Title
Thermal Stability of Amorphous Hard Carbon Films Produced by Cathodic-Arc Deposition

Permalink
https://escholarship.org/uc/item/2p32063p

Journal
Applied Physics Letters, 71(23)

Author
Anders, S.

Publication Date
1997-08-05
Thermal Stability of Amorphous Hard Carbon Films Produced by Cathodic-Arc Deposition

Accelerator and Fusion Research Division

August 1997

Submitted to
Applied Physics Letters
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
THERMAL STABILITY OF AMORPHOUS HARD CARBON FILMS PRODUCED BY CATHODIC-ARC DEPOSITION

S. Anders¹, J. Diaz¹, J.W. Ager, III¹, R.Y. Lo², D.B. Bogy²

¹Advanced Light Source
Ernest Orlando Lawrence Berkeley National Laboratory
University of California, Berkeley, California 94720

²Computer Mechanics Laboratory
Department of Mechanical Engineering
University of California, Berkeley, California 94720

*This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division, of the U.S. Department of Energy, under Contract No. DE-AC03-76SF00098.
Thermal stability of amorphous hard carbon films produced by cathodic-arc deposition

Simone Anders, Javier Díaz, and Joel W. Ager III
Lawrence Berkeley National Laboratory, Berkeley, CA 94720
Roger Yu Lo and David B. Bogy
Computer Mechanics Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA 94720

Abstract

The thermal stability of amorphous hard carbon films produced by cathodic arc deposition was studied by Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy, Raman spectroscopy, and nanoindentation evaluation. Pure carbon films of up to 85% sp³ content were deposited using a pulsed biasing technique and annealed in ultra high vacuum up to 850°C. NEXAFS spectra show no change in the film properties up to 700°C, and a modification of the spectra for 800 and 850°C which indicate graphitization. Raman spectra show only a very slight change up to 850°C. The nanoindentation data show no change in hardness and elastic modulus with annealing up to 850°C. The study demonstrates the high thermal stability of the films. The difference in the NEXAFS and the Raman and nanoindentation results can be attributed to the surface sensitivity of NEXAFS in comparison to the more bulk sensitivity of Raman spectroscopy and nanoindentation.
Amorphous hard carbon films have properties which are of great interest and importance for a number of tribological and protective applications. They are very hard, chemically inert, have a low coefficient of friction, and are very smooth. They consist of a random structure of sp2 and sp3 bonded carbon atoms. It has been found by a number of authors using different deposition techniques that a carbon ion energy of about 100 eV is the optimum condition to produce films with the highest sp3 fraction. In some cases, substrate bias is applied to reach this energy, e.g., for laser ablation [1] and cathodic arc deposition [2-5], in some cases it results from ion beams of a given energy [6, 7], or by a self biasing of the plasma in a plasma beam source [8]. Among the various deposition methods cathodic arc deposition produces some of the most "diamond-like" amorphous hard carbon films. The sp3 fraction can reach up to 85% [9], the mass density up to 3.0 g/cm3 [9], and the hardness up to 95 GPa [10]. If a magnetic macroparticle filter is used, the films are very smooth and free of macroparticles, the surface roughness can be as low as <0.1 nm rms and a few tens of a nanometer peak-to-valley [11].

Many properties of cathodic arc deposited films have been studied in great detail, but little is known about the thermal stability of these films. It was found that elevated temperatures of the films during deposition leads to a more graphitic character of the films, whereas cooling of the substrate during deposition leads to films with a higher sp3 content [10]. The deteriorating effect of elevated deposition temperature was also observed for laser ablation [12,13], ion beam [12, 14, 15] and sputter deposition [16] of amorphous hard carbon films.

The thermal stability after deposition for hydrogenated films deposited by various methods has been studied by Raman spectroscopy [17, 18], Auger and thermal desorption measurements [17], FTIR [19], stress measurements [19], friction and wear tests [18, 19]. In general, the films lose hydrogen, show a more graphitic Raman spectrum, an increased coefficient of friction, an increased index of refraction, reduced stress, and increased wear when exposed to high temperatures. The onset of these effects depends on the
deposition method and the specific thermal treatment; it lies typically between 200 and 500°C.

Laser ablated, hydrogen-free amorphous films were studied by X-ray Photoemission Spectroscopy (XPS) by Diaz et al. [20]. The content of sp\(^3\) hybridized atoms of these films was determined by XPS using the chemical shift that appears between the sp\(^2\) and sp\(^3\) hybridized forms of the carbon 1s XPS spectrum. Films with an sp\(^3\) content of 40% at room temperature remained stable for temperatures up to 600°C, and their sp\(^3\) content was reduced to zero for annealing up to 1000°C.

Cathodic arc deposited, hydrogen-free films are much less studied. McKenzie et al. [21] investigated cathodic arc deposited films with and without nitrogen doping during annealing in vacuum for 1 hour up to 700°C. They observed very little change in the plasmon energy of about 29.5 eV for undoped and 29 eV for nitrogen doped films during the heat treatment from which they concluded a stable thermal behavior.

We found in earlier measurements that -100V substrate bias leads to the highest sp\(^3\) fraction (85%) of the deposited films [9]. In a study of the thermal stability of cathodic arc deposited films in air using Raman spectroscopy and nanoindentation [22] we found that films deposited at no bias or at a bias of -500V or higher are stable up to 200°C. For higher temperatures the films graphitize as indicated by the Raman spectra, and above 400°C a considerable loss of film thickness occurs due to oxidation. Films deposited at -100V showed a constant Raman spectrum for temperatures up to 500°C, but they start to oxidize for temperatures above 450°C. Due to complete loss of the films at 550°C (the initial film thickness was 450 nm) we could not observe their thermal behavior at higher temperatures in air, whereas the present study with annealing in vacuum allows it.

We study here the thermal stability of cathodic arc deposited amorphous hard carbon films using Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy, Raman spectroscopy, and nanoindentation. The samples were deposited on silicon substrates at -100V bias (maximum sp\(^3\) content) using a cathodic-arc plasma source.
combined with a 90 degrees bent magnetic macroparticle filter. The source and filter are described in detail elsewhere [23]. The plasma source was operated in a repetitively pulsed mode with a pulse duration of 5 ms, a pulse repetition rate of 2 Hz, and an arc current of 300 A. The substrates were immersed in the high-density carbon plasma and repetitively pulse-biased during the longer plasma pulse at a negative voltage of -100V, pulse duration of 2 μs and a pulse-off time of 6 μs. The silicon substrates were mounted on a water-cooled sample holder. The film thickness was 70 nm. Samples were annealed in vacuum (base pressure p=5x10^{-18} Pa, up to 5x10^{-6} Pa during annealing) at temperatures from 300-850 °C; the annealing time was 15 minutes.

NEXAFS spectroscopy at the carbon K edge was performed at beamline 9 of the Advanced Light Source (synchrotron) in Berkeley. The energy resolution of this beamline at the carbon K edge is about 0.15 eV. The samples were mounted at an angle of 54.7° to the incident X-rays; this is the "magic angle" which eliminates the dependence of the π and σ states on the polarization of the X-ray source [24]. Figure 1 shows the carbon K edge NEXAFS spectra in the total electron yield for the cathodic arc deposited carbon sample heated to different temperatures. For comparison there is also shown a spectrum of highly oriented pyrolytic graphite. The spectra of the deposited carbon are typical diamond-like spectra, with the π* antibonding state resonance located at 284.9 eV and the broad σ* shape resonance around 300 eV [25-27]. The spectra remain essentially unchanged up to a temperature of 700°C. For 800 and 850°C heating temperature the spectra change and the graphite exciton peak appears at 292 eV.

Raman spectroscopy was performed on the same sample before and after heating to 850°C in vacuum. Raman spectra were obtained using 10 mW of 476 nm laser light. The spot size was ca. 20 microns and the integration time was 3 minutes. Fig. 2 shows that the Raman spectrum of cathodic-arc deposited films is a single, broad, asymmetric feature centered at ca. 1550 cm\(^{-1}\) (G-band). The peak center of this feature was determined by the zero-crossing of the differentiated spectrum. The precision of this procedure, as
determined by repeat measurements on the same film, is ±2 cm\(^{-1}\). The Raman spectrum is only slightly changed after the heat treatment; a very small shoulder around 1350 cm\(^{-1}\) indicates the appearance of the graphitic D-band.

Nanoindentation was performed using a Hysitron nanoindenter. The hardness and elastic modulus of the cathodic arc film were determined before and after annealing to 850°C. Fig. 3 shows that the hardness as well as the elastic modulus are very high (about 90 GPa and 400 GPa, respectively) and are not changed by the heat treatment. Each point in the graphs represents an average over three measurements.

The NEXAFS results show a stable film structure up to 700°C and a modification (graphitization) of the film above 700°C whereas the Raman spectra are changed only very slightly, and nanoindentation measurements show constant film properties up to 850°C. This discrepancy can be explained by the surface sensitivity of NEXAFS whereas Raman spectroscopy and nanoindentation integrate over the whole film thickness (70 nm). The sensitivity of NEXAFS is given by the electron escape depth which is typically about 5 nm [28] whereas the Raman spectrum collects the scattered light from a depth of about 200 nm given by the absorption coefficient of the film. Nanoindentation measures the hardness and elastic modulus as a function of the contact depth and is influenced by the substrate.

The study has shown that amorphous hard carbon films formed by cathodic arc deposition using a pulsed substrate bias of -100 V are thermally very stable. Heating in vacuum up to 850°C modifies (graphitizes) only the surface layer whereas bulk properties such as hardness and elastic modulus remain stable. Up to 700°C heating in vacuum no change in the film properties was observed.

The authors would like to thank Eddy Moler, Xin Zhou, and Zahid Hussain for their help in performing the NEXAFS measurements.

This work was supported by the U.S. Department of Energy, Division of Advanced Energy Projects, under contract No. DE-AC03-76SF00098. It was also supported by the Computer Mechanics Laboratory in the Mechanical Department at U.C. Berkeley.
References

Figure Captions

Fig. 1: NEXAFS spectra of cathodic arc deposited amorphous hard carbon film heated at different temperatures in UHV. A weak graphitic exciton peak appears at 292 eV at annealing temperatures of 800 and 850 °C.

Fig. 2: Raman spectra of cathodic arc deposited amorphous hard carbon film before and after heat treatment up to 850°C in vacuum.

Fig. 3: Hardness H and elastic E modulus of cathodic arc deposited amorphous hard carbon film as a function of indentation depth before and after heat treatment up to 850°C in vacuum. No change is observed after annealing.
Figure 1
Figure 2
Figure 3