Title
Concurrency analysis for parallel programs with textually aligned barriers

Permalink
https://escholarship.org/uc/item/2nc3f04f

Authors
Kamil, A
Yelick, K

Publication Date
2006-12-01

DOI
10.1007/978-3-540-69330-7_13

Peer reviewed
Concurency Analysis for Parallel Programs with Textually Aligned Barriers

Amir Kamil Katherine Yelick

Computer Science Division, University of California, Berkeley
{kamil,yelick}@cs.berkeley.edu

Abstract. A fundamental problem in the analysis of parallel programs is to determine when two statements in a program may run concurrently. This analysis is the parallel analog to control flow analysis on serial programs and is useful in detecting parallel programming errors and as a precursor to semantics-preserving code transformations. We consider the problem of analyzing parallel programs that access shared memory and use barrier synchronization, specifically those with textually aligned barriers and single-valued expressions. We present an intermediate graph representation for parallel programs and an efficient interprocedural analysis algorithm that conservatively computes the set of all concurrent statements. We improve the precision of this algorithm by using context-free language reachability to ignore infeasible program paths. We then apply the algorithms to static race detection and show that it can benefit from the concurrency information provided.

1 Introduction

As the rate of scaling of uniprocessor machines slows down, application writers and system vendors alike have been turning to multiprocessor machines for performance. Most major CPU manufacturers have chip products with multiple cores, so that parallelism once hidden within the micro-architecture will now be exposed to the assembly language and, in all likelihood, to application level software. Such systems are modeled after SMP multiprocessors and allow all processors to simultaneously access shared memory. In addition, for large-scale parallel machines there is increasing interest in global address space languages, which give programmers the illusion of a shared memory machine on top of distributed memory machines and clusters. Analysis and optimization of parallel shared memory code is increasingly important in both of these settings.

In this paper we introduce an interprocedural concurrency analysis for programs with barrier synchronization, which captures information about the potential concurrency between statements in a program. The analysis is done for the Titanium language [25], a single program, multiple data global address space variation of Java that runs on most parallel and distributed memory machines. We first construct a concurrency graph representation of a program, taking advantage of two features of the Titanium language parallel execution model: textual barrier alignment, which statically guarantees that all threads reach the same textual sequence of barriers, and single-valued expressions, which provably evaluate to the same value on all threads [1]. We then present a simple
algorithm that uses the concurrency graph to determine the set of all concurrent expressions in a program. This analysis proves too conservative, however, and we improve its precision by performing a context-free language analysis on a modified form of the concurrency graph. We prove the correctness of both analyses and show that their total running times are quadratic in the size of the input program.

Concurrency analysis can be used to improve the quality of other analyses and to enable optimizations. To demonstrate the usefulness of our concurrency analysis, we apply it to data race analysis, which can be used to report potential program errors to application programmers. In related work with Su [16] and in a companion report [17], we tackled the problem of memory consistency model enforcement, which can be used to provide a stronger and more intuitive memory model while still allowing the compiler and hardware to reorder memory operations in many instances. We demonstrated that memory model enforcement can have a significant negative impact on optimizations, but that this effect is mitigated when combined with our concurrency analysis. In this paper, we focus on the foundations of the concurrency analysis problem: how it can be performed efficiently and be made accurate enough to effectively increase the precision of both clients on a set of application benchmarks.

2 Titanium Background

Titanium is a dialect of Java, but does not use the Java Virtual Machine model. Instead, the end target is assembly code. For portability, Titanium is first translated into C and then compiled into an executable. In addition to generating C code to run on each processor, the compiler generates calls to a runtime layer based on GASNet [6], a lightweight communication layer that exploits hardware support for direct remote reads and writes when possible. Titanium runs on a wide range of platforms including unprocessors, shared memory machines, distributed-memory clusters of unprocessors or SMPs, and a number of specific supercomputer architectures (Cray X1, Cray T3E, SGI Altix, IBM SP, Origin 2000, and NEC SX6). Instead of having dynamically created threads as in Java, Titanium is a single program, multiple data (SPMD) language, so the number of threads is fixed at program startup and all threads execute the same code image.

2.1 Textually Aligned Barriers

Like many SPMD languages, Titanium has a barrier construct that forces threads to wait at the barrier until all threads have reached it. Aiken and Gay introduced the concept of structural correctness to enforce that all threads execute the same number of barriers, and developed a static analysis that determines whether or not a program is structurally correct [1, 13]. The following code is not structurally correct:

```java
if (Ti.thisProc() % 2 == 0)
    Ti.barrier(); // even ID threads
else
    ; // odd ID threads
```
Titanium provides a stronger guarantee of textually aligned barriers: not only do all threads execute the same number of barriers, they also execute the same textual sequence of barriers. Thus, both the above structurally incorrect code and the following structurally correct code are erroneous in Titanium:

```java
if (Ti.thisProc() % 2 == 0)
    Ti.barrier(); // even ID threads
else
    Ti.barrier(); // odd ID threads
```

The fact that Titanium barriers are textually aligned is central to our concurrency analysis: not only does it guarantee that code before and after each barrier cannot run concurrently, it also guarantees that code immediately following two different barriers cannot execute simultaneously.

Titanium’s type system ensures that barriers are textually aligned by making use of single-valued expressions [1]. Such expressions provably evaluate to the same value for all threads, and include the following:

- compile-time constants
- program arguments
- certain library functions, such as `Ti.numProcs()`, which returns the total number of threads
- expressions that are combinations of the above

Other expressions such as those involving references and method calls can also be single-valued, the details of which can be found in the Titanium reference manual [14].

Barrier alignment can only be violated if different threads take different program paths, and any of those paths contain a barrier. Titanium statically prevents this by requiring path forks, including conditionals, loops, and dynamically dispatched method calls, to be conditioned on single-valued expressions if any of the branches contains a barrier. This guarantees that all threads take the same branch and therefore execute the same barriers. The examples above are erroneous: they each have branches with barriers but `Ti.thisProc() % 2 == 0` is not single-valued, so not all threads take the same branch. If the condition was replaced by the single-valued expression `Ti.numProcs() % 2 == 0`, then both examples would become legal.

In addition to the existing barriers in a program, our concurrency analysis also exploits single-valued expressions to determine which conditional branches can run concurrently. The analysis does not insert any new barriers, and it ignores the lock-based synchronized construct of Java, which is rarely used in Titanium programs.

2.2 Intermediate Language

In this paper, we will operate on an intermediate language that allows the full semantics of Titanium but is simpler to analyze. In particular, we rewrite dynamic dispatches, `switch` statements, and conditional expressions (`?/:`) as conditional `if ... else ...` statements.

1 In the case of single-valued expressions of reference type, the result is not the same but is replicated and coherent. See the Titanium language reference for details [14].
2.3 Control Flow Graphs

The algorithms in this paper are whole-program analyses that operate over a control flow graph that represents the flow of execution in a program. Nodes in the graph correspond to expressions in the program, and a directed edge from one expression to another occurs when the target can execute immediately after the source.

The Titanium compiler produces an intraprocedural control flow graph for each method in a program. We modify each of these graphs to model transfer of control between methods by splitting each method invocation node into a call node and a return node. The incoming edges of the original node are attached to the call node, and the outgoing edges to the return node. An edge is added from the call node to the target method’s entry node, and from the target method’s exit node to the return node. Figure 1 illustrates this procedure. We also add edges to model interprocedural control flow due to exceptions.

3 Concurrency Analysis

Titanium’s structural correctness allows us to develop a simple graph-based algorithm for computing concurrent expressions in a program. The algorithm specifically takes advantage of Titanium’s textually aligned barriers and single-valued expressions. The following definitions are useful in developing the analysis:

Definition 3.1 (Single Conditional). A single conditional is a conditional guarded by a single-valued expression.

Since a single-valued expression provably evaluates to the same result on all threads, every thread is guaranteed to take the same branch of a single conditional. A single conditional thus may contain a barrier, since all threads are guaranteed to execute it, while a non-single conditional may not.

Definition 3.2 (Cross Edge). A cross edge in a control flow graph connects the end of the first branch of a conditional to the start of the second branch.
Algorithm 3.3.
ConcurrencyGraph$(P : \text{program}) : \text{graph}$
1. Let G be the interprocedural control flow graph of P, as described in §2.3.
2. For each conditional C in P
 3. If C is not a single conditional:
 4. Add a cross edge for C in G.
 5. } // End for (2).
6. For each barrier B in P:
 7. Delete B from G.

Fig. 2. Algorithm 3.3 computes the concurrency graph of a program by inserting cross edges into its control flow graph and deleting all barriers.

Cross edges do not provide any control flow information, since the second branch of a conditional does not execute immediately after the first branch. They are, however, useful for determining concurrency information, as shown in Theorem 3.4.

In order to determine the set of concurrent expressions in a program, we construct a concurrency graph G of the program P by inserting cross edges in the interprocedural control flow graph of P for every non-single conditional and deleting all barriers and their adjacent edges. Algorithm 3.3 in Figure 2 illustrates this procedure. The algorithm runs in time $O(n)$, where n is the number of statements and expressions in P, since it takes $O(n)$ time to construct the control flow graph of a program. The control flow graph is very sparse, containing only $O(n)$ edges, since the number of expressions that can execute immediately after a particular expression e is constant. Since at most n cross edges are added to the control flow graph and at most $O(n)$ barriers and adjacent edges are deleted, the resulting graph G is also of size $O(n)$.

The concurrency graph G allows us to determine the set of concurrent expressions using the following theorem:

Theorem 3.4. Two expressions a and b in P can run concurrently only if one is reachable from the other in the concurrency graph G.

In order to prove Theorem 3.4, we require the following definition:

Definition 3.5 (Code Phase). For each barrier in a program, its code phase is the set of statements that can execute after the barrier but before hitting another barrier, including itself2.

Figure 3 shows the code phases of an example program. Since each code phase is preceded by a barrier, and each thread must execute the same sequence of barriers, each thread executes the same sequence of code phases. This implies the following:

Lemma 3.6. Two expressions a and b in P can run concurrently only if they are in the same code phase.

Using Lemma 3.6, we can prove Theorem 3.4. Details are in [17].

2 A statement can be in multiple code phases, as is the case for a statement in a method called from multiple contexts.
B1: Ti.barrier();
L1: int i = 0;
L2: int j = 1;
L3: if (Ti.thisProc() < 5)
L4: j += Ti.thisProc();
L5: if (Ti.numProcs() >= 1) {
L6: i = Ti.numProcs();
B2: Ti.barrier();
L7: j += i;
L8: } else { j += 1; }
L9: i = broadcast j from 0;
B3: Ti.barrier();
LA: j += i;

<table>
<thead>
<tr>
<th>Code Phase</th>
<th>Statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>L1, L2, L3, L4, L5, L6, L8, L9</td>
</tr>
<tr>
<td>B2</td>
<td>L7, L9</td>
</tr>
<tr>
<td>B3</td>
<td>LA</td>
</tr>
</tbody>
</table>

Fig. 3. The set of code phases for an example program.

Algorithm 3.7.
ConcurrentExpressions(P : program) : set
1. Let concur ← ∅.
2. Let G ← ConcurrencyGraph(P) [Algorithm 3.3].
3. For each access a in P {
4. Do a depth first search on G starting from a.
5. For each expression b reached in the search:
6. Insert (a, b) into concur.
7. } // End for (3).
8. Return concur.

Fig. 4. Algorithm 3.7 computes the set of all concurrent expressions in a given program.

By Theorem 3.4, in order to determine the set of all concurrent expressions, it suffices to compute the pairs of expressions in which one is reachable from the other in the concurrency graph G. This can be done efficiently by performing a depth first search from each expression in G. Algorithm 3.7 in Figure 4 does exactly this. The running time of the algorithm is dominated by the depth first searches, each of which takes O(n) time, since G has at most n nodes and O(n) edges. At most n searches occur, so the algorithm runs in time O(n^2).

4 Feasible Paths

Algorithm 3.7 computes an over-approximation of the set of concurrent expressions. In particular, due to the nature of the interprocedural control flow graph constructed in §2.3, the depth first searches in Algorithm 3.7 can follow infeasible paths, paths that cannot structurally occur in practice. Figure 5 illustrates such a path, in which a method is entered from one context and exits into another.

In order to prevent infeasible paths, we follow the procedure outlined by Reps [21]. We label each method call edge and corresponding return edge with matching parentheses, as shown in Figure 5. Each path then corresponds to a string of parentheses
Fig. 5. Interprocedural control flow graph for two calls to the same function. The dashed path is infeasible, since `foo()` returns to a different context than the one from which it was called. The infeasible path corresponds to the unbalanced string “[]”.

Fig. 6. Feasible paths that correspond to unbalanced strings. The dashed path on the left corresponds to a method call that has not yet returned, and the one on the right corresponds to a path that starts in a method call that returns.

composed of the labels of the edges in the path. A path is then infeasible, if in its corresponding string, an open parenthesis is closed by a non-matching parenthesis.

It is not necessary that a path’s string be balanced in order for it to be feasible. In particular, two types of unbalanced strings correspond to feasible paths:

- A path with unclosed parentheses. Such a path corresponds to method calls that have not yet finished, as shown in the left side of Figure 6.
- A path with closing parentheses that follow a balanced prefix. Such a string is allowed since a path may start in the middle of a method call and corresponds to that method call returning, as shown in the right side of Figure 6.

Determining the set of nodes reachable\(^3\) using a feasible path is the equivalent of performing context-free language (CFL) reachability on a graph using the grammar for each pair of matching parentheses (\(\alpha\), and \(\alpha\)). CFL reachability can be performed

\(^3\) In this section, we make no distinction between *reachable* and *reachable without hitting a barrier*. The latter reduces to the former if all barrier nodes are removed from each control flow graph.
in cubic time for an arbitrary grammar [21]. Algorithm 3.7 takes only quadratic time, however, and we desire a feasibility algorithm that is also quadratic. In order to accomplish this, we develop a specialized algorithm that modifies the concurrency graph G and the standard depth first search instead of using generic CFL reachability.

At first glance, it appears that a method must be revisited in every possible context in which it is called, since the context determines which open parentheses have been seen and therefore which paths can be followed. However, as shown in the companion report, the set of expressions that can be executed in a method call is the same regardless of context [17]. This implies that the set of nodes reachable along a feasible path in a program’s control flow graph is also independent of the context of a method call, with two exceptions:

- If a method call can complete, then the nodes after the call are reachable from a point before the call.
- If no context exists, such as in a search that starts from a point within a method f, then all nodes that are reachable following any method call to f are reachable.

The second case above can easily be handled by visiting a node twice: once in some context, and again in no context. The first case, however, requires adding bypass edges to the control flow graph.

4.1 Bypass Edges

Recall that the interprocedural control flow graph was constructed by splitting a method call into a call node and a return node. An edge was then added from the call node to the target method’s entry, and another from the target’s exit to the return node. If the target’s exit is reachable (or for our purposes, reachable without hitting a barrier) from the target’s entry, then adding a bypass edge that connects the call node directly to the return node does not affect the transitive closure of the graph.

Computing whether or not a method’s exit is reachable from its entry is not trivial, since it requires knowing whether or not the exits of each of the methods that it calls are reachable from their entries. Algorithm 4.1 in Figure 7 computes this by continually iterating over all the methods in a program, marking those that can complete through an execution path that only calls previously marked methods, until no more methods can be marked. In the first iteration of loop 3, it only marks those methods that can complete without making any calls, or equivalently, those methods that can complete using only a single stack frame. In the second iteration, it only marks those that can complete by only calling methods that don’t need to make any calls, or equivalently, those methods that can complete using only two stack frames. In general, a method is marked in the ith iteration if it can complete using i, and no less than i, stack frames4. As shown in the companion report, Algorithm 4.1 marks all methods that can complete using any number of stack frames [17].

4 Note that just because a method only requires a fixed number of stack frames doesn’t mean that it can complete. A method may contain an infinite loop, preventing it from completing at all, or barriers along all paths through it, preventing it from completing without executing a barrier. Algorithm 4.1 does not mark such methods.
Algorithm 4.1.
ComputeBypasses (P : program, G_1, \ldots, G_k : intraprocedural flow graph) : set
1. Let $\text{change} \leftarrow \text{true}$.
2. Let $\text{marked} \leftarrow \emptyset$.
3. While $\text{change} = \text{true}$ {
4. $\text{change} \leftarrow \text{false}$.
5. Set $\text{visited}(u) \leftarrow \text{false}$ for all nodes u in G_1, \ldots, G_k.
6. For each method f in P {
7. If $f \not\in \text{marked}$ and $\text{CanReach(entry(f), exit(f), } G_f, \text{marked})$ {
8. $\text{marked} \leftarrow \text{marked} \cup \{f\}$.
9. $\text{change} \leftarrow \text{true}$.
10. } // End if (7).
11. } // End for (6).
12. } // End while (3).
13. Return marked.
14. Procedure $\text{CanReach}(u, v : \text{vertex}, G : \text{graph}, \text{marked} : \text{method set}) : \text{boolean}$:
15. Set $\text{visited}(u) \leftarrow \text{true}$.
16. If $u = v$:
17. Return true.
18. Else If u is a method call to function g and $g \not\in \text{marked}$:
19. Return false.
20. For each edge $(u, w) \in G$ {
21. If $\text{visited}(w) = \text{false}$ and $\text{CanReach}(w, v, G, \text{marked})$:
22. Return true.
23. } // End for (20).
24. Return false.

Fig. 7. Algorithm 4.1 uses each method’s intraprocedural control flow graph (G_i) to determine if its exit is reachable from its entry.

Algorithm 4.1 requires quadratic time to complete in the worst case. Each iteration of loop 3 visits at most n nodes. Only k iterations are necessary, where k is the number of methods in the program, since at least one method is marked in all but the last iteration of the loop. The total running time is thus $O(kn)$ in the worst case. In practice, only a small number of iterations are necessary\(^5\), and the running time is closer to $O(n)$.

After computing the set of methods that can complete, it is straightforward to add bypass edges to the concurrency graph G: for each method call c, if the target of c can complete, add an edge from c to its corresponding method return r. This can be done in time $O(n)$.

4.2 Feasible Search

Once bypass edges have been added to the graph G, a modified depth first search can be used to find feasible paths. A stack of open but not yet closed parenthesis symbols must

\(^5\) Even on the largest example we tried (>45,000 lines of user and library code, 1226 methods), Algorithm 4.1 required only five iterations to converge.
Algorithm 4.2.
FeasibleSearch(v : vertex, G : graph) : set

1. Let $visited$ ← ∅.
2. Let s ← ∅.
3. Call **FeasibleDFS**(v, G, s, $visited$).
4. Return $visited$.

Procedure **FeasibleDFS**(v : vertex, G : graph, s : stack, $visited$: set):

5. If s = ∅ {
6. If no_context_mark(v) return.
7. Set no_context_mark(v) ← true.
8. } // End if (6).
9. Else {
10. If context_mark(v) return.
11. Set context_mark(v) ← true.
12. } // End else (10).
13. $visited$ ← $visited$ ∪ {v}
14. For each edge (v, u) $∈$ G {
15. Let $s' ← s$.
16. If label(v, u) is a close symbol and $s' ≠ ∅$ {
17. Let $o ← pop(s')$.
18. If label(v, u) does not match o:
19. Skip to next iteration of 15.
20. } // End if (17).
21. Else if label(v, u) is an open symbol:
22. Push label(v, u) onto s'.
23. Call **FeasibleDFS**(u, G, s).
24. } // End for (15).

Fig. 8. Algorithm 4.2 computes the set of nodes reachable from the start node through a feasible path.

be maintained, and an encountered closing symbol must match the top of this stack, it the stack is nonempty. In addition, as noted above, the modified search must visit each node twice, once in no context and once in some context. Algorithm 4.2 in Figure 8 formalizes this procedure, and a proof of correctness is provided in the companion report [17].

Since G contains bypass edges and Algorithm 4.2 visits each node both in some context and in no context, it finds all nodes that can be reachable in a feasible path from the source. Since it visits each node at most twice, it runs in time $O(n)$.

4.3 Feasible Concurrent Expressions

Putting it all together, we can now modify Algorithm 3.7 to find only concurrent expressions that are feasible. As in Algorithm 3.7, the concurrency graph G must first be constructed. Then the intraprocedural flow graphs of each method must be constructed. Algorithm 4.1 used to find the methods that can complete without hitting a barrier, and
Algorithm 4.3.

\textbf{FeasibleConcurrentExpressions}(P : program) : set
1. Let $G \leftarrow \text{ConcurrencyGraph}(P)$ [Algorithm 3.3].
2. For each method f in P {
3. Construct the intraprocedural flow graph G_f of f.
4. For each barrier B in f {
5. Delete B from G_f.
6. } // End for (4).
7. } // End for (2).
8. Let $\text{bypass} \leftarrow \text{ComputeBypasses}(P, G_1, \ldots, G_k)$ [Algorithm 4.1].
9. For each method call and return pair c, r in P {
10. If the target f of c, r is in bypass:
11. Add an edge (c, r) to G.
12. } // End for (9).
13. For each expression a in P {
14. Let $\text{visited} \leftarrow \text{FeasibleSearch}(a, G)$ [Algorithm 4.2].
15. For each expression $b \in \text{visited}$:
16. Insert (a, b) into concur.
17. } // End for (13).
18. Return concur.

Fig. 9. Algorithm 4.3 computes the set of all concurrent expressions that can feasibly occur in a given program.

the bypass edges inserted into G. Then Algorithm 4.2 must be used to perform the searches instead of a vanilla depth first search. Algorithm 4.3 in Figure 9 illustrates this procedure.

The setup of Algorithm 4.3 calls Algorithm 4.1, so it takes $O(kn)$ time. The searches each take time $O(n)$, and at most n are done, so the total running time is $O(kn + n^2) = O(n^2)$, quadratic as opposed to the cubic running time of generic CFL reachability.

5 Evaluation

Concurrency information is useful for many program analyses and optimizations. In this paper, we focus on one in particular, static race detection, to evaluate our concurrency analysis. Results for how enforcement of a sequentially consistent memory model can benefit from the analysis are available in a companion report [17].

5.1 Benchmarks

We use the following set of benchmarks for our evaluation:

- \textbf{gsrb} (1090 lines): Nearest neighbor computation on a regular mesh using red-black Gauss-Seidel operator. This computational kernel is often used within multigrid algorithms or other solvers.
Fig. 10. Fraction of data races detected at compile-time compared to base (lower is better).

- **lu-fact** (420 lines): Dense linear algebra.
- **pps** [4] (3673 lines): Parallel Poisson equation solver using the domain decomposition method in an unbounded domain.
- **spmv** (1493 lines): Sparse matrix-vector multiply.

The line counts for the above benchmarks underestimate the amount of code actually analyzed, since all reachable code in the 37,000 line Titanium and Java 1.0 libraries is also processed.

5.2 Static Race Detection

In parallel programs, a *data race* occurs when multiple threads access the same memory location, at least one of the accesses is a write, and the accesses can occur concurrently [19]. Data races often correspond to programming errors and potentially result in non-deterministic runtime behavior. Concurrency analysis can be used to statically detect races at compile-time [11, 12], particularly when combined with alias analysis [2].

Using our concurrency analysis and a thread-aware alias analysis, we built a compile-time data race analysis into the Titanium compiler. Static information is generally not enough to determine with certainty that two memory accesses compose a race, so nearly all reported races are false positives. (The correctness of the alias and concurrency analyses ensure that no false negatives occur.) We therefore consider a race detector that reports the fewest races to be the most effective.

Figure 10 compares the effectiveness of three levels of race detection:

- **base**: only alias analysis is used to detect potential races
- **concur**: our basic concurrency analysis (§3) is used to eliminate non-concurrent races
- **feasible**: our feasible paths concurrency analysis (§4) is used to eliminate non-concurrent races
The results show that the addition of concurrency analysis can eliminate most of the races reported by our detector. Two of the benchmarks do not benefit at all from the basic concurrency analysis, but all benefit considerably from the feasible paths analysis. The concurrency analysis should be of significant help to users of our race detector by weeding out many false positives.

6 Related Work

An extensive amount of work on concurrency analysis has been done for both languages with dynamic parallelism and SPMD programs. Duesterwald and Soffa presented a data flow analysis to compute the happened-before and happened-after relation for program statements [11]. Their analysis is for detecting races in programs based on the Ada rendezvous model [23]. Masticola and Ryder developed a more precise non-concurrency analysis for the same set of programs [18]. The results are used for debugging and optimization. Jeremiassen and Eggers developed a static analysis for barrier synchronization for SPMD programs with non-textual barriers and used the information to reduce false sharing on cache-coherent machines [15]. Their analysis doesn’t take advantage of barrier alignment or single-valued expressions, so it isn’t as precise as ours.

Others besides Duesterwald and Soffa and Masticola and Ryder have developed tools for race detection. Flanagan and Freund presented a static race detection tool for Java based on type inference and checking [12]. Boyapati and Rinard developed a type system for Java that guarantees that a program is race-free [7]. Tools such as Eraser [22] and TRaDe [9] detect races at runtime instead of statically. Other static and dynamic race detection schemes have also been developed [24, 3, 10, 8, 20].

Our work differs from previous work in that we develop an analysis specifically for SPMD programs with textual barriers. This allows our analysis to be both sound and precise. In addition, our analysis takes advantage of single-valued expressions, which no previous analysis does.

We presented a more abstract version of our concurrency analysis and its application to sequential consistency in a previous paper [16]. That analysis was slightly less precise, followed infeasible program paths, and would have been much more difficult to modify to ignore them.

7 Conclusion

In this paper, we made several contributions to the foundation of parallel program analysis, specifically the concurrency analysis problem of determining whether two statements can execute concurrently. We introduced a graph representation of parallel programs with textually aligned barriers and two different concurrency analyses. The first was a basic concurrency analysis that uses barriers and single-valued expressions, and the second a more complex one that only explores those execution paths across function calls that can occur in practice. We experimented with several benchmark programs using a data race detector built on our concurrency analysis. Our experiments showed that the analyses were able to eliminate a large fraction of the false positives reported in all
programs. We believe the efficiency and precision of our concurrency analysis make it a very useful tool in analyzing parallel programs with textually aligned barriers.

In addition to aiding in optimizations and helping to detect parallel programming errors, the ability to perform such analyses may affect a language designer’s choice of programming model semantics. Simpler programming models, such as those that prohibit races, use synchronous communication, or ensure a strong memory model, may be feasible if accurate analyses can be developed to enable optimizations while ensuring a stronger semantics. Our analysis is one piece of a larger picture on the kinds of parallelism constructs and synchronization operations for which accurate concurrency analyses can be developed.

Acknowledgments

We would like to thank Jimmy Su, who helped us a great deal both in developing the concurrency algorithms and in implementing them. We would also like to thank the Titanium group for their valuable support.

This work was supported in part by the Department of Energy under contracts DE-FC03-01ER25509 and DE-AC02-05CH11231, by the California State Micro program, by Sun Microsystems, and by Microsoft.

References

