Title
Extraction and extension of matrices in computer calculations

Permalink
https://escholarship.org/uc/item/2mb0z27s

Author
Richardson, William Hadley

Publication Date
1960-06-01
EXTRACTION AND EXTENSION OF MATRICES
IN COMPUTER CALCULATIONS

William Hadley Richardson

June 1960
Index Number NS 714-100

SIO REFERENCE 60-43

Bureau of Ships
Contract NObs-72092

Approved:
Seibert Q. Duntley, Director
Visibility Laboratory

Approved for Distribution:
Roger Revelle, Director
Scripps Institution of Oceanography
EXTRACTION AND EXTENSION OF MATRICES IN COMPUTER CALCULATIONS

By

William Hadley Richardson

1. The problems involved here are: The extraction of a submatrix from a matrix; and the extension of a matrix to a matrix of larger dimensions with the original matrix as a given submatrix of the larger and the rest of the larger matrix composed of zero submatrices.

This is generally a trivial problem but of interest in computer calculations where submatrices must be separated from massive matrices which are stored in memory and matrix multiplication subroutines are available.

2. To extract a submatrix \(Y_{22} \) from a matrix \(Y = (Y_{ij}), i, j = (1,2,3) \) (see Figure 1), define a matrix \(X = (X_i) \) such that:

- \(X \) has the same number of rows as \(Y_{22} \).
- \(X_1 = 0 \) with same number of columns as \(Y_{12} \) has rows.
- \(X_2 = I \) with same number of rows and columns as \(Y_{22} \) has rows.
- \(X_3 = 0 \) with same number of columns as \(Y_{32} \) has rows.

Define a matrix \(Z = (Z_j) \) such that:

- \(Z \) has same number of columns as \(Y_{22} \).
- \(Z_1 = 0 \) with same number of rows as \(Y_{21} \) has columns.
- \(Z_2 = I \) with same number of rows and columns as \(Y_{22} \) has columns.
- \(Z_3 = 0 \) with same number of rows as \(Y_{23} \) has columns.

Then \(X Y Z = (Y_{22}) Z = Y_{22} \).
The method is completely general if it is considered that, when \(Y_{22} \) is a corner submatrix, certain of the \(Y_{ij} \) become empty matrices. For instance, if the submatrix, \(Y_{22} \), to be extracted is in the upper left-hand corner the \(Y_{11} \) and \(Y_{12} \) are empty matrices and in consequence \(X_1 \) and \(Z_1 \) are empty matrices.

3. Extending a matrix is a similar operation in reverse. To extend a matrix, \(Y_{22} \), to a larger matrix, \(\mathbf{Y} = (Y_{ij}), i,j = (1,2,3) \), which has the original matrix as a submatrix and the rest of the larger matrix zeros, (see Figure 2), define a matrix \(\mathbf{X} = (X_1) \) such that:

\[
\begin{align*}
X & \text{ has the same number of columns as } Y_{22} \text{ has rows.} \\
X_1 & = 0 \text{ with the same number of rows as } Y_{12}. \\
X_2 & = 1 \text{ with the same number of rows and columns as } Y_{22} \text{ has rows.} \\
X_3 & = 0 \text{ with the same number of rows as } Y_{32}.
\end{align*}
\]

Define a matrix \(\mathbf{Z} = \mathbf{Z}_j \) such that:

\[
\begin{align*}
Z & \text{ has same number of rows as } Y_{22} \text{ has columns.} \\
Z_1 & = 0 \text{ with same number of columns as } Y_{21}. \\
Z_2 & = 1 \text{ with same number of rows and columns as } Y_{22} \text{ has columns} \\
Z_3 & = 0 \text{ with same number of columns as } Y_{23}.
\end{align*}
\]

Then \(XY_{22}Z = (Y_{12})Z = (Y_{ij}) = \mathbf{Y} \).

The generality of method is as stated in paragraph 2 above.
4. Proofs:

4.1. Extractor: \(XYZ = Y_{22} \)

\[XY = (XY_j) \]

\[XY_1 = X_1 Y_{11} + X_2 Y_{21} + X_3 Y_{31} \]

\[= OY_{11} + IY_{21} + OY_{31} \]

\[= Y_{21} \]

\[XY_2 = X_1 Y_{12} + X_2 Y_{22} + X_3 Y_{32} \]

\[= OY_{12} + IY_{22} + OY_{32} \]

\[= Y_{22} \]

\[XY_3 = X_1 Y_{13} + X_2 Y_{23} + X_3 Y_{33} \]

\[= OY_{13} + IY_{23} + OY_{33} \]

\[= Y_{23} \]

So \(XY = (Y_{21}, Y_{22}, Y_{23}) = (Y_{2j}) \)

Then \(XYZ = (Y_{2j})Z \)

\[XYZ = Y_{21} Z_1 + Y_{22} Z_2 + Y_{23} Z_3 \]

\[= Y_{21} O + Y_{22} I + Y_{23} O \]

\[= Y_{22} \]

Q.E.D.
4.2. Extender: \(XY_{22} Z = Y \)

\(XY = (XY_1) \)

\(XY_1 = X_1 Y_{22} = 0 Y_{22} = 0 \)

\(XY_2 = X_2 Y_{22} = Y_{22} = Y_{22} \)

\(XY_3 = X_3 Y_{22} = O Y_{22} = 0 \)

So \(XY = (0, Y_{22}, 0) = (Y_{12}) \)

Then \(XYZ = (Y_{12}) Z = (XYZ_{1}) \)

\(XYZ_11 = Y_{12} Z_1 = 0 0 = 0 \)

\(XYZ_{12} = Y_{12} Z_2 = 0 I = 0 \)

\(XYZ_{13} = Y_{12} Z_3 = 0 0 = 0 \)

\(XYZ_{21} = Y_{22} Z_1 = Y_{22} 0 = 0 \)

\(XYZ_{22} = Y_{22} Z_2 = Y_{22} I = Y_{22} \)

\(XYZ_{23} = Y_{22} Z_3 = Y_{22} 0 = 0 \)

\(XYZ_{31} = Y_{32} Z_1 = 0 0 = 0 \)

\(XYZ_{32} = Y_{31} Z_2 = 0 I = 0 \)

\(XYZ_{33} = Y_{31} Z_3 = 0 0 = 0 \)

And \(XYZ = \begin{pmatrix} 0 & 0 & 0 \\ 0 & Y_{22}^0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = Y \)

Q.E.D.
\[\begin{align*}
X & = [0, 1, 0] \\
Y & = [1, 0, 1] \\
Z & = [0, 1, 0]
\end{align*} \]

\[Y_2 \]

\[(Y_2_{\text{j}}) \]

\[\text{FIGURE 1} \]

\[\text{EXTRACTION} \]
FIGURE 2

EXTENSION