Title
Soil Moisture, Salinity, and Nitrate Control for Soil and Groundwater Protection in Support of Wireless Sensor Networks and Optimal Irrigation Strategy

Permalink
https://escholarship.org/uc/item/2pj6h702

Authors
Park, Yeonjeong
Ratko, Alex
Butler, Chris
et al.

Publication Date
2007-10-10
Introduction: Reclaimed Water is Reused for Agricultural Irrigation in California

Problem Description: Contaminant Control is Necessary for Pollution Prevention

Proposed Solution: Automatic Feedback Control Scheme with Wireless Sensor Networks

Soil Moisture Control in Palmdale

- Soil moisture control was performed in May 2007.
- The objective of irrigation control was to determine the application rate such that soil moisture level at 5cm is maintained under 22% while maximizing reclaimed water usage.

Salinity and Nitrate Control in Merced

- Salinity and nitrate in soils are controlled in Merced such that salinity and nitrate level at certain depth are maintained under threshold value while maximizing reclaimed water usage.

Soil Moisture Control in Palmdale

- A control algorithm is required to maximize the reclaimed water input while protecting groundwater.
- Real-time parameter estimation for the simulation models is executed using on-line data from sensors.
- Novel multi-level sensing stations (pylons) are deployed at varying spatial densities over a portion of a 30 acre test plot.

Merced “Backyard” Test Bed

- A test bed for salinity and nitrate control is set up in Merced.
- An Automatic irrigation control system is used to adaptively autonomously manage the flow rate using a feedback-control simulation-optimization program.
- Multi-level sensing stations (soil moisture, temperature, salinity, and nitrate sensors) are deployed to monitor soil conditions in 1-D.

Problem Description: Contaminant Control is Necessary for Pollution Prevention

Proposed Solution: Automatic Feedback Control Scheme with Wireless Sensor Networks