MECHANICAL STABILIZATION OF AUSTENITE AGAINST ε MARTENSITE AND ITS EFFECT ON DEFORMATION BEHAVIOR IN HIGH MANGANESE STEELS

https://escholarship.org/uc/item/2nf351mk

Morris, J.W.

1984-04-01
Presented at the 107th Iron and Steel Institute of Japan (ISIJ), Narashino, Japan, April 1-3, 1984

MECHANICAL STABILIZATION OF AUSTENITE AGAINST epsilon MARTENSITE AND ITS EFFECT ON DEFORMATION BEHAVIOR IN HIGH MANGANESE STEELS

Y. Tomota and J.W. Morris, Jr.

April 1984

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks.
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
MECHANICAL STABILIZATION OF AUSTENITE AGAINST ε MARTENSITE
AND ITS EFFECT ON DEFORMATION BEHAVIOR IN HIGH MANGANESE STEELS

Y. Tomota and J. W. Morris, Jr.

Department of Materials Science and Mineral Engineering
and
M.M.R.D., Lawrence Berkeley Laboratory,
University of California, Berkeley, CA 94720

INTRODUCTION

The ε martensite phase is known to be induced by deformation in several commercially developed high Mn steels. These steels are usually strengthened by C and/or N and show excellent combination of strength and toughness at cryogenic temperatures [1]. However, because the role of ε formation during deformation in these steels has not yet been clarified, fundamental investigation should be focused on this point. In Fe-17 and 25% Mn binary alloys, ausforming is found to be very effective in stabilizing austenite, although the influence of grain size (austenitizing temperature) on the amount of ε at RT is small. Ausforming consists of dislocation introduction above the εp temperature by rolling. The influence of ε-formation on flow curves of the austenite strengthened by dislocations (ausformed) is different from that of the solution-treated plate.

EXPERIMENTAL PROCEDURE

The cold rolled 17 and 25 wt% Mn alloys previously described [2] were solution-treated at 1000°C for 1 h followed by water-quenching. They were heated to 400°C and rolled to about 30% reduction in thickness (ausformed). The plate tensile specimens with 0.125 by 0.150 in (3.2 by 3.8 mm) cross section and 1 in (25.44 mm) gage length were cut along the rolling direction.

RESULTS AND DISCUSSION

The TEM microstructure of ausformed 25 Mn is shown in Fig. 1 where small amounts of ε martensite are observed in the γ matrix with a high density of dislocations. The volume fraction of ε is too low for measurement by x-ray techniques.

Figure 2 shows stress-strain (displacement) curves. The comparison of tensile properties between ausformed and non-ausformed austenite is shown in Fig. 3.

* Associate Professor, Faculty of Engineering, Ibaraki University, Hitachi, Japan.
At 200°C where austenite is stable, strength is increased by aus­forming while elongation drops. However, at RT and -196°C, about 50% ε generation increases elongation (TRIP) but decreases the yield strength of the ausformed material. This means that the stress for the onset of ε–formation becomes smaller than that for plastic flow (slip). This causes decreased yield strength as the temperature is lowered due to the ε formation. It was also found that shape recovery (memory) by the ε → γ transformation occurs to some degree when the deformed specimen is heated to 250°C. Therefore, the shape change of the specimen is consid­ered to be partially due to the γ → ε transformation.

Contrary to the 25 Mn alloy, a' martensite is also induced with ε in the 17 Mn alloy during deformation at LNT. The flow curve is charac­teristic of strain–induced a' formation, as can be seen in Fig. 2. A very low workhardening region exists at the early stage of plastic flow followed by high work-hardening.

ACKNOWLEDGMENTS

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences Materials Sciences Division of the U.S. Department of Energy under Contract No. DE–AC03–76SF00098.

REFERENCES

Fig. 1. TEM microstructures of ausformed austenite in 25 Mn steel.
Fig. 2. Comparison of tensile properties of ausformed and non-ausformed 25 Mn steel.
Fig. 3. Flow curves at various temperatures: a) in 17 Mn and b) 25 Mn steel.