Lawrence Berkeley National Laboratory
Recent Work

Title
Optimized collectives for PGAS languages with one-sided communication

Permalink
https://escholarship.org/uc/item/2p00516t

Authors
Bonachea, D
Hargrove, P
Nishtala, R
et al.

Publication Date
2006-12-01

DOI
10.1145/1188455.1188604

Peer reviewed
Optimized Collectives for PGAS Languages with One-Sided Communication

Dan Bonachea, Rajesh Nishtala, Paul Hargrove, Mike Welcome, Kathy Yelick

Partitioned Global Address Space Languages

- Collective interface specifically designed for PGAS Languages
 - Data movement: Broadcast, Scatter, Gather, Gather-All, Transpose
 - Supported of collective support in UPC and Titanium languages
 - Extensible to variable-contribution and teams-based subset collectives
 - Achieves performance not obtainable from language-level implementations
- Interface includes many collectives features not found in MPI-2
 - Fully non-blocking collectives
 - Allows overlap of latency with computation and other communication
 - Exploit global address knowledge when available
 - Avoids RDMA-based impl - no rendezvous or eager buffering costs
 - Explicit consistency flags for detailed control over data sync.
 - Syntactic subset collectives: data not produced/consumed in current phase
 - Per-thread sync: data has affinity to producer or consumer (MPI style)
 - Global sync: barrier-like data sync (more efficient than full barrier)

High Performance

- GASNet Portability
 - Native network hardware support:
 - Quadrant QNet III (BlueGene/L)
 - Cray X1 - Gray kshmen
 - Intel X1 - XG kshmen
 - Cray XT3 - Cray Portals (Hydid)
 - Daphne - SCI
 - InfinitBand - Mellanox VAPI
 - Myrinet Myrinet - CM-1 and CM-2
 - IBM Colony and Federation - CMPI
 - Portable network support:
 - Ethernet, UDP, works with any TCP/IP
 - MPI 1: portable mpi for other HPC systems
 - Berkeley UPC, Titanium & GASNet highly portable
 - Runtime and generated code all ANSI C
 - New platform ports in 2-3 days
 - New network hardware 2-3 weeks
 - CPUs: Intel, Itanium, Opteron, Athlon, Alpha, PowerPC, MIPS, PA-RISC, SPARC, S3E, X-1, IX-1, IX-2
 - Other Unix hosts FreeBSD, NetBSD, Tru64, AIX, IRIX, HPUX, Solaris, MS-Windows/Cygnus
 - Mac OSx, Unix, SunOS, Ultrix, Cattamount, BlueGene,

- GASNet on the Cray XT3
 - GASNet PortDel operations implemented over Portals PortDel
 - Remote access region divesed by Portals Memory Descriptor
 - Portals Events used for GASNet operation completion
 - PortDel injection throttled to prevent local event queue overflow
 - No remote stream generation
 - Local put source and Get destination regions:
 - copied through pre-pinned bounce buffers for small messages
 - pre-pinned of local region for messages >= 1 KB
 - GASNet Active Message layer currently prootyped over Mpi
 - Port to native Portals-based AM is underway
 - UPC LI Application
 - Compliant with but less than 1/2 code size of MPI based HPL
 - System tuned DTBMM for high floating point performance
 - Move multi-threading (user-based coroutines) that hold on long latency communication, using a highly asynchronous algorithm
 - UPC FT benchmark:
 - Each thread uses non-blocking Put to send message as soon as local FFT completes - overlap computation with communication
 - Bulk, multi-based and permuted-implementations - best on XT3