Title
Evaluation of Biofield Treatment on Physical, Atomic and Structural Characteristics of Manganese (II, III) Oxide

Permalink
https://escholarship.org/uc/item/2m00s74t

Journal
Journal of Material Science & Engineering, 4(4)

ISSN
2169-0022

Authors
Trivedi, Mahendra Kumar
Nayak, Gopal

Publication Date
2015-07-03

DOI
10.4172/2169-0022.1000177

Peer reviewed
Evaluation of Biofield Treatment on Physical, Atomic and Structural Characteristics of Manganese (II, III) Oxide

Trivedi MK, Nayak G, Patil S*, Tallapragada RM and Latiyal O
Trivedi Global Inc., 10624 S Eastern Avenue Suite A-969, Henderson, NV 89052, USA

Abstract

In \( \text{Mn}_3\text{O}_4 \), the crystal structure, dislocation density, particle size and spin of the electrons plays crucial role in modulating its magnetic properties. Present study investigates impact of Biofield treatment on physical and atomic properties of \( \text{Mn}_3\text{O}_4 \). X-ray diffraction revealed the significant effect of biofield on lattice parameter, unit cell volume, molecular weight, crystallite sizes and densities of treated \( \text{Mn}_3\text{O}_4 \). XRD analysis confirmed that crystallinity was enhanced and dislocation density was effectively reduced by 80%. FTIR spectroscopic analysis revealed that Mn-O bond strength was significantly altered by biofield treatment. Electronic spin resonance analysis showed higher g-factor of electron in treated \( \text{Mn}_3\text{O}_4 \) as compared to control, along with altered spin-spin atomic interaction of Mn with other mixed valance states. Additionally, ESR study affirmed higher magnetization behaviour of the treated \( \text{Mn}_3\text{O}_4 \). The results demonstrated that treated \( \text{Mn}_3\text{O}_4 \) ceramic could be used as an excellent material for fabrication of novel magnetic data storage devices.

Keywords: Biofield treatment; \( \text{Mn}_3\text{O}_4 \), X-ray diffraction; FT-IR; Paramagnetic; ESR; Brunauer-Emmett-Teller analysis; Particle size analysis

Introduction

Transition metal oxides (TMOs) constitute most interesting classes of solids, which exhibits different varieties of structures and properties [1]. Manganese (II, III) oxides (\( \text{Mn}_3\text{O}_4 \)) is an excellent example of TMOs which gained significant attention among researchers due to its wide range of applications in magnetic materials, catalysis, ion exchange, magnetic data storage, super capacitors, molecular adsorption and ferrite materials [2-8]. \( \text{Mn}_3\text{O}_4 \) shows a paramagnetic behaviour at room temperature and ferromagnetic below 41-43K. The magnetic properties of \( \text{Mn}_3\text{O}_4 \) strongly depend on dislocations, vacancies, crystallite sizes, and lattice parameters. This affirms that crystal structure and its properties play an exclusive role in controlling magnetic strength in \( \text{Mn}_3\text{O}_4 \) that can be exploited in magnetic data storage applications. \( \text{Mn}_3\text{O}_4 \) exists as normal spinal crystal structure, in which Mn\(^{2+}\) occupy a tetrahedral position and Mn\(^{3+}\) at octahedral positions [3,4].

Recently, magnetism and electrochemical properties in \( \text{Mn}_3\text{O}_4 \) nanoparticles are controlled by modulating the crystal structure by various processes such as annealing at high temperature [9], doping [10], hydrothermal [11], ultrasonic bath [12] and co-precipitation etc. Physical and chemical properties like particle size, surface area of \( \text{Mn}_3\text{O}_4 \) nanoparticles are controlled by various methods including vapor phase growth [13], thermal decomposition, chemical liquid precipitation and solvothermal [14,15].

Nevertheless each technique has their own advantages but there are certain drawbacks which limit their applicability at commercial level, such as vapour deposition method required high pressure and temperature to produce highly crystalline powder whereas thermal decomposition method requires specialized surfactants which may cause impurities in the product [16]. It has been already reported that magnetic behaviour can be improved by increasing the crystallinity and particle size volume [9,16]. Hence in order to develop highly crystalline \( \text{Mn}_3\text{O}_4 \) nanoparticles and to improve its applicability at commercial level a simple and cost effective method should be designed. Biofield treatment is an excellent and cost effective approach which was recently used to modulate the, atomic structure [17,18] and density [19-21] molecular weight [22,23] of the bound atom thereby it facilitates the conversion of energy into mass and vice versa. Mr Trivedi is known for utilizing his biofield, referred herein as biofield treatment, for conducting experiments in various sectors such as material science [17-24], agriculture [25-29] and microbiology [30-32], which are already reported elsewhere. Biofield treatment had significantly changed the physical, atomic and thermal properties in transition metals [17,18,20], carbon allotropes [19] and metal oxide ceramics [21,23] such as particle size was decreased by 71% in zirconium oxide [23] and crystallite size was increased by 66% in Vanadium Pentoxide (\( \text{V}_2\text{O}_5 \)) [21]. Hence in present research investigation, \( \text{Mn}_3\text{O}_4 \) powder was exposed to Mr. Trivedi’s biofield in order to improve its physical, structural, and magnetic properties. The treated \( \text{Mn}_3\text{O}_4 \) samples were characterized by FT-IR, XRD, ESR, Brunauer-Emmett-Teller ( BET) analysis and particle size analysis.

Experimental

Manganese (II, III) oxide powders used in the present investigation were obtained from Sigma Aldrich, USA (97% in purity). Five sets of these metal oxide powders were prepared from the master sample, where first set was considered as control which was untouched (unexposed), other four samples were exposed to Mr. Trivedi’s biofield, referred herein as treated sample (T1, T2, T3, and T4). Particle size of control and treated samples were measured by laser particle size analyzer, SYMPATEC HELOS-BF, had a detection range of 0-875μm, with setting parameters remain the same for all evaluations. The data obtained from particle size analyzer was in the form of a chart

*Corresponding author: Patil S, Trivedi Global Inc., 10624 S Eastern Avenue Suite A-969, Henderson, NV 89052, USA, Tel: +1 602-531-5400; E-mail: publication@trivedieffect.com

Received May 25, 2015; Accepted June 23, 2015; Published July 03, 2015


Copyright: © 2015 Trivedi MK, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Results and Discussions

Particle size and surface area analysis

The particle size determination of ceramic materials provides superior control over a range of product performance characteristics. The particle size of MnO₃ was determined and illustrated in Figure 1. The average particle size (d₅₀) in treated sample was increased up to 13% and then further was decreased by 3%.

Contrarily particle size d₉₉ (size below which 99% particles present) was reduced by 5.5% in treated MnO₃ samples. Surface area of the MnO₃ was measured by using BET analysis, and results are presented in Figure 2 and Tables 2 and 3. The surface area of treated powders was reduced by 10% in 99 days after biofield treatment. Initially surface area were decreased by 4.5% with corresponding increase in particle size, however after 80 days both surface area and particle size were reduced. The particle size was increased initially, which was supported by a decrease in surface area due to the agglomeration of fine particles. Nevertheless a decrease in both particle size and surface area after 80 days indicate that coarse particles would have fractured into finer particles with sharp edges and corners.

X-ray diffraction (XRD)

MnO₃ ceramic powder was subjected to XRD analysis to investigate its crystalline nature and Powder X software was used to calculate various atomic and structural parameters. The XRD diffractogram of control and treated MnO₃ samples are illustrated in Figures 3a-3e. In the XRD diffractogram, only Mn₃O₄ phase appears to calculate various atomic and structural parameters. The XRD diffractogram of control and treated Mn₃O₄ samples are illustrated in Figures 3a-3e. These crystalline peaks are attributed to plane (101), (112), (103), (211), (004), (220), (105), (321), (224), (400) and (413) respectively. The intensity of peaks increased in treated MnO₃ samples along (103), (211), and (224) direction confirming increased crystallinity in treated samples Figures 3b-3e. This result indicates that biofield treatment is directly acting upon the ceramic crystals inducing more long range order; thereby facilitating crystallization of the ceramic samples.

Figure 4 shows that the lattice parameter was reduced in treated samples from 0.25% to -0.30% in time period of 16 to 147 days. It was found that reduction in lattice parameter caused reduction in volume of unit cell and increase in density (Figure 4). Additionally molecular weight was decreased by around -0.50 to -0.60% in treated MnO₃ samples in 147 days. The crystallite size was calculated from the XRD graph and the results are presented in Figure 5. The crystallite size was significantly enhanced by 96% in treated MnO₃ samples in 147 days.

Table 1: Particle size of control and treated sample of MnO₃.

<table>
<thead>
<tr>
<th>No. of days after treatment</th>
<th>Control Sample Day 1</th>
<th>Treated powder after 11 Days (T1)</th>
<th>Treated powder after 85 Days (T2)</th>
<th>Treated powder after 99 Days (T3)</th>
<th>Treated powder after 105 Days (T4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average particle size d₅₀ (µm)</td>
<td>6.1</td>
<td>6.9</td>
<td>5.9</td>
<td>6.1</td>
<td>6.1</td>
</tr>
<tr>
<td>Percent change in Average Particle size (d₅₀)</td>
<td>-</td>
<td>13.1</td>
<td>-3.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>d₉₉, Size below which 99% particles present (µm)</td>
<td>31.1</td>
<td>29.4</td>
<td>28.4</td>
<td>28.4</td>
<td>29</td>
</tr>
<tr>
<td>Percent change in particle size d₉₉ (%)</td>
<td>-</td>
<td>-5.5</td>
<td>-8.7</td>
<td>-8.7</td>
<td>-8.8</td>
</tr>
</tbody>
</table>

Table 2: Surface area result of control and treated sample of MnO₃ after biofield treatment.

<table>
<thead>
<tr>
<th>No. of days after treatment</th>
<th>Control</th>
<th>11</th>
<th>85</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Area (m²/g)</td>
<td>3.08</td>
<td>2.95</td>
<td>2.95</td>
<td>2.77</td>
</tr>
<tr>
<td>Percentage Change in Surface Area (%)</td>
<td>-</td>
<td>-4.083</td>
<td>-4.259</td>
<td>-9.951</td>
</tr>
</tbody>
</table>
147 days, which could be due to the reorientation of the planes in the same direction and unhindered movements of dislocations across grain boundaries, which causes reduction of dislocation density by 50% (Figure 1). Nevertheless the movement of dislocations needs large amount of energy, so it is believed that energy used for this process was provided by two different sources: biofield and the energy released during conversion of mass (as per Einstein energy equation $E=mc^2$). This fact was well supported by loss in molecular weight of treated Mn$_3$O$_4$ sample. The large difference in crystallite size and particle size can be explained by the cumulative effect of fracturing, agglomeration and consolidation process induced by energy milling through biofield treatment. Moreover the noticeable decrease in micro strain and
dislocation density also supports the above observation Figure 5.

**FT-IR spectroscopy**

The FT-IR spectra of control and treated Mn₃O₄ samples are presented in Figures 6a and 6b. The FT-IR of control sample showed vibration peak at 651/cm that corresponds to Mn-O stretching in tetrahedral and 563/cm corresponds to Mn⁺³-O in octahedral positions [33]. Other important peaks were observed at 3500/cm and 1500/cm which were attributed to weakly bound moisture (water molecules) in treated and control samples [33]. In Figure 6a, it was found that the treated sample T1 has not showed any peak in the fingerprint region 450-700/cm, which was quite unexpected. It can be hypothesized that Mn-O bond was no longer exists, or strength of Mn-O bond was greatly reduced. Contrarily treated sample T2 showed intense absorption peaks at 557/cm and 613/cm which was responsible to Mn-O in octahedral and Mn⁺³-O in tetrahedral position respectively Figure 6b. It was also noticed that vibration peaks were shifted to lower wavenumber as compared to control sample that indicates that Mn-O bond length was reduced Figure 6b. Therefore, IR spectra revealed that Mn-O bond length and bond force constant was significantly altered by biofield.

**Electron spin resonance (ESR) spectroscopy**

The ESR spectra analysis result of control and treated Mn₃O₄...
samples are illustrated in Figure 7. It was found that the g-factor was slightly increased by 0.15%, which indicated that the angular momentum of the electrons in the atom was probably increased through biofield treatment. It was also observed that the spin resonance signal width of the treated sample was broadened by 11%, which could be due to the increase in dipole-dipole and electrostatic interaction among Mn ions with other mixed valance states [34,35]. Additionally, the resonance signal peak intensity was increased by 16% that might be due to the clustering of spins on the particle surface, that may lead to enhanced the magnetisation of treated Mn3O4 samples. This result was also supported by increase in crystallinity and particle size [9]. Further it was hypothesized that during high energy milling through biofield treatment, spins may get clustered on the surface and enhanced the magnetisation. Furthermore, particle size analysis showed increase in particle size which is associated with the increase in volume of individual particles. Further, the increase in volume of individual particle led to enhanced the magnetic moment in individual particles of treated Mn3O4 [17].

Conclusion

Current research work investigates the modulation of crystalline, physical, atomic and magnetic properties of Mn3O4 ceramic powders using Mr. Trivedi’s biofield. The particle size of Mn3O4 powder was increased after biofield treatment, which results into reduced surface area, which may be due to combine effect of rupturing and agglomeration process. XRD result demonstrated that biofield had significantly reduced the unit cell volume by 0.60%, that was probably due to compressive stress applied during energy milling. Biofield exposed sample showed the larger crystalline size as compared to control Mn3O4, which was mainly due to reduction of the dislocation density and microstrain cause reorientation of neighbouring planes in same direction and thereby increasing crystallite size. The reduction in dislocation density and microstrain could have led to enhance the paramagnetic behaviour of Mn3O4. ESR results revealed that magnetization and spin-spin atomic interaction of treated sample was enhanced, which may be due to increasing in spin cluster density and high crystallinity respectively. Hence the increase in spin cluster density could lead to enhance the magnetisation of Mn3O4 nanopowders. These excellent results indicates that biofield treated Mn3O4 ceramic powders can be used as novel materials for fabricating magnetic data storage devices and future research is needed to explore its further applications.

Acknowledgement

We would like to give thanks to all the staff of various laboratories for supporting us in conducting experiments. Special thanks to Dr Cheng Dong of NLSC, Institute of Physics and Chinese academy of sciences for providing the facilities to use PowderX software for analyzing XRD results.

References


Submit your next manuscript and get advantages of OMICS Group submissions

Unique features:
- User friendly/feasible website-translation of your paper to 50 world’s leading languages
- Audio Version of published paper
- Digital articles to share and explore

Special features:
- 400 Open Access journals
- 30,000 editorial team
- 21 days rapid review process
- Quality and quick editorial, review and publication processing
- Indexing at PubMed (partially), Scopus, EI & CO, Index Copernicus and Google Scholar etc
- Sharing Option: Social Networking Enabled
- Authors, Reviewers and Editors rewarded with online Scientific Credits
- Better discount for your subsequent articles

Submit your manuscript at: http://www.omicsgroup.org/journals/submission