
UC Berkeley
UC Berkeley Previously Published Works

Title
An efficient wire routing and wire sizing algorithm for weight minimization of automotive
systems

Permalink
https://escholarship.org/uc/item/2pv747kz

ISBN
9781479930173

Authors
Lin, Chung-Wei
Rao, Lei
Giusto, Paolo
et al.

Publication Date
2014-06-01

DOI
10.1145/2593069.2593088

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2pv747kz
https://escholarship.org/uc/item/2pv747kz#author
https://escholarship.org
http://www.cdlib.org/

An Efficient Wire Routing and Wire Sizing Algorithm for
Weight Minimization of Automotive Systems

Chung-Wei Lin1, Lei Rao2, Paolo Giusto2, Joseph D’Ambrosio3, Alberto Sangiovanni-Vincentelli1
1EECS Department, University of California, Berkeley, Berkeley, CA
2Research & Development, General Motors Company, Palo Alto, CA
3Research & Development, General Motors Company, Warren, MI

E-Mails: {cwlin, alberto}@eecs.berkeley.edu, {lei.rao, paolo.giusto, joseph.dambrosio}@gm.com

ABSTRACT
As the complexities of automotive systems increase, design-
ing a system is a difficult task that cannot be done manually.
In this paper, we propose an algorithm for weight minimiza-
tion of wires used for connecting electronic devices in a sys-
tem. The wire routing problem is formulated as a Steiner
tree problem with capacity constraints, and the location of
a Steiner vertex is selected for adding a splice connecting
more than two wires. Besides wire routing, wire sizing is
also done to satisfy resistance constraints and minimize the
total wiring weight. Experimental results show the effective-
ness and efficiency of our algorithm.

1. INTRODUCTION
As the complexities of automotive systems increase, de-

signing a system is a difficult task that cannot be done man-
ually. It has been shown that there are hundreds to thou-
sands of devices, such as Electronic Control Units (ECUs),
actuators, and sensors, distributed in an automotive sys-
tem, and this number is still increasing dramatically, which
brings several concerns. First, the numbers of devices and
their connections are so many that it is difficult or even im-
possible for designers to complete their designs manually.
Next, without a systematic approach, the design space is
not explored effectively and efficiently, which leads to a sub-
optimal solution or just a feasible solution without being
optimized. Last but not least, the length of a design cycle is
much increased when dealing with new designs or new con-
straints. To remedy these problems, automated design tools
must be developed.
Due to the increase of the number of connections, the

wiring cost also becomes an issue. Although some devices
are connected through wireless communications, most of
them are still connected through physical wires. It is re-
ported that the wiring weight of an automotive system can
be up to 30 kilograms [9], and the wiring cables, along
with their harnesses, become the third heaviest and costliest

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
DAC ’14, June 01–05 2014, San Francisco, CA, USA
Copyright 2014 ACM 978-1-4503-2730-5/14/06 $15.00.
http://dx.doi.org/10.1145/2593069.2593088

component in an automotive system (after the chassis and
the engine) [10]. Many automotive companies and suppli-
ers are trying to minimize the wiring weight by developing
lightweight wires [1, 9]. Therefore, when we solve the wiring
problem to make sure that devices are correctly connected, it
is also very important to reduce the wiring weight to further
enhance the performance and fuel efficiency of an automo-
tive system and build a user-friendly vehicle—for example,
the weight of a door is a concern from users’ perspective.

There are several existing tools [2, 3] for the electrical
and wiring harness design. The Capital Suite [2] provides,
among other features, a design flow from logical connec-
tivity designs to manufacturing-ready harness designs for
transportation platforms such as aircraft and vehicles. Es-
pecially, the Capital Integrator can automatically synthe-
size wiring objects and generate fully-detailed wiring de-
signs. The software also provides interfaces for cost opti-
mization and design validation. E3.series [3] is another tool
for creating wiring designs. Besides these commercial tools,
a preliminary tool [8] focuses on estimating the cost for con-
necting two devices. If there are more than two devices to
be connected, designers will first manually assign locations
of splices which are used for merging more than two wires
and then use the tool to estimate the cost—this design flow
should be improved so that the locations of splices can be
decided automatically, and the total length and the total
weight can be optimized.

In this paper, we focus on wire routing and wire sizing for
weight minimization and present an algorithm to connect
electronic devices in automotive systems. The wire rout-
ing problem is formulated as a Steiner tree problem with
capacity constraints, and the location of a Steiner vertex
is selected to add a splice. The wire routing problem and
the Steiner tree problem are well-studied in the field of elec-
tronic design automation [11], but the capacity constraints
are new challenges in automotive systems. We modify the
KMB algorithm [7] to efficiently construct Steiner trees. We
also propose a Mixed Integer Linear Programming formula-
tion (MILP) to relocate Steiner vertices and satisfy capacity
constraints. The MILP formulation is relaxed to a Linear
Programming (LP) formulation which has the same optimal
objective and can be solved much more efficiently. Besides
wire routing, wire sizing is also done to satisfy resistance
constraints and minimize the total wiring weight. To the
best of our knowledge, this is the first work in the litera-
ture to address the automotive routing problem as a mini-
mal Steiner tree problem with capacity constraints. A real
industrial case study shows the effectiveness and efficiency

locationlocation

wireswires

wires wires

part part

Figure 1: A harness model with its locations [8]. Two

parts are connected by a wire, and the wire goes through

the harness.

of our algorithm which provides an efficient, flexible, and
scalable approach for the design optimization of automotive
systems.
The rest of this paper is organized as follows. Section 2

formulates the problem of wire routing and wire sizing, and
Section 3 presents our algorithm. Section 4 reports the ex-
perimental results, and we conclude our work in Section 5.

2. FORMULATION
A harness is a complete wire assembly, and a location

of a harness is a place where wires can get in or out of
the harness. The end points of a harness are usually also
locations, and a harness can have several branches. A part
is an ECU, a sensor, or an actuator. An example is shown
in Figure 1 [8] where two parts are connected by a wire,
and the wire goes through the harness. A splice is used
for connecting more than two wires, and it is allocated to
a location. An inline is used for connecting two harnesses.
Taking Figure 2(a) as an example, v6 is an inline and v4 is a
part, so a wire can connect the two harnesses only through
v6, not through v4.

Definition 1. A vertex v is a location, a part, or an
inline. It is associated with a capacity Cv (Cv ≥ 0), defining
how many splices can be allocated to the vertex.

A splice cannot be allocated to a part or an inline, so
Cv = 0 if v is a part or an inline. An l-vertex , a p-vertex ,
and an i-vertex are vertices corresponding to a location, a
part, and an inline, respectively.

Definition 2. An edge e connects from an l-vertex to
another l-vertex, a p-vertex, or an i-vertex. It is associated
with a length Le (Le ≥ 0).

By the definition, at least one end vertex of an edge is an
l-vertex.

Definition 3. A routing graph G includes a set of ver-
tices VG and a set of edges EG.

Definition 4. A netlist N is a set of p-vertices. It is as-
sociated with a resistance RN (RN > 0), defining the upper
bound of its allowed resistance.

Given a routing graph and a set of netlists, we want to
find a Steiner tree for each netlist so that all p-vertices in the
netlist are connected and all constraints are satisfied. Before
introducing the formulation and the constraints, there are
some more definitions.

p-vertexl-vertex i-vertex

N = {v1,v5,v10}

v1 v7

v4

v2

v3

v5

v6

v8

v9

v10

v6

v5

v4

(a) (b) (c) (d) (e)

harness Steiner vertex

Figure 2: (a) Given a routing graph and a netlist

N = {v1, v5, v10}, a Steiner tree must be a subgraph of

the routing graph. (b) The Steiner tree is not a feasi-

ble solution because v6 is not an l-vertex (violating Con-

straint 2). (c) The Steiner tree is not a feasible solution

because the degree of v4 is 2 (violating Constraint 3).

(d) Similarly, the Steiner tree is not a feasible solution

because the degree of v5 is 2 (violating Constraint 3). (e)

The Steiner tree is a feasible solution.

Definition 5. A segment S in a Steiner tree is a path
where its end vertices are p-vertices or Steiner vertices, and
it does not go through any p-vertex or any Steiner vertex
between its end vertices (except its end vertices). Its radius
rS is a decision variable.

Definition 6. If a segment S consists of a set of edges
{e1, e2, . . . , ene}, then the length LS, the weight WS, and
the resistance RS of S are

LS =

ne∑
i=1

Lei ; WS = α× LS × r2S ; RS = β × LS

r2S
,

where α and β are constants.

Definition 7. If a Steiner tree T consists of a set of seg-
ments {S1, S2, . . . , SnS}, then the length LT , the weight WT ,
and the resistance RT of T are

LT =

nS∑
i=1

LSi ; WT =

nS∑
i=1

WSi ; RT =

nS∑
i=1

RSi .

To this point, we can define the problem:

• Problem Formulation: given a routing graph G and
a set of netlists {N1, N2, . . . , Nn}, find a Steiner tree
Ti for each netlist Ni and decide the radius rSi,j for
each segment Si,j (the j-the segment of Ti) so that all
p-vertices in Ni are connected, all following constraints
are satisfied, and the total weight of all Steiner trees∑n

i=1 WTi is minimized.

Constraint 1. A Steiner tree Ti must be a subgraph of
the given routing graph G.

Constraint 2. A Steiner vertex must be an l-vertex.

We have this constraint because a splice is only allocated
to a location. An example is shown in Figure 2. Given a
routing graph in Figure 2(a), the Steiner tree in Figure 2(b)
is a subgraph of the routing graph, but it is not feasible
because v6 is not an l-vertex.

Constraint 3. The degree of a p-vertex in a Steiner tree
must be 1.

Segment Sizing

Steiner Vertex Relocation

Steiner Tree Construction
Routing

Graph

Netlists

Steiner

Trees

Segment

Sizes

Figure 3: The flow of our algorithm.

We have this constraint because a part cannot be used for
connecting wires or harnesses. It implies that a Steiner tree
will not have a p-vertex which is not in the given netlist.
With this constraint, the Steiner tree in Figure 2(c) is not
feasible because the degree of v4 is 2. Similarly, the Steiner
tree in Figure 2(d) is not feasible because the degree of v5 is
2 (although v5 is in N), while the Steiner tree in Figure 2(e)
is a feasible solution. Besides the constraints above, there
are also capacity and resistance constraints as follows.

Constraint 4. (Capacity Constraint) The number of
splices allocated to a vertex v must be smaller than or equal
to Cv.

This constraint reflects that a location may have space
limitation so that only a limited number of splices can be
allocated to it. As mentioned before, if v is a part or an
inline, then Cv = 0, which implies that no splice will be
allocated to v.

Constraint 5. (Resistance Constraint) The resistance
of a Steiner tree must be smaller than or equal to the upper
bound given with its corresponding netlist, i.e., RTi ≤ RNi .

This constraint guarantees that the delay and the quality
of a signal on a wire meet the requirements.

3. ALGORITHM
The flow of our algorithm is shown in Figure 3. There

are three steps: Steiner tree construction, Steiner vertex re-
location, and segment sizing. The Steiner tree construction
focuses on the length minimization, which is beneficial for
both of the weight minimization and the resistance mini-
mization. The Steiner vertex relocation moves Steiner ver-
tices so that Constraint 4 (capacity constraint) is satisfied.
Last, the segment sizing decides the wire sizes of all segments
to meet Constraint 5 (resistance constraint) and minimize
the total weight of all Steiner trees. They will be introduced
in the following sections.

3.1 Steiner Tree Construction
In this step, we find a Steiner tree for each netlist one by

one. The subproblem in this step is defined as:

• Steiner Tree Construction: given a routing graph
G and a netlist Ni, find a Steiner tree Ti for the netlist
Ni so that all p-vertices in Ni are connected, Con-
straint 1 is satisfied, and the length of Ti is minimized.

Since we assign Cv = 0 for a p-vertex or an i-vertex,
Constraint 2 is a special case of Constraint 4 which should
be considered after the Steiner trees of all netlists are con-
structed. Therefore, Constraints 2 and 4 are considered in
the next step (the Steiner vertex relocation). Constraint 3 is

p-vertexl-vertex i-vertex

N = {v1,v2,v3,v4}

v1

v10

harness Steiner vertex

(a) (b) (c)

v2 v3

v4

v5

v6 v7

v8

v9

v1 v4 v1 v4

v1 v4 v1 v4v1 v4

v2 v3 v2 v3

v10

v9

v9

v5

v6 v7

v8

vv v v

30

30

30

50

40

40

30

10 10

1010

10 10

5 5

20 20

10

(d) (e) (f)

v2 v3v2 v3v2 v3

v7

v8v5

v6

v5 v8

30 30

Figure 4: The Steiner tree construction. (a) Given

a routing graph, (b) our algorithm computes the dis-

tances of all pairs of l-vertices and i-vertices. (c) For

each netlist, our algorithm computes the distances of all

pairs of p-vertices in the netlist, (d) computes a mini-

mum spanning tree, (e) maps the spanning tree to the

edges in the routing graph, and (f) constructs a Steiner

tree.

not directly considered in this step, but our approach guar-
antees that the Steiner tree of a netlist does not include
any p-vertex not in the netlist. Last, for a Steiner tree,
minimizing the length and minimizing the resistance have a
positive correlation, so Constraint 5 is not considered in this
step, either. Even without Constraints 2 to 5, the minimum
Steiner tree problem is NP-complete [5], so we apply the
KMB heuristic algorithm [7] and make some modifications
to match our problem. The KMB heuristic is suitable here
because the shortest path between two vertices in a rout-
ing graph just needs to be computed once, while it may be
referred many times for different netlists. In this step, we
can also apply other approaches, such as one constructing
an optimal Steiner tree [6], which may take more time.

Given a routing graph, we first use the Floyd-Warshall
algorithm to compute the shortest paths between all pairs
of l-vertices and i-vertices and construct a complete graph
of all l-vertices and i-vertices where each edge is associated
with the distance (the length of the shortest path) between
its two end vertices. For example, in Figure 4(a), the short-
est path between v5 and v8 is < v5, v9, v8 > with length
10, so the edge between v5 and v8 in Figure 4(b) is with
length 10. Then, given a netlist, we compute the short-
est paths between all pairs of the p-vertices in the netlist
by checking the shortest paths between the connected l-
vertices of the p-vertices and construct a complete graph
of all p-vertices where each edge is associated with the dis-
tance (the length of the shortest path) between its two end
vertices. For example, v1 is connected to v5, and v4 is con-
nected to v8, so the shortest path between v1 and v4 is the
sequence of < v1, v5 >, < v5, v9, v8 >, and < v8, v4 >, where
< v5, v9, v8 > has been recorded in Figure 4(b), and the edge
between v1 and v4 in Figure 4(c) is with length 30. We can-

v2 v3 v2 v5 v3v2 v4 v3

201010 10

p-vertexl-vertex i-vertexharness Steiner vertex

(a) (b) (c)

10
10

L
T

= 40

20 10
10 20

L
T

= 50v1 v1 v1

v4 v5

Figure 5: Given (a) a routing graph and (b) a Steiner

tree, (c) the relocation cost of the Steiner vertex relo-

cated from v4 to v5 is exactly the increased length of the

Steiner tree.

not directly use the KMB algorithm because it may find a
shortest path going through another p-vertex except its two
end vertices, which is not feasible in our formulation. This
is also the reason that we compute the shortest paths for
two separated sets—the set of l-vertices and i-vertices and
the set of p-vertices.
The following operations are the same as the KMB algo-

rithm, as shown in Figure 4. After constructing the complete
graph in Figure 4(c), a minimum spanning tree is computed
in Figure 4(d). The edges of the minimum spanning tree are
mapped to the edges of the routing graph in Figure 4(e),
and we can decide the segments and the Steiner vertices to
construct a Steiner tree in Figure 4(f). Our approach guar-
antees that the Steiner tree of a netlist does not include any
p-vertex not in the netlist.

3.2 Steiner Vertex Relocation
After the Steiner tree of each netlist is constructed, we

consider all Steiner trees to compute Av, the number of
Steiner vertices (splices) allocated to vertex v, for each ver-
tex, and then relocate Steiner vertices to satisfy Constraints 1
to 4. The relocation cost of a Steiner vertex is first defined
here.

Definition 8. If a Steiner vertex is relocated along an
edge e, its relocation cost is Le.

The relocation cost is an estimation for the length increase
of a Steiner tree, but it is accurate in most cases. This is
because the degree of a Steiner vertex in a Steiner tree is
usually 3, and the degree of a vertex in the routing graph of
an automotive system is usually not very large. An example
is in Figure 5. Given a routing graph in Figure 5(a) and a
Steiner tree in Figure 5(b), the relocation cost of the Steiner
vertex relocated from v4 to v5 is 10, which is exactly the
increased length of the Steiner tree in Figure 5(c). We can
observe that the degree of the Steiner vertex is 3, and the
relocation is along an edge in the Steiner tree. As a result,
the lengths of two segments (from v1 and v2 to the Steiner
vertex) are increased by 10, and the length of the other
segment (from v3 to the Steiner vertex) is decreased by 10,
making the increased length of the Steiner tree equal to 10.
An alternative to assign relocation costs is to consider the
degrees and the connected vertices of Steiner vertices, so two
Steiner vertices relocated along the same edge e may have
different relocation costs. We do not use this alternative
because it induces a lot of decision variables in our Mixed
Integer Linear Programming (MILP) formulation.
It is possible that the degree of a p-vertex in a Steiner tree

is more than 1 after the first step (the Steiner tree construc-
tion). In this special case, we assign a Steiner vertex allo-
cated to the p-vertex so that it will be relocated later (since

v1

1 / 0

A
v

/ C
v

v3 v4

v2

0 / 1

1 / 00 / 1

v1

0 / 0

B
v

/ C
v

v3 v4

v2

1 / 1

0 / 01 / 10.5

0.5

0.50.5

(a) (b)

γ

γ

1 – γ1 – γ

(c)

v u

V U

Figure 6: (a) A non-integer solution of the LP formula-

tion leads to (b) a relocation where Bv is an integer for

each vertex v, and (c) its generalized view.

the capacity of a p-vertex is 0). This assignment makes sure
that Constraint 3 is satisfied after this step. To this point,
the subproblem in this step is defined as:

• Steiner Vertex Relocation: given a routing graph
G and the value Av of each vertex, relocate Steiner
vertices so that Constraints 1 to 4 are satisfied, and
the total relocation cost of all Steiner vertices are min-
imized.

We do not directly consider Constraint 5 here, but, when
a Steiner vertex needs to be relocated, we will select one
from a Steiner tree whose resistance constraint is looser. The
subproblem can be formulated as an MILP formulation. As-
suming s(e) is the first vertex of e, t(e) is the second vertex
of e, xe is the decision variable representing the number of
Steiner vertices relocated from s(e) to t(e), and ye is the de-
cision variable representing the number of Steiner vertices
relocated from t(e) to s(e), the MILP formulation is defined
as:

minimize
∑
e

(Lexe + Leye), (1)

subject to

Av −
∑

e,s(e)=v

(xe − ye) +
∑

e,t(e)=v

(xe − ye) ≤ Cv; (2)

Av −
∑

e,s(e)=v

(xe − ye) +
∑

e,t(e)=v

(xe − ye) ≥ 0, (3)

where xe and ye are non-negative integers. Since Av and
Cv are integers, the MILP formulation can be relaxed to a
Linear Programming (LP) formulation (where xe and ye are
non-negative real numbers) which can be solved much more
efficiently, and their optimal objectives of are the same.

Lemma 1. There is an optimal solution (x⃗′, y⃗′) to the LP
formulation such that, after the Steiner vertex relocation, the
number of Steiner vertices (splices) allocated to each vertex
v, Bv, is an integer.

Due to the limitation of space, we omit the proofs of the-
orems and lemmas in this paper.

Bv is exactly the left-hand side in Equations (2) and (3).
The lemma above only claims that there is an optimal so-
lution such that Bv is an integer for each vertex v. It does
not claim that it is an integer solution. For example, a non-
integer solution of the LP formulation in Figure 6(a) leads
to a relocation where Bv is an integer for each vertex v in
Figure 6(b). The next lemma can provide a stronger claim.

Lemma 2. There is an integer optimal solution to the LP
formulation.

p-vertexl-vertex i-vertexharness Steiner vertex

(a) (b) (c)

v5

v6

v1

v2 v3

v4

v6

v8

0 / 0 0 / 0

0 / 00 / 0

0 / 0

0 / 0

1 / 1

0 / 1

1 / 0

0 / 1

v5

v6

0 / 0 0 / 0

0 / 00 / 0

0 / 0

0 / 0

0 / 0

1 / 1 0 / 1

1 / 1

A
v

/ C
v

Figure 7: The Steiner vertex relocation. Assuming that

there is only one Steiner tree in Figure 4, (a) our al-

gorithm computes Av, the number of Steiner vertices

(splices) allocated to each vertex, (b) calls an LP solver

and decides to relocate one Steiner vertex from v5 to v6,

and (c) relocates a Steiner vertex of the Steiner tree from

v5 to v6.

The basic concept of Lemma 2 is illustrated in Figure 6(c).
Given an optimal solution provided by Lemma 1, if the so-
lution relocates γ (0 < γ < 1) Steiner vertex from vertex v
along edge e to vertex u, then, by Lemma 1, 1 − γ Steiner
vertex must be relocated from v to a set of vertice V , 1− γ
Steiner vertex must be relocated from a set of vertices U
to u, and γ Steiner vertex must be relocated from U to V
through some paths. As a result, we can just move 1 Steiner
vertex from v to u and 1 Steiner vertex from U to V , and
this integer solution is also an optimal solution to the LP
formulation.

Theorem 1. The optimal objective (λ∗
MILP) of the MILP

formulation is equal to that (λ∗
LP) of the LP formulation.

The concept of Lemma 2 provides an insight to deal with
a non-integer solution. We round up the value of an edge,
search its corresponding edges, and round down their val-
ues. After getting an integer solution, we sort all of the
Steiner trees obtained in the first step (the Steiner tree con-
struction) by the tightness of their resistance constraints.
We start from the Steiner tree whose resistance constraint
is the loosest and greedily relocate Steiner vertices until the
relocation matches the integer solution. An example of the
Steiner vertex relocation is shown in Figure 7. Assuming
that there is only one Steiner tree in Figure 4, our algo-
rithm computes Av, the number of Steiner vertices (splices)
allocated to each vertex as shown in Figure 7(a). Then, it
calls an LP solver and decides to relocate one Steiner vertex
from v5 to v6 as shown in Figure 7(b). Last, it relocates a
Steiner vertex of the Steiner tree from v5 to v6 as shown in
Figure 7(c).
In this step, we need to deal with two special cases. The

first special case is that the degree of a p-vertex in a Steiner
tree is more than 1 after the first step (the Steiner tree con-
struction). As mentioned before, we assign a Steiner vertex
allocated to the p-vertex so that it will be relocated. This
relocation may let a segment go through a p-vertex which is
not its end vertex, violating Constraint 3 (or violate the def-
inition of a segment). This case does not happen very often
since a p-vertex is usually connected to only one l-vertex. If
this case happens, the segment will be rerouted by check-
ing the shortest paths between l-vertices, which have been
computed in the first step. The second special case is that
there is no feasible solution to the LP formulation since the

wire size of segment 1

w
ir

e
si

ze
 o

f
se

g
m

en
t

2

wire size of segment 1 wire size of segment 1

δ

∆

(a) (b) (c)

infeasible feasible explored space implied space

Figure 8: The segment sizing. (a) The heuristic assigns

the wire size of each segment as the smallest possible

wire size and increases the wire sizes of all segments to-

gether until the resistance constraint is satisfied [8]. (b)

Assuming that the found value is the i-th wire size, the

algorithm explores all combinations of wire sizes with in-

dices from i−δ to i+∆. (c) There are two implied design

spaces that we do not need to explore.

total capacity of all vertices is smaller than the total num-
ber of Steiner vertices in Steiner trees. If this case happens,
Steiner vertices in the same Steiner tree will be merged to
reduce the total number of Steiner vertices. Of course, if the
total capacity of all vertices is smaller than the number of
netlists with more than two parts, then the problem itself
has no feasible solution.

3.3 Segment Sizing
There is a list of possible wire sizes following the standard

American Wire Gauge (AWG) [4]. The subproblem in this
step is defined as:

• Segment Sizing: given a Steiner tree Ti, decide the
radius of each segment in the Steiner tree Ti so that
Constraint 5 is satisfied, and the weight of Ti is mini-
mized.

If the number of segments is small (e.g., ≤ 5) in a Steiner
tree, then we explore all combinations of their wire sizes.
Otherwise, we use a heuristic to decide their wire sizes. As
shown in Figure 8(a), the heuristic assigns the wire size of
each segment as the smallest possible wire size and increases
the wire sizes of all segments together until the resistance
constraint is satisfied [8]. Assuming that the found value is
the i-th wire size, the heuristic then explores all combina-
tions of wire sizes with indices from i − δ to i + ∆, where
δ and ∆ are parameters in experiments, as shown in Fig-
ure 8(b). There are two implied design spaces in Figure 8(c)
that we do not need to explore. We can guarantee that there
is no feasible solution in the first (bottom-left) implied de-
sign space, and there is no better solution in the second
(top-right) implied design space. If there are m segments
and n possible wire sizes, then the total number of solutions
is mn, and the total number of covered solutions is

(i− 1)n + (m− i+1)n + (δ+∆+1)n − δn − (∆+1)n. (4)

In the best case (i = 1), the heuristic covers the whole design
space. In the worst case (i ≈ m

2
), the heuristic covers about

2−(n−1) of the whole design space. Although the covered
design space is not large in the worst case, the heuristic
tends to assign similar wire sizes to the segments, which
prevents the case that a wire size is very small (usually not

Figure 9: The routing graph of the test case.

feasible) or very large (usually not optimal). Experimental
results will show the effectiveness of this heuristic.
After this step, we can get a solution to the problem for-

mulated in Section 2. If a solution is returned, it satisfies
all constraints. Furthermore, if a netlist has only two parts,
then we can guarantee that its solution is optimal. This
property is important since there are many 2-part netlists
in a real test case.

4. EXPERIMENTAL RESULTS
We obtained an industrial test case which includes a set of

functions, such as object detection, exterior lighting, mirror
control, and window control. There are 17 harnesses, 102 lo-
cations, 20 inlines, 248 parts, 387 edges, and 100 netlists, and
its routing graph is shown in Figure 9. One semi-automated
solution based on designers’ experience is given with the test
case, where the locations of all splices and the sizes of all seg-
ments are given. Our algorithm is implemented in C/C++.
CPLEX 12.5 is used as the LP/MILP solver. The experi-
ments were run on a 2.5-GHz processor with 4GB RAM. The
parameters δ and ∆ in the accelerated heuristic mentioned
in Section 3.3 are set to 5 and 1, respectively.
The results are listed in Table 1. In Step 1 (Steiner tree

construction), our algorithm takes only 0.078s to construct
the initial Steiner trees for all netlists, but it needs the next
step to satisfy capacity constraints. In Step 2 (Steiner ver-
tex relocation), our algorithm gets a solution with the total
length 285,010mm and improves the semi-automated solu-
tion by more than 4%. As proved in Section 3.2, the op-
timal objectives of the LP formulation and the MILP for-
mulation are the same, but using the LP formulation (it
directly returns an integer solution) is more efficient (0.671s
vs. 0.733s). In Step 3 (segment sizing), our algorithm gets
a solution with the total weight 2.707kg and improves the
semi-automated solution by more than 10%. In this case,
although this property is not guaranteed by a theorem, the
accelerated heuristic gets the same solution with a brute-
force approach and reduces the runtime 106.595s by almost
70X. In fact, if δ and ∆ are both set to 1 for this test case,
the accelerated heuristic can still get the same solution, in-
dicating that an optimal solution tends to have similar wire
sizes assigned to all segments in a Steiner tree, and it is
exactly the design space we explore.
If we apply our segment sizing on the Steiner trees of the

semi-automated solution, we can get a 2% improvement on
the total weight. This is because our algorithm can cover
much more solutions (Equation (4)) than a semi-automated
approach. Furthermore, our solution still has about 8% less
weight than the semi-automated solution with our segment
sizing. This is because the total weight and the total length
have a quadratic relation—if the length of a segment is dou-
bled, its area also needs to be doubled to maintain the same

Table 1: Comparison between the semi-automated solu-

tion and our solution. In Steps 2 and 3, the numbers in

the parentheses are the runtime with the MILP formu-

lation (without the LP relaxation) and the runtime with

a brute-force approach, respectively.
Semi-Automated Our Algorithm

Step 1 Length (mm) — 281,260
Runtime (s) — 0.078

Step 2 Length (mm) 297,310 285,010
Comparison 1.000 0.959
Runtime (s) — 0.671 (0.733)

Step 3 Weight (kg) 3.031 2.707
Comparison 1.000 0.893
Runtime (s) — 1.529 (106.595)

resistance. As a result, the weight of the segment becomes
four times to the original weight. This means that min-
imizing the total length is very important for the weight
minimization, so an effective and efficient algorithm must
be applied on it.

To demonstrate the efficiency of the LP relaxation, we
generate a random test case with 500 vertices and tight ca-
pacity constraints (90% of the total capacity will be used).
In this test case, the LP formulation (it directly returns an
integer solution) and the MILP formulation take 1.978s and
10.898s to find an optimal solution, respectively. This in-
dicates that the LP relaxation is necessary for a large-scale
test case.

5. CONCLUSION
In this paper, we proposed a wire routing and wire sizing

algorithm for weight minimization of automotive systems.
A real industrial case study showed the effectiveness and
efficiency of our algorithm which provides an efficient, flex-
ible, and scalable approach for the design optimization of
automotive systems, and thus improves the design flow of
automotive systems.

6. REFERENCES
[1] Delphi Aluminum Cable Systems.

http://delphi.com/manufacturers/auto/ee/cables/cable-al/.

[2] Mentor Graphics Capital.
http://www.mentor.com/products/electrical-design-
software/capital/.

[3] Zuken E3.series.
http://www.zuken.com/en/products/electrical-wire-harness-
design/e3-series.

[4] ASTM International. Standard specification for standard
nominal diameters and cross-sectional areas of awg sizes of
solid round wires used as electrical conductors. ASTM
Standard B258-02, 2002.

[5] R. Karp. Reducibility among combinatorial problems.
Complexity of Computer Computations, pages 85–103, Mar
1972.

[6] T. Koch and A. Martin. Solving steiner tree problems in graphs
to optimality. Networks, 32(3):207–232, 1998.

[7] L. T. Kou, G. Markowsky, and L. Berman. A fast algorithm for
steiner trees. Acta Inf., 15:141–145, 1981.

[8] C.-W. Lin, L. Rao, J. D’Ambrosio, and
A. Sangiovanni-Vincentelli. Electrical architecture
optimization—cost minimization through wire routing & wire
sizing. SAE World Congress & Exhibition, Apr 2014.

[9] K. Oba. Wiring harnesses for next generation automobiles.
Fujikura Technical Review, 42:77–80, Mar 2013.

[10] K. Pretz. Fewer wires, lighter cars. IEEE The Institute, Apr
2013.

[11] J. Soukup. Circuit layout. Proceedings of the IEEE,
69(10):1281–1304, Oct 1981.

