\). Elevated Se concentrations in runoff or aquifers are reported from the regions of U mining and milling in the USA (e.g., Puerco River, Arizona; New Mexico; Rifle, CO)\(^11\,^{12}\). At present, almost all recent U mining in the USA and ~50% of global U mining employs a mining technique known as in situ recovery (ISR) that extracts U by oxidative dissolution of roll-front type sandstone-hosted ore deposits\(^13\,^{14}\). Despite several advantages such as the lack of mill tailings and radioactive dust, and its low CO\(_2\) emission footprint, this mining method releases Se as toxic, mobile Se oxyanions along with U(VI) directly into groundwater\(^15\).
Current strategies to mitigate Se(VI) in the groundwater after the completion of mining include groundwater sweep and occasionally active remediation by biostimulation or injection of abiotic reductants16. Natural attenuation of U(VI) by the existing reducing environments downgradient of the redox interface at roll-front deposits has been proposed as an inexpensive but effective remediation strategy. Recent work from our group demonstrates conditions favorable for post-mining U(VI) reduction at ISR sites17 (Add Brown et al., 2015). After the cessation of mining, the residual reducing capacity of the U ore and the prevailing reducing environments downgradient of the ore should reduce mine-generated elevated concentrations of toxic Se oxyanions. The redox potential (Eh) required for the reduction of Se oxyanions is slightly higher than that of U18-20, meaning that the reduction of Se(VI) and/or Se(IV) should precede U(VI) reduction. Therefore, natural attenuation of Se may be an excellent indicator that a system is approaching U(VI) reducing conditions. The challenge is to identify the active reduction of Se in the ore zone and/or downgradient groundwater and distinguish reduction from other processes that may affect aqueous Se concentration such as sorption and dilution.

An effective approach to better understand important reactions and possibly the reactions kinetics is the study of variations in stable isotope ratios. Se reduction can be detected by shifts in the relative abundance of its stable isotopes (\(^{82}\text{Se}, ^{80}\text{Se}, ^{78}\text{Se}, ^{77}\text{Se}, ^{76}\text{Se}, ^{74}\text{Se}\)). The reduction of Se(VI) to Se(0) or Se(-II) via the intermediate product Se(IV) induces a kinetic isotopic fractionation resulting in the enrichment of heavier isotopes (i.e., \(^{82}\text{Se}\)) in the remaining dissolved Se oxyanions20-23. This enrichment is described in terms of an isotopic enrichment factor \(\varepsilon\), a per mil quantity, expressed as
\[\varepsilon = 1000\%_0 \times (\alpha - 1) \]

where \(\alpha \) is the isotopic fractionation factor, defined as \(\alpha = \frac{R_{\text{product}}}{R_{\text{reactant}}} \), where \(R_{\text{product}} \) and \(R_{\text{reactant}} \) are the \(^{82}\text{Se} / ^{76}\text{Se} \) ratios in the reduction product and remaining Se oxyanions, respectively. Relatively large isotopic fractionation factors are observed during microbial reduction of Se(VI) to Se(IV) (\(\approx -8\%_e \)) and of Se(IV) to elemental Se (\(\approx -14\%_e \)). Abiotic reduction of Se(VI) by green rust or of Se(IV) by FeS also induces large fractionations (up to \(\approx -11\%_e \)). In contrast, adsorption of Se(IV) to mineral surfaces results in a smaller fractionation (\(\approx -1\%_e \)). Thus, Se stable isotope ratios in groundwater are a more reliable indicator of reduction of Se-oxyanions than aqueous concentrations of the Se species, which are less easy to interpret because of the effects of dilution, removal by adsorption, or advection of heterogeneous plumes past sampling points.

In this article, we present species-specific Se concentrations and isotopic measurement data for 1 U ore and 33 groundwater samples collected from wells located upgradient, within and downgradient of a roll-front deposit located at an ISR site at Rosita, TX, USA. Sample locations include both previously mined and unmined parts of the site. To our knowledge, this is the first report of Se isotope measurements in groundwater samples across a groundwater redox interface. Here, we demonstrate Se-oxyanion reduction at the site using Se isotope ratios of groundwater, and argue that Se isotopes are sensitive tracers for detecting the onset of naturally occurring U(VI) reduction.

Materials and Methods

Site description and Groundwater Sampling. The study site is located at Rosita, TX, USA (Figure 2). A detailed description of the site can be found in ref 17. Briefly, the U roll front...
Deposit at this ISR site is defined by a poorly consolidated, mineralized sand unit bounded above and below by low permeability clay units. For ISR mining, site groundwater fortified with O₂ and H₂O₂ was injected into the ore zone in 3 mining units or production area authorizations (PAA) to oxidize and dissolve the U ore utilizing the high natural bicarbonate concentrations to stabilize U-CO₃ complexes. The mining unit PAA 4 has a complete set of monitoring wells but no mining has occurred to date. The mining was followed by a restoration process, except in the most recently mined PAA 3, where the site groundwater treated by reverse osmosis was injected back into the aquifer. A network of existing wells, drilled within, upgradient and downgradient of the ore body, was used for postmining monitoring of the site.

Groundwater samples were collected from 33 wells along transects roughly parallel to the current groundwater flow direction. The wells were purged prior to sampling, and samples for Se-oxyanion concentrations and Se isotopes were filtered using 0.45 μm in-line filters and collected in pre-cleaned HDPE bottles with no headspace and no preservatives. The samples were stored at 4 °C prior to analysis.

Sediment digestion. U ore samples were obtained from a borehole adjacent to BL 39 in PAA 4 (Figure 2). For Se concentration and isotopic analysis, 1.0 g aliquots of sediment samples from discreet depths were digested in an acid mixture (concentrated HCl + concentrated HNO₃, 3:1 v/v). First, each 1.0 g aliquot was treated with 4 mL of ~7 M HNO₃ in Teflon beakers at 80 °C for about 12 hrs to remove any carbonate from the sediments. The remaining HNO₃ was then evaporated to near dryness at 60 °C prior to addition of a freshly prepared acid mixture of HCl and HNO₃. The samples were digested at 80 °C for 24 hr. After digestion, the acid mixture was
removed by evaporating to near dryness at 70 °C, and 5 mL of 0.1 N HCl was added. This solution was filtered using 0.45 μm PTFE filters to remove undigested particles.

Sample Purification and Mass Spectrometry. Se isotope ratios were measured using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) at the Department of Geology, University of Illinois, Urbana-Champaign following the methods described in refs 27,28. For isotopic measurements, we used a double spike technique (\(^{74}\text{Se} + ^{77}\text{Se}\)) to correct for the isotopic fractionation during mass spectrometry, and any that might occur during sample purification by ion-exchange chromatography. An aliquot of the double spike solution of appropriate species (either Se(IV) or Se(VI)) was added to a carefully weighed aliquot of the sample (groundwater, or digested U ore) containing approximately 100 ng of Se.

The Se-oxyanion species was purified from other Se species and matrix elements by ion-exchange chromatography\(^ {28}\). For the separation of Se(VI), the samples were first acidified with HCl to a final strength not exceeding 0.1 M HCl. The acidified samples were passed through the anion exchange resin (Eichrom Technologies, LLC) where Se(VI) was adsorbed onto the resin while Se(IV) and other matrix elements (e.g., As, Ge) were rinsed out by 0.1 M HCl. Se(VI) was eluted from the resin by 6M HCl and heated to 105 °C for 1 hr. Finally, the samples were diluted to 2 M HCl, sparged with N\(_2\) to remove a volatile Br species, and equilibrated with Kr in the air for 12 hr prior to isotopic analysis.

For Se(IV) extraction, the samples were not acidified before loading on the anion exchange resin. The Se(VI) was adsorbed onto the resin and the effluent containing Se(IV) was collected by rinsing with 0.1 M HCl, then oxidized to Se(VI) by treatment with K\(_2\)S\(_2\)O\(_8\) at 100 °C for 1 hr. After oxidation, all samples were purified using the above procedure for Se(VI) purification.
For purification of Se from the digested U ore (as Se(IV)), we first evaporated the samples to near dryness and then re-dissolved them in 5 mL 0.1 M HCl. An aliquot of this solution containing ~ 100 ng Se was brought to a strength of 4-6 M HCl prior to purification by hydride generation described in ref 29. The H₂Se was trapped in a mixture of NaOH and H₂O₂ and converted to Se(VI). The excess H₂O₂ was removed from the samples by heating (~ 100 °C) prior to purification using the procedure for Se(VI) described above.

Se isotope ratios are reported as δ⁸²Se, a per mil quantity, defined as

\[\delta^{82}\text{Se} = \frac{^{82}\text{Se}_{\text{sample}} - ^{76}\text{Se}}{^{76}\text{Se}_{\text{SRM 3149}}} \times 1000 \% \]

(2)

The uncertainty (2σ) of δ⁸²Se measurements, calculated from the twice the root mean square (RMS, 95% confidence level)30 of 24 duplicate sample preparations and analysis, was 0.17‰. The value of the isotopic fractionation factor (α) was determined from the slope of the best-fit line from the linearized plot of ln([²⁸²Se + 1000‰]) vs. ln(Se(VI))31. The uncertainties (2σ) of ε were ± 0.6‰, calculated from the scatter of the data points around the best-fit line using standard linear estimation methods.

Results and Discussion

Se Concentrations in Rosita Groundwater and U Ore. Se(VI) and Se(IV) concentrations in Rosita groundwater are provided in Table 1. Se(VI) is the dominant species with concentrations up to 306 μg/L in the groundwater samples while Se(IV) is found in fewer samples and only at concentrations below 9 μg/L. Generally, except for ore zone wells BL 3 and BL 4, groundwater
from the upgradient monitoring wells has higher Se(VI) compared to that in the ore zone or downgradient monitoring wells. We did not observe any systematic pattern in the distribution of Se(IV) at the site. Out of 12 samples with measurable Se(IV), 3 ore zone wells (BL 7, BL 29 and BL 34) and one downgradient well, MW 37, contain only Se(IV) while the rest contain both Se(VI) and Se(IV). In the previously mined parts of the site, the downgradient monitoring wells MW 37, MW 75, MW 85, and MW 89, contain little (<1 μg/L) or no Se-oxyanions, either as Se(VI) or Se(IV). The wells MW 32, MW 102, MW 103 and MW 137, located directly downgradient of the mapped discontinuities of the ore body (Figure 2), contain substantial amount of Se(VI) and in some cases Se(IV). In the unmined PAA 4, the downgradient wells show little dissolved Se: MW 149 has no Se-oxyanions whereas MW 144 contains 0.6 μg/L Se(VI) and Se(IV) below detection level (<0.1 μg/L).

The Se concentrations in the U ore collected at 7 discreet depths from borehole OZCH3 adjacent to the ore zone well BL 39 in the unmined PAA4 area, are low and vary from 24 μg/kg to 48 μg/kg (Table 1). There is no apparent trend in the Se concentrations with depth. However, the samples with the highest U concentrations collected from 70.71 – 71.32 m below the ground surface also contain the highest amount of Se. The U ore was not characterized for the identity of Se bearing minerals, but previous work identified ferroselite and elemental Se as the dominant Se bearing species in South Texas and other roll-front type U deposits.

Se Isotope Ratios in Rosita Groundwater and U Ore. The δ³²Se in groundwater samples from all PAAs and in the U ore are provided in Table 1. The δ³²Se of aqueous Se(VI) varies from −1.46‰ to +6.14‰, with most of the samples showing elevated δ³²Se relative to the Se isotope standard SRM 3149 (i.e., δ³²Se >0.0‰) (Figure 3). The highest δ³²Se of Se(VI) is observed in
groundwater from the ore zone well BL 39 from the unmined PAA4 area, while BL 3 from the already mined PAA1 exhibits the most depleted δ82Se value (−1.46‰). In a subset of samples there is an apparent trend of increasing δ82SeVI with decreasing Se(VI) (Figure 3). Contrary to the δ82Se values of Se(VI), δ82Se of Se(IV) is substantially depleted by up to −6.45‰, except in samples from BL 29 (δ82SeIV = 0.51‰) and BL 34 (δ82SeIV = 0.73‰). Notably, these wells had no measurable Se(VI). In the samples containing both Se oxyanion species, Se(IV) is isotopically lighter than Se(VI) with Δδ82Se (∼δ82SeVI - δ82SeIV) ranging from 3.5‰ to 6.9‰. We observe a weak correlation between Se(IV) concentration and δ82SeIV of the groundwater samples; the δ82SeIV decreases with decreasing Se(IV) (Figure S1).

The Se isotope compositions of the Se minerals in the U ore from 7 discreet depths are provided in Table 1. The δ82Se of the U ore ranges from −1.28‰ to −0.40‰. The median value of −0.72‰ is low relative to the majority of the groundwater Se(VI) samples (Figure 3). There is also an enrichment in δ82Se in the ore with increasing depth.

Implication of Se Isotopic Signature of Rosita U ore. Our observations of 82Se depletion of the ore are limited to a single borehole (OZCH3) in PAA4, which does not provide the full extent of the spatial variability in δ82Se of the ore body. Furthermore, the U ore samples from the borehole OZCH3 are not representative of the Se-enriched portion of the roll-front system generated by reductive precipitation of Se. Lower Se concentrations of the U ore compared to that of upgradient groundwater suggest a Se rich sediment upgradient of the borehole OZCH3 (Table 1, Figure 3). This is further supported by our observation of 82Se depletion in the U ore. Ideally, reductive precipitation of Se-oxyanions at the redox interface should produce 82Se depleted Se minerals at the upgradient fringe of the roll-front deposit. With increasing distance
along the hydraulic gradient, the Se minerals should become isotopically heavier. However, after complete removal of Se-oxyanions from the groundwater, the Se concentrations and isotopic composition of the sediments should return to background values. The sediments collected 6m above the ore-bearing zone contain 24.3 μg/kg of Se with a δ²⁸Se of −1.54‰, resembling the ore-zone sediments both in terms of Se concentrations and isotopic composition (Table 1). Therefore, we surmise that Se concentrations and isotopic compositions of our U ore samples reflect the primary Se content of the aquifer sediments.

Se Reduction in Groundwater: Se Concentration Distribution and Geochemical Conditions. The distribution of dissolved Se in Rosita groundwater is consistent with reduction of Se oxyanions, particularly Se(VI) reduction, by naturally occurring reducing environments within and downgradient of the ore zone. The Se(VI) hotspots at the upgradient wells or ore zone wells in the mined part of the site resulted from the oxidation of Se minerals either during mining or by interaction with the oxygenated recharge water. For example, high Se(VI) up to 107 μg/L in the upgradient wells MW 158 and MW 154 in the unmined PAA 4 is likely to reflect natural dissolution of Se minerals in the aquifer. In absence of any Se removal within or downgradient of the ore zone, the downgradient wells should show Se(VI) concentrations similar to that of the upgradient wells. Little or no Se oxyanions in the downgradient wells, particularly in MW 37, MW 75, MW 85, and MW 89, suggests Se removal before groundwater arrives at these wells. At the study site, a progression from nitrate-reducing, to Fe(III)-reducing, and then to U(VI)-reducing conditions along the hydraulic gradient is inferred from concentrations of the redox species (e.g., NO₃⁻, Fe(II) and U(VI)), Eh values and isotopic measurements (e.g, δ¹⁵N, and δ²³⁸U) of groundwater samples. Among the downgradient wells investigated by Basu et al.
the samples from MW 37, MW 75, MW 85, and MW 89 exhibited low Eh (−11.7 mV to 105.5 mV), low U(VI) concentrations (< 20 μg/L) and highly depleted δ²³⁸U (−1.41‰ to 2.49‰) suggesting naturally occurring reducing environments capable of U(VI) and thus, ²³²Se(VI) reduction. The overall range of Eh and pH suggests thermodynamic favorability of Se-oxyanions reduction in Rosita groundwater (Figure 1). The decrease in Se(VI) along the hydraulic gradient is therefore consistent with the Se(VI) and perhaps Se(IV) reduction in downgradient the reducing environments suggested by Basu et al. 2015 based on U isotopes and other evidence. Alternatively, Se(IV) could be strongly adsorbing and removed via sorption onto minerals.

Several downgradient wells, however, do not follow the general trend of aqueous Se(VI) removal along the hydraulic gradient. These wells, MW 32, MW 102, MW 103, and MW 137, are located directly downgradient of the mapped gaps in the ore body (Figure 2). These gaps may mark regions that lacked the reducing materials that were responsible for the formation of the ore body in the adjacent areas. This difference implies an unrestricted flow of the upgradient water rich in Se(VI) and other oxidants (e.g., NO₃⁻) (Figure S2) and with a high Eh to the downgradient wells MW 32, MW 102, MW 103, and MW 137 through these gaps, which is consistent with the observations reported in ref 18. The postmining restoration fluid with high residual Se(VI) is unlikely to arrive at the downgradient wells due to low groundwater velocity (3-6 m/year) and restriction of flow by net withdrawal of groundwater during restoration. However, the presence of the reduction product Se(IV) in MW 32 and MW 103 suggest existing Se(VI) reducing conditions in these wells which is also supported by our Se isotope data (see below).
Se Reduction in Groundwater: Se Isotope Ratios. If all of the variation of \(\delta^{82}\text{Se} \) were due to reduction of Se from a single Se source by a single mechanism, a strong correlation between \(\delta^{82}\text{Se} \) and concentrations of Se-oxyanions would be expected. We did not observe a strong correlation between \(\delta^{82}\text{Se} \) and Se(VI) concentrations which suggests heterogeneous Se sources and complex Se cycling mechanisms. However, the samples that exhibit highly enriched \(\delta^{82}\text{Se} (> 4\%e) \) can only be generated by reduction of Se(VI). In the following paragraphs, we discuss the evidence of Se(VI) reduction from the \(\delta^{82}\text{Se} \) data from Rosita groundwater along with potential alternative mechanisms with their limitations.

In addition to the distribution of Se-oxyanion concentrations, Se isotope data from Rosita U ore and groundwater samples help identify pathways of Se-cycling and delineate Se(VI) reducing zones at the study site. The upgradient groundwater currently entering the roll-front system is Se(VI)-rich with concentrations ranging from 32 \(\mu \text{g/L} \) to 137 \(\mu \text{g/L} \) (median Se(VI) = 94.84 \(\mu \text{g/L} \)). The \(\delta^{82}\text{Se} \) of the upgradient groundwater also varies from \(-1.12\%e \) to \(+2.22\%e \), with an average \(\delta^{82}\text{Se} \) of 0.51\%e. Since the roll-front system reduces and captures all incoming Se(VI), we hypothesize that the average \(\delta^{82}\text{Se} \) of the U ore should be identical to the average \(\delta^{82}\text{Se} \) of incoming groundwater, assuming that the Se inputs for the U ore were similar to that observed in the present system.

If dissolution of Se minerals were the only mechanism responsible for the observed distribution of Se(VI) in Rosita groundwater, we would expect the groundwater samples to be similar to the inferred average \(\delta^{82}\text{Se} \) of the U ore (~0.5\%e). The oxidative dissolution of U ore should yield aqueous Se(VI) with similar isotopic composition as quantitative layer-by-layer dissolution of Se mineral grains results in negligible isotopic fractionation. However, it is...
possible for the postmining groundwater to acquire Se with a range of δ\(^{82}\)Se values (e.g., −1.5‰ to −2‰), because we expect the isotopic composition of Se minerals to exhibit spatial variability in the ore zone. Aqueous Se isotope compositions outside the −1.5‰ to 2.0‰ range suggest an alternate or additional process affecting the Se isotope composition of the groundwater.

The enrichments in δ\(^{82}\)Se of Rosita groundwater relative to the inferred average δ\(^{82}\)Se of the U ore are likely caused by Se(VI) reduction in Rosita groundwater. With ongoing reduction of Se(VI), the unreacted remaining Se(VI) exhibits \(^{82}\)Se enrichment\(^{20-26,29}\), while the intermediate product Se(IV) is first enriched in the lighter isotopes (i.e., \(^{76}\)Se), and later upon further reduction to Se(0) and possibly complete removal of Se(VI), is enriched in \(^{82}\)Se. The largest \(^{82}\)Se enrichments observed in the ore zone wells BL 17 and BL 39 are 5.19‰ and 6.14‰, respectively, suggesting a maximum offset of ~6‰ from that of the inferred δ\(^{82}\)Se of the U ore.

In all samples containing both Se(VI) and Se(IV), Se(IV) is isotopically lighter (i.e. enriched in \(^{76}\)Se, −6.38‰ < δ\(^{82}\)Se < 0‰). This suggests that Se(IV) is a product of Se(VI) reduction rather than arising from the oxidation of the U ore. In addition, the two groundwater samples with \(^{82}\)Se enrichments (i.e., δ\(^{82}\)Se\(_{IV} > 0‰\)) have low Eh (Eh\(_{BL\,29} = −82.5\) mV and Eh\(_{BL\,34} = −59.4\) mV) and no detectable Se(VI). This \(^{82}\)Se enrichment in Se(IV) and a lack of Se(VI) suggests extensive reduction of Se(IV) has occurred in the absence of production of Se(IV) via Se(VI) reduction.

The correlation between Se isotopic shifts and changes in Se oxyanion concentrations also suggests aqueous Se(VI) reduction. When Se(VI) data from all wells are pooled together, we observe two distinct trends in the relationship between δ\(^{82}\)Se values and Se(VI) concentrations (Figure 2). First, there is an increasing trend in δ\(^{82}\)Se with decreasing Se(VI). Second, for several wells such as BL 8, BL 10, MW 102, MW 103, MW 53, and MW 137, Se(VI) concentrations
decrease with no major shift in the $\delta^{82}\text{Se}$. In samples showing no major change in $\delta^{82}\text{Se}$, particularly in BL 8, BL 10, MW 102, and MW 103, the decrease in Se(VI) may be attributed to localized mixing with groundwater with relatively low Se, similar to that of MW 42, which is also consistent with relatively high Eh values and NO$_3^-$ concentrations (Figure S2) in these wells17. Alternatively, a more likely scenario is that these samples may have acquired variable amounts of Se from the Se-rich zone in the roll-front with a $\delta^{82}\text{Se}$ similar to the inferred average $\delta^{82}\text{Se}$ of the roll-front. The first trend where $\delta^{82}\text{Se}$ in a subset of samples increased with decreasing Se(VI) conforms to a Rayleigh-type fractionation model with $\varepsilon = -2.25^{\pm}0.61^{\%o}$ calculated excluding Se data from the wells containing measurable NO$_3^-$. This strongly suggest Se(VI) reduction as the primary mechanism of Se(VI) concentration decrease in these samples.

Two alternative mechanisms, mixing and equilibrium isotopic exchange, with the potential to influence the Se isotopic signature of Rosita groundwater are unlikely to play any major role at the study site. The elevation in $\delta^{82}\text{Se}$ of Se(VI) in BL 39 and BL 17 above $\sim2^{\%o}$ cannot be generated by mixing ore-zone groundwater with an average $\delta^{82}\text{Se}$ of 0.5$^{\%o}$ with the upgradient water entering the system with a maximum $\delta^{82}\text{Se}$ of $\sim2^{\%o}$. Therefore, mixing cannot account for the observed elevated $\delta^{82}\text{Se}$ values of Se(VI) in BL 39 and BL 17. Also, an equilibrium isotopic exchange between coexisting dissolved species Se(VI) and Se(IV) or more reduced Se species would lead to ^{82}Se enrichment in Se(VI). This seems highly unlikely under the prevalent geochemical conditions that are far from chemical equilibrium. The rates of exchange between Se(VI) and Se(IV), which requires transfer of two electrons, have yet to be determined.

However, based on recent reports on U(VI)-U(IV) exchange also requiring two electrons transferred36, very slow exchange (100 to 1000 yrs) between Se(VI) and Se(IV) may be inferred.
at very low concentrations (i.e. < 9 μg/L) of Se(IV). In addition, Se(VI)-Se(IV) exchange may further be inhibited by removal of Se(IV) by either adsorption or by reduction to Se(0)20,37.

Se Isotopes as Redox Indicators in the Unmined Area. In addition to serving as an indicator for reduction of potentially toxic Se-oxyanions in groundwater, Se isotope ratios may also provide useful information in the context of U(VI) reduction at ISR sites. The results from the unmined PAA 4 area demonstrate that stable Se isotope ratios are effective indicators of the areas approaching U(VI) reducing conditions (Table S1). Our previous work on U isotope ratios (238U/235U, expressed as δ238U17 showed evidence of U(VI) reduction in the transect containing MW 158, BL 36, and MW 144 along the hydraulic gradient, particularly in the ore zone BL and the downgradient well, while there was a lack of U(VI) reducing conditions along another transect (MW 154, BL 39, MW 149) (Figure 2, Table S1). Along both transects, a decrease in NO_\textsubscript{3} in groundwater from ≥12 mg/L in the upgradient wells to below detection in the ore zone BL wells and downgradient wells was also reported17. The western transect, where the lack of a large 238U depletion in groundwater indicated the absence of U(VI) reduction in the ore zone well BL 39 (δ238U = 0.56‰) and downgradient MW 149 (δ238U = 0.48‰), shows an overall enrichment in δ82Se of Se(VI) up to ~6‰ relative to the average δ82Se (0.5‰) of the U ore with BL 39 exhibiting a δ82Se of 6.14‰. This δ82Se of Se(VI) in BL 39 is ~4‰ higher compared to that of the upgradient well MW 154 (δ82Se = 2.19‰). Se(VI) in the downgradient well MW 149 is below the detection limit (< 0.1 μg/L). This suggests progressively stronger Se(VI) reducing conditions along the hydraulic gradient.

In comparison, the upgradient well MW 158 (δ238U = −0.08‰) from the western transect shows 82Se depletion (δ82Se\textsubscript{VI} = −1.12‰) with a lower Se(VI) concentration suggesting spatial
heterogeneity both in terms of background Se content and isotopic composition. However, the wells along the hydraulic gradient in this transect with highly fractionated U isotope ratios, BL 36 (δ^{238}U = -1.61%) and MW 144 (δ^{238}U = -1.96%) have very little or no detectable Se oxyanions suggesting either almost quantitative reduction of Se(VI) and Se(IV) and/or removal of Se(IV) via adsorption onto aquifer material. Thus the results from the unmined PAA4 demonstrate the effectiveness of Se isotope ratios in delineating Se(VI) reducing environments and in providing additional information about existing redox conditions that can not be obtained from the U isotopic data alone.

Fractionation Mechanisms at Rosita and Comparison of ε with Previous Studies. The magnitude of the Se isotope fractionation observed at Rosita is more consistent with a microbial reduction mechanism that with abiotic reduction, but there is still sufficient uncertainty that abiotic reduction cannot be ruled out. Johnson et al. 2011 provides a detailed review of the magnitudes of Se isotope fractionation for various abiotic reductants and microbial species. Microbial reduction of Se-oxyanions yields a range of ε values, spanning from -0.3% to -7.5% for the reduction of Se(VI) to Se(IV) and from -1.7% to -12% for the reduction of Se(IV) to Se(0). The abiotic reduction of Se generally yields consistently large ($> -10\%$) isotopic fractionations. The ϵ for reduction of Se(VI) to Se(IV) by the Fe(II)-Fe(III) layered double hydroxide mineral “green rust”, a likely reductant in soils and sediments, is $\sim -11\%$ while the reduction to Se(IV) to Se(0) by FeS and NH$_2$OH or ascorbic acid produces a fractionation (as ϵ) of -10%, and -15.0 to -19.2%, respectively. The ϵ determined from the groundwater samples from the Rosita ISR site ($-2.25\% \pm 0.61\%$) is much small compared to that observed during abiotic Se(VI) reduction and falls within the range observed during Se(VI) reduction by natural microbial consortia21. Despite some heterogeneities, the observed sequence of redox reactions
along the hydraulic gradient from NO$_3^-$ reducing to Fe(III)- and U(VI)-reducing environments is also consistent with the microbially mediated redox ladder in aquifers38. However, reservoir effects arising from the lack of chemical communication between the zones of reduction (e.g., biofilms, or mineral surfaces in clay-rich zones) and the bulk dissolved Se(VI) in the more rapidly flowing parts of the sandy aquifer may limit the expression of overall isotopic fractionation in groundwater samples and thus lead to a diminished apparent ε value29. Future research involving similar sites should be directed toward identification of the Se reduction mechanism and determination of ε at the site using analysis of the temporal trend of Se-oxyanion concentrations with Se isotope ratios from the target wells as complemented by laboratory experiments for the site-specific reduction mechanism.

Implications for Detection and Monitoring of Se and U Reduction at ISR sites. The results of this study demonstrate that Se isotope ratios are effective indicators of natural attenuation of Se(VI), a residual product of ISR mining and a potential water contaminant for several ISR sites. Due to similarities in the redox potentials for U(VI) and Se(VI) reduction, the δ82Se values in groundwater can also indicate whether the present redox state is approaching U(VI) reducing conditions. Furthermore, our results suggest that the Se isotope ratios record the redox environments precursory to U(VI) reducing conditions that cannot be obtained from the concentration (e.g., Se(VI) or U(VI)) data alone.

Se isotope ratios may be more effective in detecting conditions conducive for remediation of U(VI) than the U isotope ratios of groundwater samples. A recent investigation suggests that in contrast to microbial reduction, abiotic reduction of U(VI) does not significantly fractionate U isotopes39. Aqueous and adsorbed Fe(II)40,41, magnetite42,43 and titanomagnetite44, and FeS45,46 (both residual after mining and biogenic) may readily reduce U(VI) in aquifers. These abiotic
Reductants are also capable of reducing Se(IV). In that case, compared to δ²³⁸U, δ⁸²Se of groundwater would be a more reliable indicator of conditions approaching U(VI) reduction, and an improved characterization of the existing redox state and reducing capacity of the aquifer, which is required to demonstrate potential for natural U(VI) reduction. In aquifers with a need for active remediation, the knowledge of the existing redox state is also important to determine the remediation strategy and the choice of reductant (if used) to avoid aggressive reductive remediation, which may mobilize contaminants such as arsenic. Furthermore, Se(VI) reduction in the absence of any significant U(VI) reduction could also imply slower kinetics for U(VI) reduction.

Our measurements on Se speciation and stable Se isotopes reveal the spatial distribution at a single time and do not provide direct information on time-dependent changes in Se oxyanion concentrations and concomitant changes in Se isotope ratios. Efficient post-mining monitoring of reduction would include time series measurements of Se oxyanion concentration and Se isotope ratios in samples from the target ore zone BL wells or wells from the monitoring ring. This would enable more accurate determination of the exact relationship between the changes in Se(VI) and/or Se(IV) concentrations in a target well and the associated shifts in δ⁸²Se (or the site-specific isotopic fractionation factor), which is required for the quantification of Se(VI) remediation.

Acknowledgements. This research was funded by the UC Laboratory Fees Research Program. We thank Uranium Resources, Inc. for providing site access and logistic support during sample collection and drilling.
Associated Content. Correlation between δ^{SeIV} and Se(IV), and distribution of NO$_3^-$ in Rosita groundwater. Comparison between Se(VI) and U(VI) concentrations in groundwater from PAA 4 along with Se (δ^{Se}) and U isotope ratios (δ^{U}), are provided in the Supporting Information. This information is available free of charge via the Internet at http://pubs.acs.org.
References

2 Dahlkamp, F. J. *Uranium deposits of the world*; 2009.

4 Xiong, Y. Predicted equilibrium constants for solid and aqueous selenium species to 300 °C: applications to selenium-rich mineral deposits. *Ore Geology Reviews* 2003, 23 (3-4), 259–276.

5 Beath, O. A.; Hagner, A. F.; Gilbert, C. S. *Some rocks and soils of high selenium content*; University of Wyoming, 1946; Vol. 36.

8 Bartz, G. L. Uranium prospecting based on selenium and molybdenum. *1982*.

13 OECD, I. *Uranium 2011: Resources; Production, 2012.*

15 Ramirez, P., Jr; Rogers, B. P. Selenium in a Wyoming Grassland Community Receiving Wastewater from an In Situ Uranium Mine. *Archives of Environmental Contamination and Toxicology 2002, 42 (4), 431–436.*

Huang, W. H. Geochemical and sedimentologic problems of uranium deposits of Texas

Table 1. Se concentrations and isotope ratios in Rosita groundwater and U ore.

<table>
<thead>
<tr>
<th>Well</th>
<th>Location</th>
<th>PAA</th>
<th>Se(VI) ppb</th>
<th>$\delta^{82}Se_{VI}$</th>
<th>Se(IV) ppb</th>
<th>$\delta^{82}Se_{IV}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL 3</td>
<td>Ore zone</td>
<td>1</td>
<td>306.06</td>
<td>-1.46‰</td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>BL 4</td>
<td>Ore zone</td>
<td>1</td>
<td>44.02</td>
<td>0.97‰</td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>BL 7</td>
<td>Ore zone</td>
<td>1</td>
<td><0.1</td>
<td></td>
<td>8.78</td>
<td>-1.36‰</td>
</tr>
<tr>
<td>BL 8</td>
<td>Ore zone</td>
<td>1</td>
<td>6.08</td>
<td>0.82‰</td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>BL 9</td>
<td>Ore zone</td>
<td>2</td>
<td><0.1</td>
<td></td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>BL 10</td>
<td>Ore zone</td>
<td>2</td>
<td>9.32</td>
<td>0.97‰</td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>BL 17</td>
<td>Ore zone</td>
<td>2</td>
<td>12.51</td>
<td>5.19‰</td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>BL 22</td>
<td>Ore zone</td>
<td>2</td>
<td><0.1</td>
<td></td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>BL 28</td>
<td>Ore zone</td>
<td>3</td>
<td><0.1</td>
<td></td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>BL 29</td>
<td>Ore zone</td>
<td>3</td>
<td><0.1</td>
<td></td>
<td>3.18</td>
<td>0.51‰</td>
</tr>
<tr>
<td>BL 34</td>
<td>Ore zone</td>
<td>3</td>
<td><0.1</td>
<td></td>
<td>8.22</td>
<td>0.73‰</td>
</tr>
<tr>
<td>MW 25</td>
<td>Upgradient</td>
<td>1</td>
<td>59.87</td>
<td>0.58‰</td>
<td>8.17</td>
<td>-2.92‰</td>
</tr>
<tr>
<td>MW 26</td>
<td>Upgradient</td>
<td>1</td>
<td>112.27</td>
<td>0.9‰</td>
<td>0.4</td>
<td>ND</td>
</tr>
<tr>
<td>MW 32</td>
<td>Downgradient</td>
<td>1</td>
<td>66.56</td>
<td>0.45‰</td>
<td>1.29</td>
<td>-6.45‰</td>
</tr>
<tr>
<td>MW 37</td>
<td>Downgradient</td>
<td>1</td>
<td><0.1</td>
<td></td>
<td>0.15</td>
<td>-2.63‰</td>
</tr>
<tr>
<td>MW 42</td>
<td>Upgradient</td>
<td>2</td>
<td><0.1</td>
<td></td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>MW 45</td>
<td>Upgradient</td>
<td>2</td>
<td>106.62</td>
<td>-0.47‰</td>
<td>0.61</td>
<td>ND</td>
</tr>
<tr>
<td>MW 53</td>
<td>Upgradient</td>
<td>2</td>
<td>31.59</td>
<td>0.83‰</td>
<td>0.24</td>
<td>ND</td>
</tr>
<tr>
<td>MW 66</td>
<td>Upgradient</td>
<td>2</td>
<td>63.87</td>
<td>0.7‰</td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>MW 75</td>
<td>Downgradient</td>
<td>3</td>
<td><0.1</td>
<td></td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>MW 85</td>
<td>Downgradient</td>
<td>2</td>
<td><0.1</td>
<td></td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>MW 89</td>
<td>Downgradient</td>
<td>2</td>
<td><0.1</td>
<td></td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>MW 102</td>
<td>Downgradient</td>
<td>2</td>
<td>10.38</td>
<td>1.12‰</td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>Location</td>
<td>Gradient</td>
<td>Depth (m)</td>
<td>Se (μg/kg)</td>
<td>$\delta^{82}\text{Se}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
<td>------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MW 103</td>
<td>Downgradient</td>
<td>2</td>
<td>6.26</td>
<td>0.59‰</td>
<td>0.2</td>
<td>-4.66‰</td>
</tr>
<tr>
<td>MW 129</td>
<td>Upgradient</td>
<td>3</td>
<td>137.01</td>
<td>0.43‰</td>
<td>4.35</td>
<td>-3.69‰</td>
</tr>
<tr>
<td>MW 131</td>
<td>Upgradient</td>
<td>3</td>
<td>94.84</td>
<td>0.54‰</td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>MW 137</td>
<td>Downgradient</td>
<td>3</td>
<td>29.72</td>
<td>0.51‰</td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>BL 36</td>
<td>Ore zone</td>
<td>4</td>
<td><0.1</td>
<td><0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BL 39</td>
<td>Ore zone</td>
<td>4</td>
<td>8.97</td>
<td>6.14‰</td>
<td>2.87</td>
<td>-0.61‰</td>
</tr>
<tr>
<td>MW 144</td>
<td>Downgradient</td>
<td>4</td>
<td>0.6</td>
<td>ND</td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>MW 149</td>
<td>Downgradient</td>
<td>4</td>
<td><0.1</td>
<td><0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MW 154</td>
<td>Upgradient</td>
<td>4</td>
<td>107.44</td>
<td>2.22‰</td>
<td><0.1</td>
<td></td>
</tr>
<tr>
<td>MW 158</td>
<td>Upgradient</td>
<td>4</td>
<td>48.83</td>
<td>-1.12‰</td>
<td><0.1</td>
<td></td>
</tr>
</tbody>
</table>

Rosita U ore

<table>
<thead>
<tr>
<th>Depth b.g.s (m)</th>
<th>Se (μg/kg)</th>
<th>$\delta^{82}\text{Se}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>60.66 - 60.96 (background)</td>
<td>24.3</td>
<td>-1.54‰</td>
</tr>
<tr>
<td>66.14 - 66.45</td>
<td>36.8</td>
<td>-1.28‰</td>
</tr>
<tr>
<td>66.45 - 66.75</td>
<td>33.8</td>
<td>-0.85‰</td>
</tr>
<tr>
<td>66.75 - 67.06</td>
<td>30.8</td>
<td>-0.62‰</td>
</tr>
<tr>
<td>67.06 - 67.21</td>
<td>31.7</td>
<td>-0.79‰</td>
</tr>
<tr>
<td>70.71 - 71.02</td>
<td>47.6</td>
<td>-0.64‰</td>
</tr>
<tr>
<td>71.02 - 71.32</td>
<td>39.0</td>
<td>-0.40‰</td>
</tr>
</tbody>
</table>
Figure 1. a) Pourbaix diagram for Se showing the thermodynamic stability of different Se species in the environment. Total Se concentration is 10^{-6} M. Light blue fields represent aqueous species, golden field represents solid Se species. Red, green, and blue symbols represent groundwater from mining units PAA 1, PAA 2, and PAA 3, respectively.
Figure 2. Map of the Rosita ISR site showing the mining units (PAA) and the distribution of Se(VI).

Light gray areas define the roll-front U deposit. Black dots represent locations of wells sampled for Se oxyanion and Se isotope measurements and the open circle shows the location of the
borehole for the U ore sample. The dotted lines represent the perimeter ring of the monitoring wells. Numbers represent Se-oxyanion concentrations - Se(VI) (red) and Se(IV) (blue) in μg/L.

Figure 3. $\delta^{82}\text{Se}$ of aqueous Se(VI) in Rosita groundwater and Se minerals in the U ore vs. Se concentration. Gray triangles represent the U ore and red, green blue and pink symbols represent groundwater from mining units PAA 1, PAA 2, PAA 3, and PAA 4, respectively. The error bars (2*s.e.) for are smaller than the size of the symbols. The blue dotted line represent the modeled...
\[^{562}\delta^{82}\text{Se} \] using a Rayleigh distillation model with \(\varepsilon = -2.25\% \pm 0.61\% \) excluding the samples with \(^{563}\text{NO}_3^- \).