Lawrence Berkeley National Laboratory
Recent Work

Title
TEST OF INDEPENDENCE POSTULATE IN BOHR THEORY OF COMPOUND-NUCLEUS DECAY: 50Cr*SYSTEM

Permalink
https://escholarship.org/uc/item/2pg851q9

Authors
Go, Man King
Markowitz, Samuel S.

Publication Date
1972-08-01
TEST OF INDEPENDENCE POSTULATE IN
BOHR THEORY OF COMPOUND-NUCLEUS DECAY:
$^{50}_{\text{Cr}}$* SYSTEM

Man King Go and Samuel S. Markowitz

August 1972

AEC Contract No. W-7405-eng-48

For Reference
Not to be taken from this room
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
TEST OF INDEPENDENCE POSTULATE IN BOHR THEORY OF
COMPOUND-NUCLEUS DECAY: $^{50}\text{Cr}^*$ SYSTEM

Man King Go and Samuel S. Markowitz
Department of Chemistry and
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720
August 1972

ABSTRACT

Excitation functions for the production of ^{48}V and ^{48}Cr from incident ions ^3He, α, ^{16}O, ^{18}O, and ^{22}Ne involving the compound system $^{50}\text{Cr}^*$ have been measured. Test of the independence postulate was performed in a Ghoshal type of experiment. Effects of the nuclear Coulomb barrier and high reaction Q value upon the two-nucleon evaporation excitation functions were noted.

For all the reaction pairs, the ^{48}V production is more than a factor of ten bigger than the corresponding ^{48}Cr cross section. This phenomenon can be explained by the effect of odd-even nucleon number of the product nucleus.

Simple calculations of the angular momentum and rotational energy of the compound nucleus were performed. The energy shift of the excitation function can be explained by the effect of angular momentum. The reactions involved were found to be generally consistent with the compound-nucleus model.

†Work was performed under the auspices of the U. S. Atomic Energy Commission.
I. INTRODUCTION

One of the important theories concerning nuclear reactions in the intermediate energy region (<10 MeV per incident nucleon) is the compound nucleus model.¹ In this model, the decay of the compound nucleus is independent of its mode of formation. Since the work by Ghoshal² in which the decay of the 64Zn* compound nucleus formed with protons was compared with that formed with α particles, many investigations³-⁷ have been performed along the same line. In most cases, the independence postulate is upheld roughly. More recently, when comparing the reaction excitation functions, care has been taken to match not only the excitation energy of the compound nucleus, but also its angular momentum.⁸,⁹ However, very few investigations have compared heavy ion induced reactions with those induced by light projectiles (such as p, n, 3He, α). It is felt that the independence postulate can be subjected to a more severe test when comparing reactions involving vastly different reactants.

In this work, the compound nucleus 50Cr* is formed by different entrance channels and the decay of this compound nucleus is observed through products from pn and 2n emissions. The reactions are given below.

$$
\begin{align*}
^{3}\text{He} + ^{4}\text{Ti} & \rightarrow ^{48}\text{Cr} + 2n \\
^{4}\text{He} + ^{46}\text{Ti} & \\
^{16}\text{O} + ^{3}\text{He} & \\
^{18}\text{O} + ^{32}\text{S} & \\
^{22}\text{Ne} + ^{28}\text{Si} & \\
\end{align*}
$$

In all the reactions studied, the excitation energy of the compound nucleus is less than 60 MeV.
II. EXPERIMENTAL PROCEDURES

A stacked-foil method was used. Target foils and aluminum degrader foils were interspaced in a target holder and bombarded with appropriate ion beam from particle accelerators. For 3He and alpha bombardments, the Berkeley 88-inch cyclotron was used; whereas the Berkeley Heavy Ion Linear Accelerator was used for the source of heavy ions. The beam intensity was measured to within ±1% with a Faraday cup connected to an integrating electrometer. The 3He or 4He beam was magnetically analyzed, so that the incident energy is known accurately. For the heavy ion beams, the full energy (10.4 ± 0.2 MeV/nucleon) was used. The energy at various positions in the stack was determined with conventional range-energy curves. For 3He and 4He, the tables of Williamson et al.10 were used; while for the heavy ions, the range-energy curves were calculated with a computer code by Steward.11

The targets used were prepared by vacuum evaporation of natural materials or enriched isotopes obtained from Oak Ridge National Laboratory. The backing and recoil catcher for the targets is thin Al foil (1.6 mg/cm2). Mass analysis and chemical impurity of the target materials are presented in Table I. To prevent sublimation or lost of sulfur material during bombardment, a thin (\sim100 µg/cm2) aluminum layer was evaporated on top of the sulfur deposit to serve as a protective shield and heat conductor.

Gamma spectroscopy was used to identify and measure the radioactivity produced. Two Ge(Li) semiconductor γ-ray detectors were employed. The active volumes are 7 and 14 cm3 with resolutions respectively of 2.5 and 1.4 keV (full width at half maximum) for the 122 keV 57Co γ-ray. The gamma ray spectra from the 1024 channel analyzer were recorded in 7-inch reel magnetic tapes.
Gamma spectra photopeak analyses were handled by the CDC 6600 computer with the code SAMPO.12 Energy and efficiency calibration of the γ-ray detection systems were facilitated with a set of eight absolute γ-ray standards.13

The radioactivities of 48Cr and 48V were determined with the 116 keV (98\%) and the 938 keV (100\%) gamma rays respectively. Graphical analysis of the decay curves is adequate to obtain the decay rates at the end of bombardment. The decay rates were converted to absolute cross sections by making appropriate corrections for beam intensities, saturation effects during bombardment, and detector efficiencies.

III. EXPERIMENTAL RESULTS

Excitation functions for the various reactions are given in Fig. 1. The contributions to the cross sections from other isotopes in the target are very small by isotopic abundance arguments and experiments involving targets enriched in the suspected isotopes. Contribution of the 48V activity from the decay of the 48Cr has been substracted.

In all the five cases, the cross sections (x,pn) are about 13 times that of (x,2n), here x stands for any of the five projectiles. The same enhancement of proton emission cross section has been observed by several authors.2,14,15 The greater emission probability can be explained by the difference in the level density of the product nuclei. The nucleus 48V is odd-odd, and is expected16 to have much more levels available, at equal excitation energies, than the 48Cr, an even-even nucleus. Since there are more channels available for the compound nucleus to decay to 48V, enhancement of proton evaporation results.
The excitation functions for the 4He reactions agree reasonably with those obtained by Raleigh.17

IV. CALCULATIONS AND DISCUSSION

A. Comparison of Excitation Functions

In the classical test of the independence postulate, the excitation functions from different reactions involving the same compound nucleus forming the same product are compared in a plot where the excitation energy is one of the axes.

Before performing such a comparison, we wish to point out that some nuclear reactions are strongly suppressed by the Coulomb barrier and should not be compared with others not so suppressed. The excitation energy of the 50Cr nucleus from the 18O + 32S reaction near the Coulomb barrier is about 45 MeV. The excitation function for two-nucleon evaporation is expected to have peaked and become small. The shape of the excitation function observed is probably due to the increasing penetration of the Coulomb barrier and the decreasing probability for two-nucleon evaporation as excitation energy is increased. Figure 2 shows a comparison of the excitation functions for 2n and pn evaporation from 16O + 3H and 18O + 32S reactions.

The corresponding cross sections for the 18O-induced reactions is a factor of ten less than the 16O-induced reactions; and the peaks of the 18O excitation functions are displaced about 9 MeV toward higher excitation energies. The discrepancy should not be taken as evidence against the independence postulate, because this effect is mainly due to the Coulomb barrier.

Because the 22Ne excitation functions studied are also strongly suppressed by the Coulomb barrier, we wish to compare the cross sections of
the other three reacting pairs. Figure 3 shows the comparison of the \(^3\)He, \(\alpha\) and \(^{16}\)O induced two-nucleon emission excitation functions.

In the classical test of the independence postulate, the comparison must be made after the cross section have been normalized with respect to the total reaction cross sections. However, the \(^3\)He and \(^{16}\)O excitation functions are near the Coulomb barrier, and the calculation of total reaction cross section in this region by the optical model\(^{18}\) is very sensitive to the parameters used. Furthermore, as of now, there are no experimentally determined optical parameters available for the reaction studied. The following procedure is used to facilitate the comparison. The magnitude of the cross sections for the \(^3\)He,\(\alpha\) and \(^{16}\)O,\(\alpha\) reactions were arbitrarily increased so that they are about equal to the \((\alpha,\alpha\)) excitation function at the peak position. The \(^3\)He,\(2\)n and \(^{16}\)O,\(2\)n cross sections were also increased the same percentage as the respective \(\alpha\),\(\alpha\) excitation functions. The result is shown in Fig. 4. A complete coincidence of the excitation functions will be a verification of the independence postulate in the classical sense.

A glance at Fig. 4 shows that the \(^3\)He and \(^4\)He excitation functions agree quite well, but the \(^{16}\)O excitation functions are definitely shifted toward higher excitation energy. This apparent violation of the independence postulate will be discussed in the next section.

It is interesting to compare the excitation functions from \(^{22}\)Ne and \(^{18}\)O reactions. All these cross sections are severely suppressed by the Coulomb barrier, and presumably arise from the evaporation of high energy neutrons and protons. Figure 5 shows such a comparison.

The \((^{18}\text{O,}2\text{n})\) and \((^{18}\text{O,}\alpha\text{n})\) excitation functions have the same shape and the same magnitude as the corresponding excitation functions from \(^{22}\)Ne + \(^{28}\)Si.
However, the $^{18}_0$ cross sections are shifted about 5.5 MeV toward higher excitation energy. This shift in energy can be explained by angular momentum effect.

B. Effects of Angular Momentum

Recently, the effects of angular momentum upon the (de-excitation) of the compound nucleus have attracted increasing attention.19-24 Generally, the evaporation of particles will release from the compound nucleus a large amount of excitation energy but small amount of angular momentum, because of the large binding energy and relatively small kinetic energy of the emitted particle. However, for any given angular momentum, there is an energy limit25 below which no available level exists. If the decay of the compound nucleus with large initial angular momentum only by particle emission, the compound nucleus will reach a situation where it will have relatively low excitation energy and high angular momentum. This compound nucleus then will possess enough excitation energy to emit another particle, but there is no available level with the necessarily high angular momentum in the residual nucleus, and thus the emission of that particle is prohibited. In this case, de-excitation must proceed via gamma ray emission. This de-excitation by gamma rays essentially remove some of the available excitation energy, thus the excitation function will be shifted toward higher excitation energies.

An alternative view is developed by Ericson and Strutinskii.26 In this treatment the rotational energy of the compound nucleus is considered to be unavailable for de-excitation by particle emission, and the true internal excitation energy, E^+, is given by

$$E^+ = E^* - E_r,$$ \hfill (1)
where \(E^* \) and \(E_r \) are the excitation energy and rotational energy respectively.

Attempts will be made to estimate the rotational energy of the compound nucleus and compare it to the experimentally observed energy shift of the excitation functions. The rotational energy of the compound nucleus is

\[
E_r = \frac{\hbar^2}{2I} \langle J(J+1) \rangle ,
\]

(2)

where \(I \) is the moment of inertia of the compound nucleus

- \(J \) is the spin of the compound nucleus
- \(\hbar \) is Plank's constant/2\(\pi \).

The moment of inertia of the compound nucleus is usually approximated by its high excitation limit, the moment of inertia of the rigid sphere.\(^{26}\)

In order to calculate the average angular momentum quantum number \(\langle J(J+1) \rangle \), the distribution of angular momentum for the compound nucleus as a function of energy is needed.

The cross section for the formation of a compound nucleus with angular momentum \(J_C \) at bombarding energy \(E \) is\(^{27}\)

\[
\sigma(J_C, E) = \pi\kappa \sum_{S = |I - s|}^{I + s} \sum_{\lambda = J_C - S}^{J_C + S} \frac{2J_C + 1}{(2s + 1)(2I + 1)} \frac{\hbar^2}{2I} T_\lambda(E) ,
\]

(3)

where \(\kappa \) is the deBroglie wavelength of the incident particle,

- \(I \) is the spin of the target nucleus,
- \(s \) is the spin of the projectile,
- \(T_\lambda(E) \) is the transmission coefficient of the projectile with orbital angular momentum \(\lambda \) and energy \(E \).

There is a maximum angular momentum \(J_C(max) \) for the compound nucleus at an energy, \(J_C(max) = \lambda_{max} + s + I \), where \(\lambda_{max} \) is chosen so that \(T_\lambda_{max} > 10^{-6} \).
The probability P_{JC} for the formation of a compound nucleus with spin J_C is simply

$$P_{JC} = \frac{\sigma(J_C, E)}{J \sum_{J_C=0}^{\infty} \sigma(J_C, E)}$$

(4)

From P_{JC} the average angular momentum quantum number can be calculated. Hafner et al.28 has written a computer code ISOMER to calculate the average angular momentum of the compound nucleus. The ISOMER program requires as its input the spin of the target and projectile, the deBroglie wavelength of the incident particle, and the transmission coefficients for the projectile of different ℓ at E.

The transmission coefficients can be approximated by a method given by Thomas.29 The interaction between the target and projectile can be approximated by a diffuse potential

$$V(r, \ell) = \frac{Z_1 Z_2 e^2}{r} + \frac{\hbar^2}{2 \mu r^2} \ell(\ell+1) - 67 \exp \left[\frac{r-1.17(A_1^{1/3} + A_2^{1/3})}{-0.574} \right],$$

(5)

where Z and A refer to charge and mass, the subscripts 1 and 2 refer to projectile and target respectively. This potential is further approximated by a parabola with matching position, height, and curvature at its maximum. The transmission coefficients for the parabola is given by Hill and Wheeler.30

The calculated angular momentum for the various reactant pairs is presented in Fig. 6. With Eq. 2 and Fig. 6, the rotational energy of the compound nucleus can be calculated. At the peak position of the (α,pn) and (α,2n) excitation functions, the bombarding energy is about 31 MeV. The
\langle J(J+1) \rangle \) value is 130 and the rotational energy is 6.4 MeV. For the \((^{16}O,2n)\) and \((^{16}O,\alpha n)\) excitation functions, the rotational energy at the peak is 7.4 MeV. The expected energy shift between the \(^{16}O\) and \(\alpha\) induced reactions will therefore be 1 MeV. The observed shift is about 2 MeV. This discrepancy may be caused by the Coulomb barrier acting on the low-energy edge of the \(^{16}O\) excitation functions.

For the \(^{22}Ne\)-induced reactions, the rotational energy at the peak of the two-nucleon evaporation excitation functions is about 2.0 MeV, and the \(^{18}O\)-induced reactions \(E_r\) is 5.9 MeV. The expected displacement is about 3.9 MeV. The observed shift is 5.5 MeV.

Although the calculated energy shifts do not agree perfectly with the observed ones, these approximate calculations do allow qualitative understanding of the effect of angular momentum upon the de-excitation of the compound nucleus. Better agreement can be achieved if the moment of inertia of the rotating compound nucleus is taken to be \(7kI_r\) where \(k\) is a parameter, and \(I_r\) is the moment of inertia of a rigid sphere. For more accurate and realistic calculations, the treatment involves the detailed calculation of the \(\gamma\)-ray de-excitation and spin distribution\(^{31}\) of the decaying compound nucleus may be necessary.

For the compound nucleus reaction \(a + A \rightarrow C^* + b + B\), according to the independence postulate, the cross section can be formulated as

\[
\sigma(a,b) = \sigma_c(a) P(C,b),
\]

where \(\sigma_c(a)\) is the cross section for the formation of the compound nucleus \(C^*\) from the entrance channel \(a + A\); \(P(C,b)\) is the probability that the compound nucleus decays through the exit channel \(b + B\). \(P(C,b)\) depends only
on the exit channel and the compound nucleus.

Furthermore, for reactions involving different exit channels, we have

\[
\frac{\sigma(a,b)}{\sigma(a,d)} = \frac{\sigma_C(a) P(C,b)}{\sigma_C(a) P(C,d)} = \frac{P(C,b)}{P(C,d)},
\]

(7)

where \(\sigma(a,d)\) designates the reaction cross section for the reaction

\[a + A \rightarrow C^* + d + D.\]

Because \(P(C,b)\) and \(P(C,d)\) do not depend on the entrance channel, the ratio of cross sections from different entrance channels should be equal,\(^{32}\) or,

\[
\frac{\sigma(a,b)}{\sigma(a,d)} = \frac{P(C,b)}{P(C,d)} = \frac{\sigma(a',b)}{\sigma(a',d)},
\]

(8)

where \(\sigma(a',b)\) is the cross section for the reaction \(a' + A' \rightarrow C^* \rightarrow b + B\); similarly for \(\sigma(a',d)\).

Figure 7 shows the ratios of pn cross sections to the 2n cross sections for all the reactant pairs studied. Although the ratios lie mainly between 12 and 18, it is obvious that Eq. (8) is not strictly upheld. For a more quantitative comparison, effects of isospin,\(^{33}\) Coulomb barrier, and \(\gamma\)-ray competition\(^{34}\) on the decay of the compound nucleus must be taken into account.
REFERENCES

5. S. Tanaka, M. Furukawa, S. Iwata, M. Yagi, H. Amano and T. Mikumo,
7. C. F. Smith, Jr., Lawrence Radiation Laboratory Report, UCRL-11862, 1965
 (unpublished).
8. J. M. D'Auria, M. J. Fluss, G. Herzog, L. Kowalski, J. M. Miller, and
10. C. F. Williamson, J. P. Boujot, and J. Picard, Commissariat a' l'Energie
 (unpublished).
18. For example, E. H. Auerbach, Brookhaven National Laboratory Report, BNL-6562,
Table I. Mass analysis and chemical composition of target material.

<table>
<thead>
<tr>
<th>Target</th>
<th>Mass Analysis</th>
<th>Chemical Impurities (maximum)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mass Number</td>
<td>Percent</td>
</tr>
<tr>
<td>Titanium-46 (TiO$_2$)</td>
<td>46</td>
<td>81.2</td>
</tr>
<tr>
<td></td>
<td>47</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>14.5</td>
</tr>
<tr>
<td></td>
<td>49</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1.1</td>
</tr>
<tr>
<td>Titanium-47 (TiO$_2$)</td>
<td>46</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>47</td>
<td>79.5</td>
</tr>
<tr>
<td></td>
<td>48</td>
<td>16.5</td>
</tr>
<tr>
<td></td>
<td>49</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>1.0</td>
</tr>
<tr>
<td>Sulfur-34</td>
<td>32</td>
<td>65.9</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>.57</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>33.5</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>.05</td>
</tr>
<tr>
<td>Sulfur (natural)</td>
<td>32</td>
<td>95.0</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>.76</td>
</tr>
<tr>
<td></td>
<td>34</td>
<td>33.5</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td><.014</td>
</tr>
<tr>
<td>Silicon (natural)</td>
<td>28</td>
<td>92.2</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>4.7</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>3.1</td>
</tr>
</tbody>
</table>
FIGURE CAPTIONS

Fig. 1. Experimental excitation functions for the production of 48V and 48Cr from various charged particles involving the compound nucleus 50Cr*. The solid lines are drawn only to aid the eyes and have no theoretical significance.

Fig. 2. Comparison of the excitation functions from 18O and 16O induced reactions. The difference in magnitude of these cross sections can be attributed to Coulomb barrier effect.

Fig. 3. Three way comparison of the $2n$ and pn evaporation excitation functions from 3He + 47Ti, 4He + 46Ti and 16O + 34S reactions.

Fig. 4. Three way comparison of the $2n$ and pn evaporation excitation functions after arbitrarily shifting the magnitude of the 16O and 3He cross sections (see text).

Fig. 5. Comparison of the $2n$ and pn emission excitation functions from the 18O + 32S and 22Ne + 28Si reactions. All these cross sections are suppressed severely by the Coulomb barrier.

Fig. 6. Calculated average angular momentum quantum number for the 50Cr* compound nucleus as a function of bombarding energy for various reactant pairs.

Fig. 7. Ratio of $\sigma(x,pn)$ to $\sigma(x,2n)$ reaction from 50Cr*. The lines are to guide the eye. A 10% error bar is shown.
Fig. 1a. Experimental excitation functions for the production of 48V and 48Cr from various charged particles involving the compound nucleus 50Cr. The solid lines are drawn only to aid the eyes and have no theoretical significance.
Fig. 1b. See caption for fig. 1a.
Fig. 1c. See caption for fig. 1a.
Fig. 1d. See caption for fig. 1a.
Fig. 1e. See caption for fig. la.
Fig. 2. Comparison of the excitation functions from $^{18}_0$ and $^{16}_0$ induced reactions. The difference in magnitude of these cross sections can be attributed to Coulomb barrier effect.
Fig. 3. Three way comparison of the 2n and pn evaporation excitation functions from $^3\text{He} + ^{47}\text{Ti}$, $^4\text{He} + ^{46}\text{Ti}$ and $^{16}\text{O} + ^{34}\text{S}$ reactions.
Excitation energy (MeV)

Fig. 4. Three way comparison of the 2n and pn evaporation excitation functions after arbitrarily shifting the magnitude of the $^{16}_0$ and $^3_{\text{He}}$ cross sections (see text).
Fig. 5. Comparison of the 2n and pn emission excitation functions from the $^{18}_0 + ^{32}_S$ and $^{22}_Ne + ^{28}_Si$ reactions. All these cross sections are suppressed severely by the Coulomb barrier.
Fig. 6. Calculated average angular momentum quantum number for the $^{50}\text{Cr}^{*}$ compound nucleus as a function of bombarding energy for various reactant pairs.
Fig. 7. Ratio of $\sigma(x, pn)$ to $\sigma(x, 2n)$ reaction from ^{50}Cr. The lines are to guide the eye. A 10% error bar is shown.
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.