Title
KINETICS OF THE REACTION OF AMMONIUM ION WITH HYDROBORATE ION IN LIQUID AMMONIA

Permalink
https://escholarship.org/uc/item/2pw777nj

Authors
Briggs, Thomas S.
Jolly, William L.

Publication Date
1975-03-01
KINETICS OF THE REACTION OF AMMONIUM ION WITH HYDROBORATE ION IN LIQUID AMMONIA

Thomas S. Briggs and William L. Jolly

March 1975

Prepared for the U. S. Atomic Energy Commission under Contract W-7405-ENG-48

For Reference
Not to be taken from this room
Kinetics of the Reaction of Ammonium Ion with Hydroborate Ion in Liquid Ammonia

by

Thomas S. Briggs and William L. Jolly

Chemistry Department, University of California, and
Inorganic Materials Research Division,
Lawrence Berkeley Laboratory,
Berkeley, California 94720

The acid-catalyzed hydrolysis of hydroborate has been thoroughly studied,\(^1\) but little has been reported on the analogous ammonolysis in liquid ammonia. Armstrong\(^2\) studied the reaction

\[
\text{(NH}_4\text{)}_2\text{SO}_4 + 2\text{NaBH}_4 \rightarrow \text{Na}_2\text{SO}_4 + 2\text{H}_2 + 2\text{BNH}_6
\]

in ammonia from 40° to 70°. The BNH\(_6\) product was not completely identified. We have investigated the kinetics of this reaction from 25 to 45° using NH\(_4\)Br instead of (NH\(_4\))\(_2\)SO\(_4\). In addition to obtaining rate constants and a heat of activation, we have determined the effect of ionic strength from \(\mu = 0.01\) M to \(\mu = 1.92\) M and have identified the product as E\(_3\)NH\(_3\).
Experimental Section

Reagent grade ammonium and sodium bromide (dried at 85°) and analytical reagent sodium hydroborate (Ventron) were used. Ammonia was distilled from a sodium solution.

The reactions were carried out in a magnetically-stirred, glass-lined 128-ml Parr general-purpose bomb. This was connected by high pressure fittings to one side of a mercury-containing U-tube manometer. The other side of the manometer was connected to a reference bomb containing pure liquid ammonia. The bombs were held in a thermostatted water bath, and the entire apparatus was enclosed in an air bath thermostatted at a temperature slightly above that of the water bath. The reaction rates were measured by reading the manometer with the aid of a cathetometer as a function of time.

The ammonia was first distilled into a separate bomb and weighed. The amounts of NaBH₄, NH₄Br, and NaBr required to make a solution of predetermined ionic strength were then weighed out into the reaction bomb, and the ammonia was finally distilled into the reaction bomb. Either the NaBH₄ or the NH₄Br was always in at least a 9-fold excess. After each run, the evolved hydrogen was Toepler-pumped into a gas buret and measured.

The pressures measured with the manometer corresponded to the partial pressures of hydrogen gas in the reaction bomb side. Rate constants were determined from plots of \(\log\left(\frac{P_\infty - P_t}{P_\infty}\right) \) vs time.

The B₃H₆ product was isolated by removal of ammonia on a vacuum line and extraction of the residue with ethyl ether. Evaporation of the ether left a white, crystalline solid which melted at 110-113°.
This melting temperature corresponds to \(\text{NH}_3\text{BH}_4 \). Anal. Calcd for \(\text{BNH}_6 \): B, 35.03; N, 45.48. Found: B, 35.24; N, 46.16.

Results and Conclusions

From \(\log \left[\frac{P_\infty - P}{P_\infty} \right] \)-vs-time plots such as that shown in Fig. 1, the reaction of \(\text{NH}_4^+ \) with \(\text{BH}_4^- \) was found to be first order in both \(\text{NH}_4^+ \) and \(\text{BH}_4^- \). The second order rate constants calculated from the slopes of such plots for various temperatures are given in Table I. A \(\log k \)-vs-\(1/T \) plot of the data, shown in Fig. 2, gave a least-squares heat of activation of 38.5 ± 0.6 kcal/mol. Our data may be compared with those of Gardiner and Collat, who studied the aqueous reaction of

Table I

Rate Constants in Liquid Ammonia at \(\mu = 0.9 \)

<table>
<thead>
<tr>
<th>Temperature, °C</th>
<th>(k) (M(^{-1}) sec(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>(5.88 \times 10^{-6})</td>
</tr>
<tr>
<td>30</td>
<td>(1.79 \times 10^{-5})</td>
</tr>
<tr>
<td>35</td>
<td>(5.04 \times 10^{-5})</td>
</tr>
<tr>
<td>40</td>
<td>(1.43 \times 10^{-4a})</td>
</tr>
<tr>
<td>42</td>
<td>(2.17 \times 10^{-4})</td>
</tr>
<tr>
<td>45</td>
<td>(3.40 \times 10^{-4b})</td>
</tr>
</tbody>
</table>

\(^a\)Average of \(1.49 \times 10^{-4} \) and \(1.37 \times 10^{-4} \), from separate experiments.

\(^b\)This value obtained in two experiments.
NH₄⁺ with BH₄⁻. They obtained a rate constant of 2.4 × 10⁻⁴ M⁻¹ sec⁻¹ at μ = 1 and 25° and a heat of activation of 23 ± 2 kcal/mol at μ = 0.5. The higher rate constant and lower activation energy of the aqueous reaction may be due to the participation, in the aqueous reaction, of water molecules hydrogen bonded to the ammonium ion. A Grotthuss-type proton transfer such as the following may be involved:

\[
\begin{align*}
H_3N - H \cdots O \cdots H & \quad HBH_3^- \rightarrow H_3N \quad H - O \\
& \quad H_2BH_3^- \\
\end{align*}
\]

Because hydrogen bonding is relatively unimportant in liquid ammonia, the analogous mechanism in liquid ammonia is unlikely.

The Bronsted-Bjerrum theory of ionic reaction leads to the expression

\[
\log_{10}\left(\frac{k}{k_0}\right) = \frac{2aZ_AZ_B\mu}{1 + \beta a/\mu}
\]

which was applied to rate constants measured at various ionic strengths at 30° (Table II). Using the dielectric constant of 16.5 for ammonia

<table>
<thead>
<tr>
<th>Ionic Strength</th>
<th>BH₄⁻, conc., M</th>
<th>NH₄⁺, conc., M</th>
<th>k (M⁻¹ sec⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0098</td>
<td>0.00888</td>
<td>0.00094</td>
<td>2.07 × 10⁻³</td>
</tr>
<tr>
<td>0.049</td>
<td>0.0446</td>
<td>0.0045</td>
<td>6.23 × 10⁻⁴</td>
</tr>
<tr>
<td>0.20</td>
<td>0.1954</td>
<td>0.0046</td>
<td>1.94 × 10⁻⁴</td>
</tr>
<tr>
<td>0.90</td>
<td>0.818</td>
<td>0.0818</td>
<td>1.79 × 10⁻⁵</td>
</tr>
<tr>
<td>1.92a</td>
<td>0.818</td>
<td>0.0818</td>
<td>4.95 × 10⁻⁶</td>
</tr>
</tbody>
</table>

NaBr was added to increase the ionic strength.
at 30°, we calculated α = 5.16 and β = 0.711. A value for a of 4.7 Å was used in constructing the Bronsted-Bjerrum plot of the data, shown in Figure 3. The experimental points at relatively low ionic strengths have a slope close to that predicted by equation 2, whereas the points at higher ionic strengths are low, probably because of the pairing of reactant ions with inert ions. Dewald and Browall correlated rate data for the reaction of the electron with the tri-n-butyl-n-propylammonium ion with the Bronsted-Bjerrum equation using a value for a of 6 Å.

Acknowledgement

This work was supported by the Energy Research and Development Administration.

Figure Captions

Fig. 1 Plot of $\log[(P_\infty - P)/P_\infty]$ vs time for reactions at 45° and $\mu = 0.9$: \circ from 0.08 M BH$_4^-$ with 0.82 M NH$_4^+$; Δ from 0.08 M NH$_4^+$ with 0.82 M BH$_4^-$.

Fig. 2 Temperature dependence of k at $\mu = 0.9$.

Fig. 3 Ionic strength dependence of k at 30°. The line is drawn with the slope given by eq. 2.
LEGAL NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.